Open Access
Issue |
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
|
|
---|---|---|
Article Number | A06 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2012007 | |
Published online | 25 June 2012 |
- Abreu, J.A., J.Beer, F.Steinhilber, S.M.Tobias, and N.O.Weiss, For how long will the current grand maximum of solar activity persist?, Geophys. Res. Lett., 35 (20), L20109, DOI: 10.1029/2008GL035442, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Antia, H.M., and S.Basu, Solar rotation rate during the cycle 24 minimum in activity, Astrophys. J., 720, 494–502, DOI: 10.1088/0004-637X/720/1/494, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Antia, H.M., and S.Basu, Zonal flows throughout cycle 23, J. Phys: Conf. Ser., 271 (1), 012072, DOI: 10.1088/1742-6596/271/1/012072, 2011. [CrossRef] [Google Scholar]
- Arlt, R., and A.Abdolvand, First solar butterfly diagram from Schwabe’s observations in 1825–1867, in “The Physics of Sun and Star Spots”, Proc. IAU Symp., 273, 286–289, DOI: 10.1017/S1743921311015390, 2011. [Google Scholar]
- Basu, S., and H.M.Antia, Characteristics of solar meridional flows during solar cycle 23, Astrophys. J., 717 (1), 488–495, DOI: 10.1088/0004-637X/717/1/488, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Basu, S., and H.M.Antia, Characteristics of solar meridional flows, in “GONG-SoHO 24: A new era of seismology of the sun and solar-like stars”, J. Phys: Conf. Ser., 271, 12071, DOI: 10.1088/1742-6596/271/1/012071, 2011. [CrossRef] [Google Scholar]
- Bergeot, N., J.Legrand, R.Burston, C.Bruyninx, P.Defraigne, et al., Correlation between solar activity and Earth’s ionospheric electron content during the 23rd solar cycle, American Geophysical Union, Fall Meeting 2010, abstract #SA33B-1774, 2010. [Google Scholar]
- Brandenburg, A., The case for a distributed solar dynamo shaped by near-surface shear, Astrophys. J., 625, 539–547, DOI: 10.1086/429584, 2005. [Google Scholar]
- Bruinsma, S.L., and J.M.Forbes, Anomalous behavior of the thermosphere during solar minimum observed by CHAMP and GRACE, J. Geophys. Res., 115, A11323, DOI: 10.1029/2010JA015605, 2010. [CrossRef] [Google Scholar]
- Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Sol. Phys., 7 (3), Available at: http://www.livingreviews.org/lrsp-2010-3, 2010. [Google Scholar]
- Chen, Y., L.Liu, and W.Wan, Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009?J. Geophys. Res., 116, A04304, DOI: 10.1029/2010JA016301, 2011. [CrossRef] [Google Scholar]
- Clette, F., D.Berghmans, P.Vanlommel, R.A.M.van der Linden, A.Koeckelenbergh, and L.Wauters, From the Wolf number to the International Sunspot Index: 25 years of SIDC, Adv. Space Res., 40, 919–928, DOI: 10.1016/j.asr.2006.12.045, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Cliver, E.W., and A.G.Ling, The floor in the solar wind magnetic field revisited, Sol. Phys., 274 (1–2), 285–301, DOI: 10.1007/s11207-010-9657-6, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Coffey, H.E., C.D.Hanchett, and E.H.Erwin, AAVSO solar division digital data archives at NGDC, J. AAVSO, 27 (1), 55–60, 1999. [Google Scholar]
- Coley, W.R., R.A.Heelis, M.R.Hairston, G.D.Earle, M.D.Perdue, et al., Ion temperature and density relationships measured by CINDI from the C/NOFS spacecraft during solar minimum, J. Geophys. Res., 115, A02313, DOI: 10.1029/2009JA014665, 2010. [CrossRef] [Google Scholar]
- de Toma, G., Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24, Sol. Phys., 213, 195–217, DOI: 10.1007/s11207-010-9677-2, 2010. [Google Scholar]
