Open Access
Issue |
J. Space Weather Space Clim.
Volume 2, 2012
|
|
---|---|---|
Article Number | A18 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2012018 | |
Published online | 21 November 2012 |
- Agee, E., K. Kiefer, and E. Cornett, Relationship of lower-troposphere cloud cover and cosmic rays: an updated perspective, J. Clim., 25, 1057–1060, DOI: 10.1175/JCLI-D-11-00169.1, 2012. [CrossRef] [Google Scholar]
- Angell, J.K., J. Korshver, and G.F. Cotton, Variations in United States cloudiness and sunshine, J. Clim. Appl. Meteorol., 23, 752–761, DOI: 10.1175/1520-0450, 1984. [CrossRef] [Google Scholar]
- Beer, J., W. Mende, and R. Stellmacher, The role of the sun in climate forcing, Quat. Sci. Rev., 19, 403–415, DOI: 10.1016/S0277-3791(99)00072-4, 2000. [CrossRef] [Google Scholar]
- Bond, G., B. Kromer, J. Beer, R. Muscheler, M. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, and G. Bonani, Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, DOI: 10.1126/science.1065680, 2001. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Brest, C., W. Rossow, and M. Roiter, Update of radiance calibrations for ISCCP, J. Atmos. Oceanic Technol., 14 (5), 1091–1109, 1997. [CrossRef] [Google Scholar]
- Čalogović, J., C. Albert, F. Arnold, J. Beer, L. Desorgher, and E. Flueckiger, Sudden cosmic ray decreases: no change of global cloud cover, Geophys. Res. Lett., 37 (3), L03802, DOI: 10.1029/2009GL041327, 2010. [Google Scholar]
- Cane, H., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 93 (1–2), 55–77, DOI: 10.1023/A:1026532125747, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Campbell, G., View angle dependence of cloudiness and the trend in ISCCP cloudiness, paper presented at the 13th Conference on Satellite Meteorology and Oceanography, Am. Meterol. Soc, 20–23 September, Norfolk, VA, 2004. [Google Scholar]
- Carslaw, K., R. Harrison, and J. Kirkby, Cosmic rays, clouds and climate, Science, 298 (5599), 1732–1737, DOI: 10.1126/science.1076964, 2002. [CrossRef] [Google Scholar]
- Clement, A., R. Burgman, and J. Norris, Observational and model evidence for positive low-level cloud feedback, Science, 325 (5939), 460–464, DOI: 10.1126/science.1171255, 2009. [CrossRef] [Google Scholar]
- Dai, A., K. Trenberth, and T. Karl, Effects of Clouds, soil moisture, precipitation and water vapor on diurnal temperature range, J. Clim., 12 (8), 2451–2473, DOI: 10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2, 1999. [CrossRef] [Google Scholar]
- Damon, P., and P. Laut, Pattern of strange errors plagues solar activity and terrestrial climate data, EOS, 85 (39), 370–374, DOI: 10.1029/2004EO390005, 2004. [Google Scholar]
- Dickinson, R., Solar variability and the lower atmosphere, Bull. Am. Meteorol. Soc., 56, 1240–1248, 1975. [CrossRef] [Google Scholar]
- Dragić, A, I. Ancin, R. Banjanac, V. Udovicic, D. Jokovic, D. Maletic, and J. Puzovic, Forbush decreases – clouds relation in the neutron monitor era, Astrophys. Space Sci. Trans., 7, 315–318, DOI: 10.5194/astra-7-315-2011, 2011. [CrossRef] [Google Scholar]
- Dumbović, M., B. Vršnak, J. Čalogović, and R. Župan, Cosmic ray modulation by different types of solar wind disturbances, A&A, 538, A28, DOI: 10.1051/0004-6361/201117710, 2011. [Google Scholar]
- Dunne, E., Comment on Effects of cosmic ray decreases on cloud microphysics by Svensmark et al., Atmos. Chem. Phys. Discuss., 12, C1000, 2012. [CrossRef] [Google Scholar]
- Dunne, E., L. Lee, C. Reddington, and K. Carslaw, No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols, Atmos. Chem. Phys. Discuss., 12, 15373–15417, DOI: 10.5194/acpd-12-15373-2012, 2012. [Google Scholar]
- Eddy, J., The Maunder minimum, Science, 192 (4245), 1189–1202, 1976. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Enghoff, M., J. Pedersen, U. Uggerhøj, S. Paling, and H. Svensmark, Aerosol nucleation induced by a high energy particle beam, Geophys. Res. Lett., 38, L09805, DOI: 10.1029/2011GL047036, 2011. [CrossRef] [Google Scholar]
- Evan, A., A. Heidinger, and D. Vimont, Arguments against a physical long-term trend in global ISCCP cloud amounts, Geophys. Res. Lett., 34, L04701, DOI: 10.1029/2006GL028083, 2007. [CrossRef] [Google Scholar]
- Farrar, P., Are cosmic rays influencing oceanic cloud coverage: or is it only El Niño? Clim. Change, 47 (1–2), 7–15, DOI: 10.1023/A:1005672825112, 2000. [CrossRef] [Google Scholar]
- Fleitmann, D., S. Burns, M. Mudelsee, U. Neff, J. Kramers, A. Mangini, and A. Mate, Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman, Science, 300 (5626), 1737–1739, DOI: 10.1126/science.1083130, 2003. [CrossRef] [Google Scholar]
- Gray, L., J. Beer, M. Geller, J. Haigh, M. Lookwood, K. Mattheus, U. Cubasch, D. Fleitmann, R. Harrison, L. Hood, J. Luterbacher, G. Meehl, D. Shindell, B. van Geel, and W. White, Solar influences on climate, Rev. Geophys., 48, RD4001, 2010. [CrossRef] [Google Scholar]
- Groisman, P, R. Bradley, and B. Sun, The relationship of cloud cover to near-surface temperature and humidity: Comparison of GCM simulations with empirical data, J. Clim., 13, 1858–1878, 2000. [CrossRef] [Google Scholar]
- Hahn, C., and S. Warren, Extended edited synoptic reports from ships and land stations over the globe, 1952–1996, Rep. ORNL/CDIAC-123 Oak Ridge Natl. Lab. Oak Ridge Tenn, 1999. [Google Scholar]
- Haigh, J., The impact of solar variability on climate, Science, 272, 981–984, 1996. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Harrison, R., and M. Ambaum, Enhancement of cloud formation by droplet charging, Proc. R. Soc. A, 464, 2561–2573, DOI: 10.1098/rspa.2008.0009, 2008. [CrossRef] [Google Scholar]
- Harrison, R., and D. Stephenson, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds, Proc. R. Soc. A, 462, 1221–1233, DOI: 10.1098/rspa.2005.1628, 2006. [Google Scholar]
- Harrison, R., and M. Ambaum, Observing Forbush decreases in cloud at Shetland, J. Atmos. Sol. Terr. Phys., 72, 1408–1414, DOI: 10.1016/j.jastp.2010.09.025, 2010. [Google Scholar]
- Harrison, R., M. Ambaum, and M. Lockwood, Cloud base height and cosmic rays, Proc. R. Soc. A, 467, 2777–2791, DOI: 10.1098/rspa.2011.0040, 2011. [Google Scholar]
- Herschel, W., Observations tending to investigate the Nature of the Sun in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations, Philos. Trans. R. Soc. Lond., 91, 265–318, 1801. [Google Scholar]
- Kazil, J., E. Lovejoy, M. Barth, and K. O’Brien, Aerosol nucleation over oceans and the role of galactic cosmic rays, Atmos. Chem. Phys., 6 (12), 4905–4924, 2006. [CrossRef] [Google Scholar]
