Open Access
J. Space Weather Space Clim.
Volume 2, 2012
Article Number A18
Number of page(s) 13
Published online 21 November 2012
  • Agee, E., K. Kiefer, and E. Cornett, Relationship of lower-troposphere cloud cover and cosmic rays: an updated perspective, J. Clim., 25, 1057–1060, DOI: 10.1175/JCLI-D-11-00169.1, 2012. [CrossRef]
  • Angell, J.K., J. Korshver, and G.F. Cotton, Variations in United States cloudiness and sunshine, J. Clim. Appl. Meteorol., 23, 752–761, DOI: 10.1175/1520-0450, 1984. [CrossRef]
  • Beer, J., W. Mende, and R. Stellmacher, The role of the sun in climate forcing, Quat. Sci. Rev., 19, 403–415, DOI: 10.1016/S0277-3791(99)00072-4, 2000. [CrossRef]
  • Bond, G., B. Kromer, J. Beer, R. Muscheler, M. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, and G. Bonani, Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, DOI: 10.1126/science.1065680, 2001. [NASA ADS] [CrossRef] [PubMed]
  • Brest, C., W. Rossow, and M. Roiter, Update of radiance calibrations for ISCCP, J. Atmos. Oceanic Technol., 14 (5), 1091–1109, 1997. [CrossRef]
  • Čalogović, J., C. Albert, F. Arnold, J. Beer, L. Desorgher, and E. Flueckiger, Sudden cosmic ray decreases: no change of global cloud cover, Geophys. Res. Lett., 37 (3), L03802, DOI: 10.1029/2009GL041327, 2010.
  • Cane, H., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 93 (1–2), 55–77, DOI: 10.1023/A:1026532125747, 2000. [NASA ADS] [CrossRef]
  • Campbell, G., View angle dependence of cloudiness and the trend in ISCCP cloudiness, paper presented at the 13th Conference on Satellite Meteorology and Oceanography, Am. Meterol. Soc, 20–23 September, Norfolk, VA, 2004.
  • Carslaw, K., R. Harrison, and J. Kirkby, Cosmic rays, clouds and climate, Science, 298 (5599), 1732–1737, DOI: 10.1126/science.1076964, 2002. [CrossRef]
  • Clement, A., R. Burgman, and J. Norris, Observational and model evidence for positive low-level cloud feedback, Science, 325 (5939), 460–464, DOI: 10.1126/science.1171255, 2009. [CrossRef]
  • Dai, A., K. Trenberth, and T. Karl, Effects of Clouds, soil moisture, precipitation and water vapor on diurnal temperature range, J. Clim., 12 (8), 2451–2473, DOI: 10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2, 1999. [CrossRef]
  • Damon, P., and P. Laut, Pattern of strange errors plagues solar activity and terrestrial climate data, EOS, 85 (39), 370–374, DOI: 10.1029/2004EO390005, 2004. [CrossRef]
  • Dickinson, R., Solar variability and the lower atmosphere, Bull. Am. Meteorol. Soc., 56, 1240–1248, 1975. [CrossRef]
  • Dragić, A, I. Ancin, R. Banjanac, V. Udovicic, D. Jokovic, D. Maletic, and J. Puzovic, Forbush decreases – clouds relation in the neutron monitor era, Astrophys. Space Sci. Trans., 7, 315–318, DOI: 10.5194/astra-7-315-2011, 2011. [CrossRef]
  • Dumbović, M., B. Vršnak, J. Čalogović, and R. Župan, Cosmic ray modulation by different types of solar wind disturbances, A&A, 538, A28, DOI: 10.1051/0004-6361/201117710, 2011.
  • Dunne, E., Comment on Effects of cosmic ray decreases on cloud microphysics by Svensmark et al., Atmos. Chem. Phys. Discuss., 12, C1000, 2012. [CrossRef]
  • Dunne, E., L. Lee, C. Reddington, and K. Carslaw, No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols, Atmos. Chem. Phys. Discuss., 12, 15373–15417, DOI: 10.5194/acpd-12-15373-2012, 2012. [CrossRef]
  • Eddy, J., The Maunder minimum, Science, 192 (4245), 1189–1202, 1976. [NASA ADS] [CrossRef] [PubMed]
  • Enghoff, M., J. Pedersen, U. Uggerhøj, S. Paling, and H. Svensmark, Aerosol nucleation induced by a high energy particle beam, Geophys. Res. Lett., 38, L09805, DOI: 10.1029/2011GL047036, 2011. [CrossRef]
  • Evan, A., A. Heidinger, and D. Vimont, Arguments against a physical long-term trend in global ISCCP cloud amounts, Geophys. Res. Lett., 34, L04701, DOI: 10.1029/2006GL028083, 2007. [CrossRef]
  • Farrar, P., Are cosmic rays influencing oceanic cloud coverage: or is it only El Niño? Clim. Change, 47 (1–2), 7–15, DOI: 10.1023/A:1005672825112, 2000. [CrossRef]
  • Fleitmann, D., S. Burns, M. Mudelsee, U. Neff, J. Kramers, A. Mangini, and A. Mate, Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman, Science, 300 (5626), 1737–1739, DOI: 10.1126/science.1083130, 2003. [CrossRef]
  • Gray, L., J. Beer, M. Geller, J. Haigh, M. Lookwood, K. Mattheus, U. Cubasch, D. Fleitmann, R. Harrison, L. Hood, J. Luterbacher, G. Meehl, D. Shindell, B. van Geel, and W. White, Solar influences on climate, Rev. Geophys., 48, RD4001, 2010. [NASA ADS] [CrossRef]
  • Groisman, P, R. Bradley, and B. Sun, The relationship of cloud cover to near-surface temperature and humidity: Comparison of GCM simulations with empirical data, J. Clim., 13, 1858–1878, 2000. [CrossRef]
  • Hahn, C., and S. Warren, Extended edited synoptic reports from ships and land stations over the globe, 1952–1996, Rep. ORNL/CDIAC-123 Oak Ridge Natl. Lab. Oak Ridge Tenn, 1999.
  • Haigh, J., The impact of solar variability on climate, Science, 272, 981–984, 1996. [NASA ADS] [CrossRef] [PubMed]
  • Harrison, R., and M. Ambaum, Enhancement of cloud formation by droplet charging, Proc. R. Soc. A, 464, 2561–2573, DOI: 10.1098/rspa.2008.0009, 2008. [CrossRef]
  • Harrison, R., and D. Stephenson, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds, Proc. R. Soc. A, 462, 1221–1233, DOI: 10.1098/rspa.2005.1628, 2006. [CrossRef]
  • Harrison, R., and M. Ambaum, Observing Forbush decreases in cloud at Shetland, J. Atmos. Sol. Terr. Phys., 72, 1408–1414, DOI: 10.1016/j.jastp.2010.09.025, 2010. [CrossRef]
  • Harrison, R., M. Ambaum, and M. Lockwood, Cloud base height and cosmic rays, Proc. R. Soc. A, 467, 2777–2791, DOI: 10.1098/rspa.2011.0040, 2011. [CrossRef]
  • Herschel, W., Observations tending to investigate the Nature of the Sun in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations, Philos. Trans. R. Soc. Lond., 91, 265–318, 1801. [NASA ADS] [CrossRef]
  • Kazil, J., E. Lovejoy, M. Barth, and K. O’Brien, Aerosol nucleation over oceans and the role of galactic cosmic rays, Atmos. Chem. Phys., 6 (12), 4905–4924, 2006. [CrossRef]
  • Kazil, J., K. Zhang, P. Stier, J. Feichter, U. Lohmann, and K. O’Brien, The present-day decadal solar cycle modulation of Earth’s radiative forcing via charged H2SO4/H2O aerosol nucleation, Geophys. Res. Lett., 29 (L02805), DOI: 10.1029/2011GL050058, 2012.
  • Khain, A., M. Arkhipov, M. Pinsky, Y. Feldman, and Y. Ryabov, Rain enhancement and fog elimination by seeding with charged droplets. Part 1: theory and numerical simulations, J. Appl. Meteorol., 43, 1513–1529, DOI: 10.1175/JAM2131.1, 2004. [CrossRef]
  • King, M., Y. Kaufman, W. Menzel, and D. Tanre, Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sens., 30, 2–27, 1992. [CrossRef]
  • Kirkby, J., J. Curtis, J. Almeida, E. Dunne, J. Duplissy, et al., Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429–433, DOI: 10.1038/nature10343, 2011. [CrossRef]
  • Knapp, K., Calibration assessment of ISCCP geostationary infrared observations using HIRS, J. Atmos. Ocean Technol., 25 (2), 183–DOI: 10.1175/2007JTECHA910.1, 2008. [CrossRef]
  • Kniveton, D., Precipitation, cloud cover and Forbush decreases in galactic cosmic rays, J. Atmos. Sol. Terr. Phys., 66, 1135–1142, DOI: 10.1016/j.jastp.2004.05.010, 2004. [CrossRef]
  • Kniveton, D., M. Todd, J. Sciare, and N. Mihalopoulos, Variability of atmospheric dimethylsulphide over the southern Indian Ocean due to changes in ultraviolet radiation, Global Biogeochem. Cycles, 17, 1096, DOI: 10.1029/2003GB002033, 2003. [CrossRef]
  • Kristjánsson, J., and J. Kristiansen, Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J. Geophys. Res., 105, 11851–11863, DOI: 10.1029/2000JD900029, 2000. [CrossRef]
  • Kristjánsson, J., J. Kristiansen, and E. Kaas, Solar activity, cosmic rays, clouds and climate – an update, Adv. Space Res., 34, 407–415, DOI: 10.1016/j.asr.2003.02.040, 2004. [CrossRef]
  • Kristjánsson, J., C. Stjern, F. Stordal, A. Færaa, G. Myhre, and K. Jonasson, Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data, Atmos. Chem. Phys., 8, 7373–7387, DOI: 10.5194/acp-8-7373-2008, 2008. [CrossRef]
  • Kuang, Z., Y.Y. Jiang, and Y. Yung, Cloud optical thickness variations during 1983–1991: Solar cycle or ENSO? Geophys. Res. Lett., 25, 1415–1417, DOI: 10.1029/98GL00471, 1998. [CrossRef]
  • Laken, B., and J. Čalogović, Solar irradiance, cosmic rays and cloudiness over daily timescales, Geophys. Res. Lett., 38, L24811, DOI: 10.1029/2011GL049764, 2011. [CrossRef]
  • Laken, B., and D. Kniveton, Forbush decreases and Antarctic cloud anomalies in the upper troposphere, J. Atmos. Sol. Terr. Phys., 73, 371–376, DOI: 10.1016/j.jastp.2010.03.008, 2011. [CrossRef]
  • Laken, B., A. Wolfendale, and D. Kniveton, Cosmic ray decreases and changes in the liquid water cloud fraction over the oceans, Geophys. Res. Lett., 36, L23803, DOI: 10.1029/2009GL040961, 2009. [CrossRef]
  • Laken, B., D. Kniveton, and M. Frogley, Cosmic rays linked to rapid mid-latitude cloud changes, Atmos. Chem. Phys., 10, 10941–10948, DOI: 10.5194/acp-10-10941-2010, 2010. [CrossRef]
  • Laken, B., D. Kniveton, and A. Wolfendale, Forbush decreases, solar irradiance variations and anomalous cloud changes, J. Geophys. Res., 116, D09201, DOI: 10.1029/2010JD014900, 2011. [CrossRef]
  • Laken, B., and E. Pallé, Understanding sudden changes in cloud amount: the Southern Annular Mode and South American weather fluctuations, J. Geophys. Res., DOI: 10.1029/2012JD017626, 2012.
  • Laken, B., E. Pallé, and H. Miyahara, A decade of the MODIS: is a link detectable, J. Clim., DOI: 10.1175/JCLI-D-11-00306.1, 2012a.
  • Laken, B., J. Čalogović, J. Beer, and E. Pallé, Interactive comment on ‘Effects of cosmic ray decreases on cloud microphysics’ by Svensmark et al., Atmos. Chem. Phys. Discuss., 12, C962–C973, 2012b.
  • Laken, B, J. Čalogović, T. Shahbaz, and E. Pallé, Examining a solar – climate link in diurnal temperature ranges, J. Geophys. Res., DOI: 10.1029/2012JD017683, 2012c.
  • Laut, P., Solar activity and terrestrial climate: an analysis of some purported correlations, J. Atmos. Sol. Terr. Phys., 65, 801–812, DOI: 10.1016/S1364-6826(03)00041-5, 2003. [CrossRef]
  • Lockwood, M., Solar influence on global and regional climates, Surv. Geophys., DOI: 10.1007/s10712-012-9181-3, 2012.
  • Marsh, N., and H. Svensmark, Low cloud properties influenced by cosmic rays, Phys. Rev. Lett., 85, 5004–5007, DOI: 10.1103/PhysRevLett.85.5004, 2000. [NASA ADS] [CrossRef] [PubMed]
  • Marsh, N., and H. Svensmark, Solar influence on Earth’s climate, Space Sci. Rev., 107, 317–325, DOI: 10.1023/A:1025573117134, 2003. [CrossRef]
  • Meehl, G., J. Arblaster, G. Branstator, and H. van Loon, A coupled air – sea response mechanism to solar forcing in the Pacific region, J. Clim., 21, 2883–2897, DOI: 10.1175/2007JCLI1776.1, 2008. [CrossRef]
  • Neal, R., Probabilistic inference using Markov Chain Monte Carlo Methods, Technical report CRG-TR-93-1 University of Toronto, Dept. of Computer Sicence, 1993.
  • Ney, E., Cosmic radiation and the weather, Nature, 183, 451–452, 1959. [CrossRef]
  • Nicoll, K., and R. Harrison, Experimental determination of layer cloud edge charging from cosmic ray ionisation, Geophys. Res. Lett., 37, L13802, DOI: 10.1029/2010GL043605, 2010. [CrossRef]
  • Norris, J., What can cloud observations tell us about climate variability, Space Sci. Rev., 94 (1–2), 375–380, DOI: 10.1023/A:1026704314326, 2000. [CrossRef]
  • Norris, J., Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, J. Geophys. Res., 110, D08206, DOI: 10.1029/2004JD005600, 2005. [CrossRef]
  • Pallé, E., Possible satellite perspective effects on the reported correlations between solar activity and clouds, Geophys. Res. Lett., 32, L03802, DOI: 10.1029/2004GL021167, 2005. [CrossRef]
  • Pallé, E., and C. Butler, The influence of cosmic rays on terrestrial clouds and global warming, Astron. Geophys., 41, 18–22, DOI: 10.1046/j.1468-4004.2000.00418.x, 2000.
  • Pallé, E., and C. Butler, Sunshine record from Ireland: cloud factors and possible links to solar activity and cosmic rays, Int. J. Climatol., 21, 709–729, DOI: 10.1002/joc.657, 2001. [CrossRef]
  • Pallé, E., and C. Butler, The proposed connection between clouds and cosmic rays: cloud behaviour during the past 50–120 years, J. Atmos. Sol. Terr. Phys., 64 (3), 327–337, DOI: 10.1016/S1364-6826(01)0010505, 2002a. [CrossRef]
  • Pallé, E, and C. Butler, Comparison of sunshine records and synoptic cloud observations: a case study for Ireland, Phys. Chem. Earth, 27 (6–8), 405–414, DOI: 10.1016/S1474-7065(02)00020-7, 2002b. [CrossRef]
  • Pierce, J., and P. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett., 36, L09820, DOI: 10.1029/2009GL037946, 2009. [CrossRef]
  • Pincus, R., S. Platnick, S. Ackeran, R. Helmer, and R. Hofmann, Reconciling simulated and observed views of clouds: MODIS, ISCCP and the limits of instrument simulators, J. Clim., DOI: 10.1175/JCLI-D-11-00267.1, 2012.
  • Ram, M., and M. Stolz, Possible solar influences on the dust profile of the GISP2 ice core from central Greenland, Geophys. Res. Lett., 26 (8), 1043–1046, DOI: 10.1029/1999GL900199, 1999. [CrossRef]
  • Ripley, B., Stochastic Simulation, Wiley, New York, 1987.
  • Rossow, W., and R. Schiffer, ISCCP cloud data products, Bull. Am. Meteorol. Soc., 72 (1), 2–20, DOI: 10.1175/1520-0477(1991)072, 1991. [CrossRef]
  • Rosenfeld, D., Y. Kaufman, and I. Koren, Switching cloud cover and dynamical regimes from open to closed Bernard cells in response to the suppression of precipitation by aerosols, Atmos. Chem. Phys., 6, 2503–2511, DOI: 10.5194/acp-6-2503-2006, 2006. [CrossRef]
  • Rosenfeld, D., U. Lohmann, G. Raga, C. O’Dowd, M. Kulmala, and S. Fuzzi, A. Reissell, M. Andreae, Flood or drought: how do aerosols affect precipitation? Science, 321 (5894), 1309–1313, DOI: 10.1126/science.1160606, 2008. [CrossRef]
  • Rossow, W., and R. Schiffer, Advances in understanding of clouds from ISCCP, Bull. Am. Meterol. Soc., 80, 2261–2287, 1999. [NASA ADS] [CrossRef]
  • Roy, I., and J. Haigh, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys., 10 (6), 3147–3153, 2010. [CrossRef]
  • Snow-Kropla, E., J. Pierce, D. Westervelt, and W. Trivitayanurak, Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties, Atmos. Chem. Phys., 11, 4001–4013, DOI: 10.5194/acp-11-4001-2011, 2011. [CrossRef]
  • Sun, B., and R. Bradley, Solar influences on cosmic rays and cloud formation: a reassessment, J. Geophys. Res., 107 (4211), 4211, DOI: 10.1029/2001JD000560, 2002. [CrossRef]
  • Stordal, F., G. Myhre, E. Stordal, W. Rossow, D. Lee, D. Arlander, and T. Svendby, Is there a trend in cirrus cloud cover due to aircraft traffic? Atmos. Chem. Phys., 5, 2155–2162, DOI: 10.5194/acp-5-2155-2005, 2005. [CrossRef]