- de Toma, G., S.E.Gibson, B.A.Emery, and C.N.Arge, The minimum between cycle 23 and 24: Is sunspot number the whole story?, in SOHO-23: Understanding a Peculiar Solar Minimum, eds.S.R.Cranmer, J.T.Hoeksema, and J.L.Kohl, ASP Conf. Ser., 428, 217–222, 2010. [Google Scholar]
- Didkovsky, L.V., D.L.Judge, S.R.Wieman, and D.McMullin, Minima of solar cycles 22/23 and 23/24 as seen in SOHO/CELIAS/SEM absolute solar EUV flux, in “SOHO-23: Understanding a Peculiar Solar Minimum”eds.S.R., Cranmer, J.T.Hoeksema, and J.L.Kohl, ASP Conf. Ser., 428, 73–79, 2010. [Google Scholar]
- Emmert, J.T., J.L.Lean, and J.M.Picone, Record-low thermospheric density during the 2008 solar minimum, Geophys. Res. Lett., 371, 12102, DOI: 10.1029/2010GL043671, 2010. [Google Scholar]
- Fisk, L.A., and L.Zhao, The heliospheric magnetic field and the solar wind during the solar cycle, IAU Symp., 257, 109–120, DOI: 10.1017/S1743921309029160, 2009. [Google Scholar]
- Hathaway, D.H., and L.Rightmire, Variations in the Sun’s meridional flow over a solar cycle, Science, 327, 1350, DOI: 10.1126/science.1181990, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway, D.H., and L.Rightmire, Variations in the axisymmetric transport of magnetic elements on the Sun: 1996–2010, Astrophys. J., 729 (2), 80–89, DOI: 10.1088/0004-637X/729/2/80, 2011. [CrossRef] [Google Scholar]
- Heber, B., A.Kopp, J.Gieseler, R.Müller-Mellin, H.Fichtner, et al., Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum, Astrophys. J., 699, 1956–1963, DOI: 10.1088/0004-637X/699/2/1956, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Hossfield, C.H., A History of the Zurich and American relative sunspot number indices, J. AAVSO, 31 (1), 48–53, 2002. [Google Scholar]
- Howe, R., J.Christensen-Dalsgaard, F.Hill, R.Komm, J.Schou, et al., A note on the torsional oscillation at solar minimum, Astrophys. J. Lett., 701 (2), L87–L90, DOI: 10.1088/0004-637X/701/2/L87, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Howe, R., F.Hill, R.Komm, J.Christensen-Dalsgaard, T.P.Larson, et al., The torsional oscillation and the new solar cycle, J. Phys: Conf. Ser., 271 (1), 012074, DOI: 10.1088/1742-6596/271/1/012074, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Janardhan, P., S.K.Bisoi, and S.Gosain, Solar polar fields during cycles 21–23: Correlation with meridional flows, Sol. Phys., 267 (2), 267–277, DOI: 10.1007/s11207-010-9653-x, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Javaraiah, J., Long-term variations in the growth and decay rates of sunspot groups, Sol. Phys., 270 (2), 463–483, DOI: 10.1007/s11207-011-9768-8, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Jian, L.K., C.T.Russell, and J.G.Luhmann, Comparing solar minimum 23/24 with historical solar wind records at 1 AU, Sol. Phys., 274 (1-2), 321–344, DOI: 10.1007/s11207-011-9737-2, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Johnson, R.W., Power law relating 10.7 cm flux to sunspot number, Astrophys. Space Sci., 332 (1), 73–79, DOI: 10.1007/s10509-010-0500-1, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Kane, R.P., Dissimilarity in the evolution of solar EUV and solar radio emission (2800 MHz) during 1999–2002, J. Geophys. Res., 108 (A12), 1455, DOI: 10.1029/2003JA009869, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Kilcik, A., V.B.Yurchyshyn, V.Abramenko, P.R.Goode, A.Ozguc, et al., Time distributions of large and small sunspot groups over four solar cycles, Astrophys. J., 731 (1), 30, DOI: 10.1088/0004-637X/731/1/30, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Komm, R., R.Howe, F.Hill, I.González Hernández, and D.Haber, Solar-cycle variation of zonal and meridional flow, J. Phys: Conf. Ser., 271 (1), 012077, DOI: 10.1088/1742-6596/271/1/012077, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J.L., J.T.Emmert, J.M.Picone, and R.R.Meier, Global and regional trends in ionospheric total electron content, J. Geophys. Res. (Space Phys.), 116, A00H04 11, DOI: 10.1029/2010JA016378, 2011b. [Google Scholar]
