Space Climate
Open Access
Issue
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A05
Number of page(s) 7
DOI https://doi.org/10.1051/swsc/2012004
Published online 13 June 2012
  • Appleton, E.V., Two anomalies in the ionosphere, Nature, 157, 691, 1946. [NASA ADS] [CrossRef] [Google Scholar]
  • Bolduc, L., GIC observations and studies in the Hydro-Quebec power system, J. Atmos. Sol. Terr. Phys., 64, 1793, 2002. [CrossRef] [Google Scholar]
  • Carrington, R.C., Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. R. Astron. Soc., 20, 13, 1859. [Google Scholar]
  • Echer, E., W.D. Gonzalez, and B.T. Tsurutani, Interplanetary conditions leading to superintense geomagnetic storms (Dst < −250 nT) during solar cycle 23, Geophys. Res. Lett., 35, L06S03, DOI: 10.1029/2007GL03175, 2008a. [CrossRef] [Google Scholar]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst < −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, DOI: 10.1029/2007JA012744, 2008b. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez, W.D., E. Echer, A.L. Clua de Gonzalez, B.T. Tsurutani, and G.S. Lakhina, Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms, J. Atmos. Sol. Terr. Phys., 73, 1447, 2011. [CrossRef] [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99 (A4), 5771, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Hapgood, M., Prepare for the coming space weather storm, Nature, 484, 311, 2012. [Google Scholar]
  • Hodgson, R., On a curious appearance seen in the Sun, Mon. Not. R. Astron. Soc., 20, 15, 1859. [Google Scholar]
  • Huang, C.-S., J.C. Foster, and M.C. Kelley, Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110, A11309, DOI: 10.1029/2005JA011202, 2005. [CrossRef] [Google Scholar]
  • Huba, J.D., K.F. Dymond, G. Joyce, S.A. Budzien, S.E. Thonnard, J.A. Fedder, and R.P. McCoy, Comparison of O+ density from ARGOS LORAAS data analysis and SAMI2 model results, Geophys. Res. Lett., 29 (7), 6-1, DOI: 10.1029/2001GL013089, 2002. [CrossRef] [Google Scholar]
  • Huba, J.D., G. Joyce, and J.A. Fedder, Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105 (A10), 23035, 2000. [CrossRef] [Google Scholar]
  • Kelley, M.C., B.G. Fejer, and C.A. Gonzales, An explanation for anomalous equatorial ionospheric electric field associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6 (4), 301, 1979. [CrossRef] [Google Scholar]
  • Kelley, M.C., J.J. Makela, J.L. Chau, and M.J. Nicolls, Penetration of the solar wind electric field into the magnetosphere/ionosphere system, Geophys. Res. Lett., 30 (4), 1158, 2003. [CrossRef] [Google Scholar]
  • Keskinen, M.J., E.P. Szuszczewicz, S.L. Ossakow, and J.C. Holmes, Nonlinear theory and experimental observations of the local collisional Rayleigh-Taylor instability in a descending equatorial spread F ionosphere, J. Geophys. Res., 86 (A7), 5785, 1981. [CrossRef] [Google Scholar]
  • Koga, D., J.H.A. Sobral, W.D. Gonzalez, D.C.S. Arruda, M.A. Abdu, et al., Electrodynamic coupling processes between the magnetosphere and the equatorial ionosphere during a 5-day HILDCAA event, J. Atmos. Sol. Terr. Phys., 73, 148, 2011. [CrossRef] [Google Scholar]
  • Lakhina, G.S., S. Alex, B.T. Tsurutani, and W.D. Gonzalez, Super magnetic storms: Hazzard to society, in Complexities and Extreme Events in Geosciences, eds. A.S. Sharma, A. Bunde, D. Baker, and V.P. Dimri, Geophysical Monograph Series, American Geophysical Union Press, Washington DC, 2012, in press. [Google Scholar]
  • Loomis, E., On the great auroral exhibition of Aug. 28th to Sept. 4, 1859, and on auroras generally, Am. J. Sci., 82, 318, 1861. [Google Scholar]
  • Mannucci, A.J., B.T. Tsurutani, M.A. Abdu, W.D. Gonzalez, A. Komjathy, E. Echer, B.A. Iijima, G. Crowley, and D. Anderson, Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms, J. Geophys. Res., 113, A00A02, DOI: 10.1029/2007HA012732, 2008. [CrossRef] [Google Scholar]
  • Mannucci, A.J., B.T. Tsurutani, B.A. Iijima, A. Komjathy, A. Saito, W.D. Gonzalez, F.L. Guarnieri, J.U. Kozyra, and R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29-30 2003 “Halloween storms”, Geophys. Res. Lett., 32, L12S02, DOI: 10.1029/2004GL021467, 2005. [CrossRef] [Google Scholar]
  • Namba, S., and K.-I. Maeda, Maeda, Radio Wave Propagation, Corona, Tokyo, p. 86, 1939. [Google Scholar]
  • Nishida, A., Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73, 5549, 1968. [CrossRef] [Google Scholar]
  • Obayashi, T., The interaction of solar plasma with geomagnetic field, disturbed conditions, in Solar Terrestrial Physics, eds. J.W. King and W.S. Newman, Academic Press, London, 107, 1967. [Google Scholar]
  • Ossakow, S.L., Spread-F theories-a review, J. Atmos. Terr. Phys., 43, 437, 1981. [CrossRef] [Google Scholar]
  • Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 98, 5981, 1993. [CrossRef] [Google Scholar]
  • Rostogi, R.G. and J.A. Klobuchar, Ionospheric electron content within the equatorial F2 layer anomaly belt, J. Geophys. Res., 95, 19045, 1990. [CrossRef] [Google Scholar]
  • Sastri, J.H., K. Niranjan, and K.S.V. Subbarao, Response of the equatorial ionosphere in the Indian (midnight) sector to the severe magnetic storm of July 15, 2000, Geophys. Res. Lett., 29, 13, DOI: 10.1029/2002GL015133, 2002. [CrossRef] [Google Scholar]
  • Siqueira, P.M., E.R. de Paula, M.T.A.H. Muella, L.F.C. Rezende, M.A. Abdu, and W.D. Gonzalez, Storm-time total electron content and its response to penetration electric fields over South America, Ann. Geophys., 29, 1765, 2011. [CrossRef] [Google Scholar]
  • Sobral, J.H.A., M.A. Abdu, W.D. Gonzalez, W.D. Gonzalez, I. Batista, and A.L. Clua de Gonzalez, Low-latitude ionospheric response during intense magnetic storms at solar maximum, J. Geophys. Res., 102, 14305, 1997. [CrossRef] [Google Scholar]
  • Sobral, J.H.A., M.A. Abdu, W.D. Gonzalez, C.S. Yamashita, A.L. Clua de Gonzalez, I. Batista, and C.J. Zamlutti, Responses of the low latitude ionosphere to very intense geomagnetic storms, J. Atmos. Sol. Terr. Phys., 63, 965, 2001. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., E. Echer, F.L. Guarnieri, and O.P. Verkhoglyadova, Interplanetary causes of middle latitude ionospheric disturbances, in Midlatitude Ionospheric Dynamics and Disturbances, eds. P. Kintner et al., Geophysical Monograph Series, American Geophysical Union Press, Washington DC, 181, 99, 2008a. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, G.S. Lakhina, and S. Alex, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108 (A7), DOI: 10.1029/2002JA009504, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, F. Tang, S.-I. Akasofu, and E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93, 8519, 1988. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, F. Tang, and Y.T. Lee, Great magnetic storms, Geophys. Res. Lett., 19, 73, 1992. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., A. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., A08302, DOI: 10.1029/2003JA010342, 2004. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., O.P. Verkhoglyadova, A.J. Mannucci, T. Araki, A. Saito, T. Tsuda, and K. Yumoto, Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event, Ann. Geophys., 25, 1, 2007. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., O.P. Verkhoglyadova, A.J. Mannucci, A. Saito, T. Araki, et al., Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–32 October 2003, J. Geophys. Res., 113, A05311, DOI: 10.1029/2007JA012879, 2008b. [CrossRef] [Google Scholar]
  • Verkhoglyadova, O.P., B.T. Tsurutani, and A.J. Mannucci, Modeling of time development of TEC variations during a superstorm event, eds. A. Bhardwaj, M. Duldig, and M. Duldig, Adv. Geosci., 112, 2007. [Google Scholar]
  • Verkhoglyadova, O.P., B.T. Tsurutani, A.J. Mannucci, A. Saito, T. Araki, D. Anderson, M. Abdu, and J.H.A. Sobral, Simulation of PPEF effects in dayside low-latitude ionosphere for the October 30, 2003 superstorm, in Midlatitude Ionospheric Dynamics and Disturbances, eds. P. Kintner, A. Coster, T. Fuller-Rowell, A. Mannucci, M. Mendillo, and R. Heelis, 169, 181, 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.