  • Svensmark, H., Cosmoclimatology: a new theory emerges, Astron. Geophys., 48 (1), 1.18–1.24, DOI: 10.1111/j.1468-4004.2007.48118.x, 2007. [CrossRef]
  • Svensmark, H., and E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships, J. Atmos. Sol. Terr. Phys., 59 (11), 1225–1232, DOI: 10.1111/j.1468-4004.2007.48118.x, 1997. [NASA ADS] [CrossRef]
  • Svensmark, H., T. Bondo, and J. Svensmark, Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett., 36, L15101, DOI: 10.1029/2009GL038429, 2009. [CrossRef]
  • Svensmark, J., M. Enghoff, and H. Svensmark, Effects of cosmic ray decreases on cloud microphysics, Atmos. Chem. Phys. Discuss., 12, 3595–3617, DOI: 10.5194/acpd-12-3595-2012, 2012. [CrossRef]
  • Tinsley, B., The global atmospheric electric circuit and its effects on cloud microphysics, Rep. Prog. Phys., 71 (6), 066801, DOI: 10.1088/0034-4885/71/6/066801, 2008. [CrossRef]
  • Tinsley, B., Electric charge modulation of aerosol scavenging in clouds: rate coefficients with Monte Carlo simulation of diffusion, J. Geophys. Res., 115, D23211, DOI: 10.1029/2010JD014580, 2010. [CrossRef]
  • Tinsley, B., and G. Deen, Apparent tropospheric response to MeV-GeV particle flux variations: A connection via electrofreezing of supercooled water in high-level clouds? J. Geophys. Res., 96 (D12), 22283–22296, DOI: 10.1029/91JD02473, 1991. [CrossRef]
  • Tinsley, B., R. Rohrbaugh, M. Hei, and K. Beard, Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes, J. Atmos. Sci., 57 (13), 2118–2134, DOI: 10.1175/1520-0469(2000)057, 2000. [CrossRef]
  • Tinsley, B., L. Zhou, and W. Liu, The role of volcanic aerosols and relativistic electrons in modulating winter storm vorticity, Adv. Space Res., DOI: 10.1016/j.asr.2011.12.019, 2012.
  • Todd, M., and D. Kniveton, Changes in cloud cover associated with Forbush decreases of galactic cosmic rays, J. Geophys. Res., 106 (D23), 32031–32041, DOI: 10.1029/2001JD000405, 2001. [CrossRef]
  • Todd, M., and D. Kniveton, Short-term variability in satellite-derived cloud cover and galactic cosmic rays: an update, J. Atmos. Sol. Terr. Phys., 66 (13–14), 1205–1211, DOI: 10.1016/j.jastp.2004.05.002, 2004. [CrossRef]
  • Troshichev, O., V. Vovk, and L. Egrova, IMF-associated cloudiness above near-pole station Vostok: impact on wind regime in winter Antarctica, J. Atmos. Sol. Terr. Phys., 70 (10), 1289–1300, DOI: 10.1016/j.jastp.2008.04.003, 2008. [CrossRef]
  • Twomey, S., Aerosols, clouds and radiation, Atmos. Environ. A, 25, 2435–2442, DOI: 10.1016/0960-1686(91)90159-5, 1991. [CrossRef]
  • Usoskin, I., and A. Kovaltsov, Cosmic rays and climate of the Earth: possible connection, C.R. Geosci., 340 (7), 441–450, DOI: 10.1016/j.crte.2007.11.001, 2008. [CrossRef]
  • Versteegh, G., Solar forcing of climate. 2: evidence from the past, Space Sci. Rev., 120 (3–4), 243–286, DOI: 10.1007/s11214-005-7047-4, 2005. [CrossRef]
  • Voiculescu, M., I. Usoskin, and K. Mursula, Different response of clouds to solar input, Geophys. Res. Lett., 33, L21802, DOI: 10.1029/2006GL027820, 2006. [CrossRef]
  • Voiculescu, M., I. Usoskin, and L. Georgescu, Are some clouds obscured in satellite view? Rom. J. Phys., 54 (1–2), 225–229, 2009.
  • Wylie, D., and W. Menzel, Eight years of high cloud statistics using HIRS, J. Clim., 12 (1), 170–184, 1999. [CrossRef]
  • Wylie, D., W. Menzel, H. Woolf, and K. Strabala, Four years of global cirrus cloud statistics using HIRS, J. Clim., 7 (12), 1972–1986, DOI: 10.1175/1520-0442(1994)007, 1994. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.