- Lean, J.L., T.N.Woods, F.G.Eparvier, R.R.Meier, D.J.Strickland, et al., Solar extreme ultraviolet irradiance: Present, past, and future, J. Geophys. Res. (Space Phys.), 116, 1102, DOI: 10.1029/2010JA015901, 2011a. [Google Scholar]
- Lefèvre, L., and F.Clette, A global small sunspot deficit at the base of the index anomalies of solar cycle 23, A&A, 536, L11, DOI: 10.1051/0004-6361/201118034, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Lefèvre, L., F.Clette, and T.Baranyi, In-depth survey of sunspot and active region catalogs, in “The Physics of Sun and Star Spots”, IAU Symp., 273, 221–225, DOI: 10.1017/S1743921311015286, 2011. [Google Scholar]
- Liu, L., Y.Chen, H.Le, V.I.Kurkin, N.M.Polekh, et al., The ionosphere under extremely prolonged low solar activity, J. Geophys. Res., 116 (A4), A04320, DOI: 10.1029/2010JA016296, 2011b. [CrossRef] [Google Scholar]
- Liu, L., H.Le, Y.Chen, M.He, W.Wan, et al., Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements, J. Geophys. Res. (Space Phys.), 116, 1102, DOI: 10.1029/2011JA016691, 2011a. [Google Scholar]
- Livingston, W., and M.Penn, Are sunspots different during this solar minimum?, EOS Trans., 90 (30), 257–258, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Lukianova, R., and K.Mursula, Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23, J. Atmos. Sol. Terr. Phys., 73 (2-3), 235–240, DOI: 10.1016/j.jastp.2010.04.002, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Lürh, H., and C.Xiong, IRI2007 model overestimates electron density during the 23/24 solar minimum, Geophys. Res. Lett., 37, L23101, DOI: 10.1029/2010GL045430, 2010. [CrossRef] [Google Scholar]
- McComas, D.J., R.W.Ebert, H.A.Elliott, B.E.Goldstein, J.T.Gosling, et al., Weaker solar wind from the polar coronal holes and the whole Sun, Geophys. Res. Lett., 35 (18), L18103, DOI: 10.1029/2008GL034896, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- McDonald, F.B., W.R.Webber, and D.V.Reames, Unusual time histories of galactic and anomalous cosmic rays at 1 AU over the deep solar minimum of cycle 23/24, Geophys. Res. Lett., 37 (18), L18101, DOI: 10.1029/2010GL044218, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Mewaldt, R.A., A.J.Davis, K.A.Lave, R.A.Leske, E.C.Stone, et al., Record-setting cosmic-ray intensities in 2009 and 2010, Astrophys. J. Lett., 723 (1), L1–L6, DOI: 10.1088/2041-8205/723/1/L1, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Muñoz-Jaramillo, A., D.Nandy, P.C.H.Martens, and A.R.Yeates, A double-ring algorithm for modeling solar active regions: Unifying kinematic dynamo models and surface flux-transport simulations, Astrophys. J. Lett., 720, L20–L25, DOI: 10.1088/2041-8205/720/1/L20, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Nandy, D., Dynamo models of the solar cycle: Current trends and future prospects, in Proc. of the 1st Asia Pacific Solar Physics Meeting, ASI Conf. Ser., [eprint: arXiv:1110.5725], 2011. [Google Scholar]
