Space Climate
Open Access
Issue
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A11
Number of page(s) 7
DOI https://doi.org/10.1051/swsc/2012011
Published online 02 August 2012
  • Blackman, E.G., and A. Brandenburg, Dynamic nonlinearity in large scale dynamos with shear, Astrophys. J., 579, 359–373, 2002. [Google Scholar]
  • Blackman, E.G., and A. Brandenburg, Doubly helical coronal ejections from dynamos and their role in sustaining the solar cycle, Astrophys. J., 584, L99–L102, 2003. [CrossRef] [Google Scholar]
  • Bothmer, V., and R. Schwenn, The structure and origin of magnetic clouds in the solar wind, Ann Geophysicae, 16, 1–24, 1998. [Google Scholar]
  • Brandenburg, A., The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence, Astrophys. J., 550, 824–840, 2001. [Google Scholar]
  • Brandenburg, A., S. Candelaresi, and P. Chatterjee, Small-scale magnetic helicity losses from a mean-field dynamo, MNRAS, 398, 1414–1422, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Brandenburg, A., K. Subramanian, A. Balogh, and M.L. Goldstein, Scale-dependence of magnetic helicity in the solar wind, Astrophys. J., 734, 9, 2011. [Google Scholar]
  • Hubbard, A., and A. Brandenburg, Magnetic helicity fluxes in an α2 dynamo embedded in a halo, Geophys. Astrophys. Fluid Dyn., 104, 577–590, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Käpylä, P.J., M.J. Korpi, A. Brandenburg, D. Mitra, and R. Tavakol, Convective dynamos in spherical wedge geometry, Astron. Nachr., 331, 73–81, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Käpylä, P.J., M.J. Mantere, and A. Brandenburg, Cyclic magnetic activity due to turbulent convection in spherical wedge geometry, Astrophys. J. Lett., 755, L22, 2012. [Google Scholar]
  • Krause, F., and K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford, 1980. [Google Scholar]
  • Low, B.C., Solar Activity and the Corona, Sol. Phys., 167, 217–265, 1996. [Google Scholar]
  • Low, B.C., Coronal mass ejections, magnetic flux ropes, and solar magnetism, J. Geophys. Res., 106, 25141–25163, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Matthaeus, W.H., M.L. Goldstein, and C. Smith, Evaluation of magnetic helicity in homogeneous turbulence, Phys. Rev. Lett., 48, 1256–1259, 1982. [NASA ADS] [CrossRef] [Google Scholar]
  • Mitra, D., S. Candelaresi, P. Chatterjee, R. Tavakol, and A. Brandenburg, Equatorial magnetic helicity flux in simulations with different gauges, Astron Nachr., 331, 130–135, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Ortolani, S., and D.D. