Open Access
J. Space Weather Space Clim.
Volume 2, 2012
Article Number A19
Number of page(s) 10
Published online 29 November 2012
  • Amory-Mazaudier, C., M. Le Huy, Y. Cohen, V. Doumouya, A. Bourdillon, et al., Sun-Earth system interactions over Vietnam: An international cooperative project, Ann. Geophys., 24, 3313–3327, 2006. [CrossRef] [Google Scholar]
  • Arauje-Pradere, E.A., foF2 frequency bands in el Cerrillo, Mexico during magnetically quiet conditions, Rev. Bras. Geofis., 15 (2), 161–164, 1997. [CrossRef] [Google Scholar]
  • Blanc, M., A. Richmond, The ionospheric Disturbance Dynamo, J. Geophys. Res., 85, 1669–1686, 1980. [Google Scholar]
  • Breit, G., and M.A. Tuve, Test of the existence of the conducting layer, Phys. Rev., 28, 554–575, 1926. [Google Scholar]
  • Burns, A.G., T.L. Killeen, and R.G. Roble, A simulation of thermospheric composition changes during an impulsive storm, J. Geophys. Res., 96, 14153–14167, 1991. [CrossRef] [Google Scholar]
  • Burns, A.G., T.L. Killeen, G.R. Carignan, and R.G. Roble, Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms, J. Geophys. Res., 100, 14661–14671, 1995. [CrossRef] [Google Scholar]
  • Fejer, B., D.T. Farley, R.F. Woodman, C. Calderon, Dependence of Equatorial F region Vertical Drifts on Season and Solar Cycle, J. Geophys. Res., 84 (A10), 5792–5796, 1979. [CrossRef] [Google Scholar]
  • Fejer, B., E.R. Paula, S.A. Gonzalez, S.A. Gonzalez, R.F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res., 96 (A8), 13901–13906, 1991. [Google Scholar]
  • Fejer, B., and L. Scherliess, Empirical model of storm time equatorial zonal electric field, J. Geophys. Res., 102 (A11), 24047–24056, 1997. [CrossRef] [Google Scholar]
  • Fejer, B.G., J.W. Jensen, T. Kikuchi, M.A. Abdu, J.L. Chau, Equatorial ionospheric electric fields during the November 2004 magnetic storm, J. Geophys. Res., 112, A10304, DOI: 10.1029/2007JA012376, 2007. [CrossRef] [Google Scholar]
  • Fejer, B.G., Low latitude ionospheric electrodynamics, Space Sci. Rev., 158 (1), 145–166, 2011. [Google Scholar]
  • Forbes, J.M., S.E. Palo, X. Zhang, Variability of the ionosphere, J. Atmos. Sol. Terr. Phys., 62, 685–693, 2000. [Google Scholar]
  • Huang, C.-S., J.C. Foster, and M.C. Kelley, Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110, A11309, DOI: 10.1029/2005JA011202, 2005. [Google Scholar]
  • Huang, C.-S., S. Sazykin, J.L. Chau, N. Maruyama, and M.C. Kelley, Penetration electric fields: Efficiency and characteristic time scale, J. Atmos. Terr. Phys., 69 (10–11), 1135–1146, 2007. [CrossRef] [Google Scholar]
  • Jones, K.L., Storm time variation of the F2 layers electron concentration, J. Atmos. Terr. Phys., 33, 379–389, 1971. [CrossRef] [Google Scholar]
  • Jones, K.L., H. Risbeth, The origin of storm increases of mid-latitude F-layer electron concentration, J. Atmos. Terr. Phys., 33, 391–401, 1971. [Google Scholar]
  • Lal, C., Global F2 layer ionization and geomagnetic activity, J. Geophys. Res., 97 (A8), 12153–12159, 1992. [CrossRef] [Google Scholar]
  • Lal, C., Contribution to F2 layer ionization due to solar wind, J. Atmos. Sol. Terr. Phys., 99 (17), 2203–2211, 1997. [CrossRef] [Google Scholar]
  • Lal, C., Contribution of Solar wind and equinoctial maxima in geophysical phenomena, J. Atmos. Sol. Terr. Phys., 60, 1017–1024, 1998. [CrossRef] [Google Scholar]
  • Legrand, J.P, and P.A. Simon, Solar cycle and geomagnetic activity: A review for geophysicists. Part I. The contributions to geomagnetic activity of shock waves and of the solar wind, Ann. Geophys., 7 (6), 565–578, 1989. [Google Scholar]
  • Lotko, W., Report of the working group on ionospheric signatures. GEM report on the Workshop on Magnetospheric and Boundary Layer Physics, La Jolla, CA, 1989. [Google Scholar]
  • Lu, G., A.D. Richmond, R.G. Roble, and B.A. Emery, Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study, J. Geophys. Res., 106, 24493–24504, 2001. [CrossRef] [Google Scholar]
  • Manoj, C., S. Maus, H. Lühr, and P. Alken, Penetration characteristics of the interplanetary electric field to the daytime equatorial ionosphere, J. Geophys. Res., 113, A12310, DOI: 10.1029/2008JA013381, 2008. [CrossRef] [Google Scholar]
  • Nicolls, M.J., M.C. Kelley, J.L. Chau, O. Veliz, D. Anderson, and A. Anghel, The spectral properties of low latitude daytime electric fields inferred from magnetometer observations, J. Atmos. Terr. Phys., 69 (10–11), 1160–1173, 2007. [CrossRef] [Google Scholar]