- Kazil, J., K. Zhang, P. Stier, J. Feichter, U. Lohmann, and K. O’Brien, The present-day decadal solar cycle modulation of Earth’s radiative forcing via charged H2SO4/H2O aerosol nucleation, Geophys. Res. Lett., 29 (L02805), DOI: 10.1029/2011GL050058, 2012. [Google Scholar]
- Khain, A., M. Arkhipov, M. Pinsky, Y. Feldman, and Y. Ryabov, Rain enhancement and fog elimination by seeding with charged droplets. Part 1: theory and numerical simulations, J. Appl. Meteorol., 43, 1513–1529, DOI: 10.1175/JAM2131.1, 2004. [CrossRef] [Google Scholar]
- King, M., Y. Kaufman, W. Menzel, and D. Tanre, Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sens., 30, 2–27, 1992. [CrossRef] [Google Scholar]
- Kirkby, J., J. Curtis, J. Almeida, E. Dunne, J. Duplissy, et al., Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429–433, DOI: 10.1038/nature10343, 2011. [CrossRef] [Google Scholar]
- Knapp, K., Calibration assessment of ISCCP geostationary infrared observations using HIRS, J. Atmos. Ocean Technol., 25 (2), 183–DOI: 10.1175/2007JTECHA910.1, 2008. [CrossRef] [Google Scholar]
- Kniveton, D., Precipitation, cloud cover and Forbush decreases in galactic cosmic rays, J. Atmos. Sol. Terr. Phys., 66, 1135–1142, DOI: 10.1016/j.jastp.2004.05.010, 2004. [Google Scholar]
- Kniveton, D., M. Todd, J. Sciare, and N. Mihalopoulos, Variability of atmospheric dimethylsulphide over the southern Indian Ocean due to changes in ultraviolet radiation, Global Biogeochem. Cycles, 17, 1096, DOI: 10.1029/2003GB002033, 2003. [CrossRef] [Google Scholar]
- Kristjánsson, J., and J. Kristiansen, Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J. Geophys. Res., 105, 11851–11863, DOI: 10.1029/2000JD900029, 2000. [Google Scholar]
- Kristjánsson, J., J. Kristiansen, and E. Kaas, Solar activity, cosmic rays, clouds and climate – an update, Adv. Space Res., 34, 407–415, DOI: 10.1016/j.asr.2003.02.040, 2004. [CrossRef] [Google Scholar]
- Kristjánsson, J., C. Stjern, F. Stordal, A. Færaa, G. Myhre, and K. Jonasson, Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data, Atmos. Chem. Phys., 8, 7373–7387, DOI: 10.5194/acp-8-7373-2008, 2008. [CrossRef] [Google Scholar]
- Kuang, Z., Y.Y. Jiang, and Y. Yung, Cloud optical thickness variations during 1983–1991: Solar cycle or ENSO? Geophys. Res. Lett., 25, 1415–1417, DOI: 10.1029/98GL00471, 1998. [CrossRef] [Google Scholar]
- Laken, B., and J. Čalogović, Solar irradiance, cosmic rays and cloudiness over daily timescales, Geophys. Res. Lett., 38, L24811, DOI: 10.1029/2011GL049764, 2011. [CrossRef] [Google Scholar]
- Laken, B., and D. Kniveton, Forbush decreases and Antarctic cloud anomalies in the upper troposphere, J. Atmos. Sol. Terr. Phys., 73, 371–376, DOI: 10.1016/j.jastp.2010.03.008, 2011. [CrossRef] [Google Scholar]
- Laken, B., A. Wolfendale, and D. Kniveton, Cosmic ray decreases and changes in the liquid water cloud fraction over the oceans, Geophys. Res. Lett., 36, L23803, DOI: 10.1029/2009GL040961, 2009. [CrossRef] [Google Scholar]
- Laken, B., D. Kniveton, and M. Frogley, Cosmic rays linked to rapid mid-latitude cloud changes, Atmos. Chem. Phys., 10, 10941–10948, DOI: 10.5194/acp-10-10941-2010, 2010. [CrossRef] [Google Scholar]
- Laken, B., D. Kniveton, and A. Wolfendale, Forbush decreases, solar irradiance variations and anomalous cloud changes, J. Geophys. Res., 116, D09201, DOI: 10.1029/2010JD014900, 2011. [Google Scholar]
- Laken, B., and E. Pallé, Understanding sudden changes in cloud amount: the Southern Annular Mode and South American weather fluctuations, J. Geophys. Res., DOI: 10.1029/2012JD017626, 2012. [Google Scholar]
- Laken, B., E. Pallé, and H. Miyahara, A decade of the MODIS: is a link detectable, J. Clim., DOI: 10.1175/JCLI-D-11-00306.1, 2012a. [Google Scholar]
- Laken, B., J. Čalogović, J. Beer, and E. Pallé, Interactive comment on ‘Effects of cosmic ray decreases on cloud microphysics’ by Svensmark et al., Atmos. Chem. Phys. Discuss., 12, C962–C973, 2012b. [Google Scholar]
- Laken, B, J. Čalogović, T. Shahbaz, and E. Pallé, Examining a solar – climate link in diurnal temperature ranges, J. Geophys. Res., DOI: 10.1029/2012JD017683, 2012c. [Google Scholar]
- Laut, P., Solar activity and terrestrial climate: an analysis of some purported correlations, J. Atmos. Sol. Terr. Phys., 65, 801–812, DOI: 10.1016/S1364-6826(03)00041-5, 2003. [CrossRef] [Google Scholar]
- Lockwood, M., Solar influence on global and regional climates, Surv. Geophys., DOI: 10.1007/s10712-012-9181-3, 2012. [Google Scholar]
- Marsh, N., and H. Svensmark, Low cloud properties influenced by cosmic rays, Phys. Rev. Lett., 85, 5004–5007, DOI: 10.1103/PhysRevLett.85.5004, 2000. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Marsh, N., and H. Svensmark, Solar influence on Earth’s climate, Space Sci. Rev., 107, 317–325, DOI: 10.1023/A:1025573117134, 2003. [CrossRef] [Google Scholar]
- Meehl, G., J. Arblaster, G. Branstator, and H. van Loon, A coupled air – sea response mechanism to solar forcing in the Pacific region, J. Clim., 21, 2883–2897, DOI: 10.1175/2007JCLI1776.1, 2008. [CrossRef] [Google Scholar]
- Neal, R., Probabilistic inference using Markov Chain Monte Carlo Methods, Technical report CRG-TR-93-1 University of Toronto, Dept. of Computer Sicence, 1993. [Google Scholar]
- Ney, E., Cosmic radiation and the weather, Nature, 183, 451–452, 1959. [CrossRef] [Google Scholar]
- Nicoll, K., and R. Harrison, Experimental determination of layer cloud edge charging from cosmic ray ionisation, Geophys. Res. Lett., 37, L13802, DOI: 10.1029/2010GL043605, 2010. [CrossRef] [Google Scholar]
- Norris, J., What can cloud observations tell us about climate variability, Space Sci. Rev., 94 (1–2), 375–380, DOI: 10.1023/A:1026704314326, 2000. [CrossRef] [Google Scholar]
- Norris, J., Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, J. Geophys. Res., 110, D08206, DOI: 10.1029/2004JD005600, 2005. [CrossRef] [Google Scholar]
- Pallé, E., Possible satellite perspective effects on the reported correlations between solar activity and clouds, Geophys. Res. Lett., 32, L03802, DOI: 10.1029/2004GL021167, 2005. [CrossRef] [Google Scholar]
- Pallé, E., and C. Butler, The influence of cosmic rays on terrestrial clouds and global warming, Astron. Geophys., 41, 18–22, DOI: 10.1046/j.1468-4004.2000.00418.x, 2000. [Google Scholar]
- Pallé, E., and C. Butler, Sunshine record from Ireland: cloud factors and possible links to solar activity and cosmic rays, Int. J. Climatol., 21, 709–729, DOI: 10.1002/joc.657, 2001. [CrossRef] [Google Scholar]
- Pallé, E., and C. Butler, The proposed connection between clouds and cosmic rays: cloud behaviour during the past 50–120 years, J. Atmos. Sol. Terr. Phys., 64 (3), 327–337, DOI: 10.1016/S1364-6826(01)0010505, 2002a. [CrossRef] [Google Scholar]
- Pallé, E, and C. Butler, Comparison of sunshine records and synoptic cloud observations: a case study for Ireland, Phys. Chem. Earth, 27 (6–8), 405–414, DOI: 10.1016/S1474-7065(02)00020-7, 2002b. [CrossRef] [Google Scholar]
- Pierce, J., and P. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett., 36, L09820, DOI: 10.1029/2009GL037946, 2009. [CrossRef] [Google Scholar]
- Pincus, R., S. Platnick, S. Ackeran, R. Helmer, and R. Hofmann, Reconciling simulated and observed views of clouds: MODIS, ISCCP and the limits of instrument simulators, J. Clim., DOI: 10.1175/JCLI-D-11-00267.1, 2012. [Google Scholar]
- Ram, M., and M. Stolz, Possible solar influences on the dust profile of the GISP2 ice core from central Greenland, Geophys. Res. Lett., 26 (8), 1043–1046, DOI: 10.1029/1999GL900199, 1999. [CrossRef] [Google Scholar]
- Ripley, B., Stochastic Simulation, Wiley, New York, 1987. [Google Scholar]
- Rossow, W., and R. Schiffer, ISCCP cloud data products, Bull. Am. Meteorol. Soc., 72 (1), 2–20, DOI: 10.1175/1520-0477(1991)072, 1991. [CrossRef] [Google Scholar]
- Rosenfeld, D., Y. Kaufman, and I. Koren, Switching cloud cover and dynamical regimes from open to closed Bernard cells in response to the suppression of precipitation by aerosols, Atmos. Chem. Phys., 6, 2503–2511, DOI: 10.5194/acp-6-2503-2006, 2006. [CrossRef] [Google Scholar]
- Rosenfeld, D., U. Lohmann, G. Raga, C. O’Dowd, M. Kulmala, and S. Fuzzi, A. Reissell, M. Andreae, Flood or drought: how do aerosols affect precipitation? Science, 321 (5894), 1309–1313, DOI: 10.1126/science.1160606, 2008. [CrossRef] [Google Scholar]
- Rossow, W., and R. Schiffer, Advances in understanding of clouds from ISCCP, Bull. Am. Meterol. Soc., 80, 2261–2287, 1999. [Google Scholar]
- Roy, I., and J. Haigh, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys., 10 (6), 3147–3153, 2010. [CrossRef] [Google Scholar]
- Snow-Kropla, E., J. Pierce, D. Westervelt, and W. Trivitayanurak, Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties, Atmos. Chem. Phys., 11, 4001–4013, DOI: 10.5194/acp-11-4001-2011, 2011. [CrossRef] [Google Scholar]
- Sun, B., and R. Bradley, Solar influences on cosmic rays and cloud formation: a reassessment, J. Geophys. Res., 107 (4211), 4211, DOI: 10.1029/2001JD000560, 2002. [CrossRef] [Google Scholar]
- Stordal, F., G. Myhre, E. Stordal, W. Rossow, D. Lee, D. Arlander, and T. Svendby, Is there a trend in cirrus cloud cover due to aircraft traffic? Atmos. Chem. Phys., 5, 2155–2162, DOI: 10.5194/acp-5-2155-2005, 2005. [CrossRef] [Google Scholar]
- Svensmark, H., Cosmoclimatology: a new theory emerges, Astron. Geophys., 48 (1), 1.18–1.24, DOI: 10.1111/j.1468-4004.2007.48118.x, 2007. [CrossRef] [Google Scholar]
- Svensmark, H., and E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships, J. Atmos. Sol. Terr. Phys., 59 (11), 1225–1232, DOI: 10.1111/j.1468-4004.2007.48118.x, 1997. [Google Scholar]
- Svensmark, H., T. Bondo, and J. Svensmark, Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett., 36, L15101, DOI: 10.1029/2009GL038429, 2009. [Google Scholar]