- Nandy, D., A.Muñoz-Jaramillo, and P.C.H.Martens, Unusual Minimum of sunspot cycle 23 caused by meridional plasma flow variations, Nature, 471 (7336), 80–82, DOI: 10.1038/nature09786, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Penn, M., and W., Livingston, Long-term evolution of sunspot magnetic fields, in “The Physics of Sun and Star Spots”, Proc. of the IAU, IAU Symp., 273, 126–133, DOI: 10.1017/S1743921311015122, 2011. [Google Scholar]
- Pesnell, W.D., Predictions of solar cycle 24, Sol. Phys., 252 (1), 209–220, 10.1007/s11207-008-9252-2, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Rezaei, R., C.Beck, and W.Schmidt, Variation in sunspot properties between 1999 and 2011 as observed with the Tenerife Infrared Polarimeter, A&A, 541, A60, DOI: 10.1051/0004-6361/201118635, 2012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schaefer, B.E., Automatic inflation of the AAVSO sunspot number, J. AAVSO, 26, 40–46, 1997. [Google Scholar]
- Schatten, K.H., Modeling a shallow solar dynamo, Sol. Phys., 255 (1), 3–38, DOI: 10.1007/s11207-008-9308-3, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Sheeley, N.R.Jr., A century of polar faculae variations, Astrophys. J. Lett., 680 (2), 1553–1559, DOI: 10.1086/588251, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Smith, E.J., and A.Balogh, Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations, Geophys. Res. Lett., 35 (22), L22103, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Solomon, S.C., L.Qian, L.V.Didkovsky, R.A.Viereck, and T.N.Woods, Causes of low thermospheric density during the 2007–2009 solar minimum, J. Geophys. Res. (Space Phys.), 116, A00H07, DOI: 10.1029/2011JA016508, 2011. [CrossRef] [Google Scholar]
- Solomon, S.C., T.N.Woods, L.V.Didkovsky, J.T.Emmert, and L.Qian, Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum, Geophys. Res. Lett., 371, 16103, DOI: 10.1029/2010GL044468, 2010. [Google Scholar]
- Svalgaard, L., and H.S.Hudson, The solar microwave flux and the sunspot number, in “SOHO-23: Understanding a Peculiar Solar Minimum”, Eds.S.R.Cranmer, J.T.Hoeksema, and J.L.Kohl, ASP Conf. Ser., 428, 325, 2010. [Google Scholar]
- Tapping, K.F., and J.J.Valdés, Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24?Sol. Phys., 272, 337–350, DOI: 10.1007/s11207-011-9827-1, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin, I.G., S.K.Solanki, and G.A.Kovaltsov, Grand minima and maxima of solar activity: New observational constraints, A&A, 471 (1), 301–309, DOI: 10.1051/0004-6361:20077704, 2007. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wang, Y.-M., E.Robbrecht, and N.R.SheeleyJr., On the weakening of the polar magnetic fields during solar cycle 23, Astrophys. J. Lett., 707 (2), 1372–1386, DOI: 10.1088/0004-637X/707/2/1372, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Watson, F.T., L.Fletcher, and S.Marshall, Evolution of sunspot properties during solar cycle 23, A&A, 533, A14, DOI: 10.1051/0004-6361/201116655, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wintoft, P., The variability of solar EUV: A multiscale comparison between sunspot number, 10.7 cm flux, LASP MgII index, and SOHO/SEM EUV flux, J. Atmos. Sol. Terr. Phys., 73 (13), 1708–1714, DOI: 10.1016/j.jastp.2011.03.009, 2011. [CrossRef] [Google Scholar]
- Woods, T.N., Irradiance variations during this solar cycle minimum, in “SOHO-23: Understanding a Peculiar Solar Minimum”, eds.S.R., Cranmer, J.T.Hoeksema, and J.L.Kohl, ASP Conf. Ser., 428, 63–71, 2010. [Google Scholar]
- Woods, T., Lower solar extreme ultraviolet irradiances during the solar cycle 23/24 minimum, in Proc. 38th COSPAR Scientific Assembly, 38, 1127, 2010. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.