  • Obrou, O.K., M.N. Mene, A.T. Kobea, and K.Z. Zaka, Equatorial Total Electron Content (TEC) at low and high solar activity, Adv. Space Res., 43 (11), 1757–1761, 2009. [CrossRef] [Google Scholar]
  • Ouattara, F., Contribution à l′étude des relations entre les deux composantes du champ magnétique solaire et l’ionosphère équatoriale, UCAD, 340 p, 2009a. [Google Scholar]
  • Ouattara, F., Relationship between geomagnetic classes’ activity phases and their occurrence during the sunspot cycle, Ann. Geophys., 52 (2), 107–116, 2009b. [Google Scholar]
  • Ouattara, F., and C. Amory Mazaudier, J. Atmos. Terr. Phys., 71, 1736–1748, 2009. [CrossRef] [Google Scholar]
  • Ouattara, F., C. Amory Mazaudier, P. Vila, R. Fleury, and P. Lassudrie Duchesne, West African equatorial ionospheric parameters climatology based on Ouagadougou station Ionosonde data from June 1966 to February 1998, Ann. Geophys., 27, 2503–2514, 2009. [CrossRef] [Google Scholar]
  • Pancheva, D., N. Mitchell, R.R. Clark, J. Drobjeva, and J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over Millstone (September 1998–March 2000); influence from below and above, Ann. Geophys., 20 (11), 1807–1819, 2002. [CrossRef] [Google Scholar]
  • Phillips, M.L., The ionosphere as a measure of solar activity, Terr. Mag. Atmos. Electr., 52 (3), 321–332, 1947. [CrossRef] [Google Scholar]
  • Prölss, G.W., Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci., 35, 807–811, 1987. [CrossRef] [Google Scholar]
  • Ren, Z., W. Wan, L. Liu, and J. Xiong, Intra-annual variation of wave number-4 structure of vertical ExB drifts in the equatorial ionosphere seen from ROCSAT-1, J. Geophys. Res., 114, A05308, DOI: 10.1029/2009JA014060, 2009. [CrossRef] [Google Scholar]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind, J. Geophys. Res, 105, 18200–18213, 2000. [Google Scholar]
  • Richmond, A., M. Blanc, B.A. Emery, R-H. Wand, B.G. Fejer, et al., J. Geophys. Res., 85 (A8), 4658–4664, 1980. [Google Scholar]
  • Richmond, A., and R.G. Roble, Dynamic effects of aurora generated gravity waves on mid-latitude ionosphere, J. Atmos. Terr. Phys., 41, 841–852, 1979. [CrossRef] [Google Scholar]
  • Rishbeth, H., F-region storms and thermospheric circulation, in Electromagnetic Coupling in the Polar Clefts and Caps, eds. P.E., Sandholt, and A. Egeland, Kluwer Academic, Norwell, MA, pp. 393–406, 1989. [CrossRef] [Google Scholar]
  • Rishbeth, H., and M. Mendillo, Pattern of F2-layer variability, J. Atmos. Sol. Terr. Phys., 63, 1661–1680, 2001. [Google Scholar]
  • Rishbeth, H.I., C.F. Müller-Wodarg, L. Zou, T.J. Fuller-Rowell, G.H. Millward, R.J. Moffett., D.W. Idenden, and A.D. Aylward, Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion, Ann. Geophys., 18, 945–956, 2000. [Google Scholar]
  • Scherliess, L., and B.G. Fejer, Radar and satellite global equatorial E region vertical drift model, J. Geophys. Res., 104, 6829–6842, 1999. [Google Scholar]
  • Shim, J.S., L. Scherliess, R.W. Shink, and D.C. Thomspon, Neutral wind and plasma drift effects on low and middle latitudes total electron content, J. Geophys. Res., 115, A04307, DOI: 10.1029/2009JA014488, 2010. [CrossRef] [Google Scholar]
  • Simon, P.A., and J.P. Legrand, Solar cycle and geomagnetic activity: A review for geophysicists. Part II. The solar sources of geomagnetic activity and their links with sunspot cycle activity, Ann. Geophys., 7 (6), 579–594, 1989. [Google Scholar]
  • Testud, J., and G. Vasseur, Ondes de gravité dans la thermosphere, Ann. Geophys., 25, 525–546, 1969. [Google Scholar]
  • Vasyliunas, V.H., A mathematical model of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, eds. B.M., Cormac, and D. Reidel, vol. 60, Hollant, 1970. [Google Scholar]
  • Volland, H., Magnetospheric Electric Fields and Currents and their influence on large scale thermospheric circulation and composition, J. Atmos. Sol. Terr. Phys., 41, 853–866, 1979. [CrossRef] [Google Scholar]
  • Zou, L., H.I. Rishbeth, C.F. Müller-Wodarg, A.D. Aylward, G.H. Millward, T.J. Fuller-Rowell, D.W. Idenden, and R.J. Moffett, Annual and semiannual variations in the ionospheric F2-layer: I. Modelling, Ann. Geophys., 18, 927–944, 2000. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.