- Svensmark, J., M. Enghoff, and H. Svensmark, Effects of cosmic ray decreases on cloud microphysics, Atmos. Chem. Phys. Discuss., 12, 3595–3617, DOI: 10.5194/acpd-12-3595-2012, 2012. [CrossRef] [Google Scholar]
- Tinsley, B., The global atmospheric electric circuit and its effects on cloud microphysics, Rep. Prog. Phys., 71 (6), 066801, DOI: 10.1088/0034-4885/71/6/066801, 2008. [Google Scholar]
- Tinsley, B., Electric charge modulation of aerosol scavenging in clouds: rate coefficients with Monte Carlo simulation of diffusion, J. Geophys. Res., 115, D23211, DOI: 10.1029/2010JD014580, 2010. [CrossRef] [Google Scholar]
- Tinsley, B., and G. Deen, Apparent tropospheric response to MeV-GeV particle flux variations: A connection via electrofreezing of supercooled water in high-level clouds? J. Geophys. Res., 96 (D12), 22283–22296, DOI: 10.1029/91JD02473, 1991. [CrossRef] [Google Scholar]
- Tinsley, B., R. Rohrbaugh, M. Hei, and K. Beard, Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes, J. Atmos. Sci., 57 (13), 2118–2134, DOI: 10.1175/1520-0469(2000)057, 2000. [CrossRef] [Google Scholar]
- Tinsley, B., L. Zhou, and W. Liu, The role of volcanic aerosols and relativistic electrons in modulating winter storm vorticity, Adv. Space Res., DOI: 10.1016/j.asr.2011.12.019, 2012. [Google Scholar]
- Todd, M., and D. Kniveton, Changes in cloud cover associated with Forbush decreases of galactic cosmic rays, J. Geophys. Res., 106 (D23), 32031–32041, DOI: 10.1029/2001JD000405, 2001. [CrossRef] [Google Scholar]
- Todd, M., and D. Kniveton, Short-term variability in satellite-derived cloud cover and galactic cosmic rays: an update, J. Atmos. Sol. Terr. Phys., 66 (13–14), 1205–1211, DOI: 10.1016/j.jastp.2004.05.002, 2004. [Google Scholar]
- Troshichev, O., V. Vovk, and L. Egrova, IMF-associated cloudiness above near-pole station Vostok: impact on wind regime in winter Antarctica, J. Atmos. Sol. Terr. Phys., 70 (10), 1289–1300, DOI: 10.1016/j.jastp.2008.04.003, 2008. [Google Scholar]
- Twomey, S., Aerosols, clouds and radiation, Atmos. Environ. A, 25, 2435–2442, DOI: 10.1016/0960-1686(91)90159-5, 1991. [CrossRef] [Google Scholar]
- Usoskin, I., and A. Kovaltsov, Cosmic rays and climate of the Earth: possible connection, C.R. Geosci., 340 (7), 441–450, DOI: 10.1016/j.crte.2007.11.001, 2008. [CrossRef] [Google Scholar]
- Versteegh, G., Solar forcing of climate. 2: evidence from the past, Space Sci. Rev., 120 (3–4), 243–286, DOI: 10.1007/s11214-005-7047-4, 2005. [CrossRef] [Google Scholar]
- Voiculescu, M., I. Usoskin, and K. Mursula, Different response of clouds to solar input, Geophys. Res. Lett., 33, L21802, DOI: 10.1029/2006GL027820, 2006. [CrossRef] [Google Scholar]
- Voiculescu, M., I. Usoskin, and L. Georgescu, Are some clouds obscured in satellite view? Rom. J. Phys., 54 (1–2), 225–229, 2009. [Google Scholar]
- Wylie, D., and W. Menzel, Eight years of high cloud statistics using HIRS, J. Clim., 12 (1), 170–184, 1999. [CrossRef] [Google Scholar]
- Wylie, D., W. Menzel, H. Woolf, and K. Strabala, Four years of global cirrus cloud statistics using HIRS, J. Clim., 7 (12), 1972–1986, DOI: 10.1175/1520-0442(1994)007, 1994. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.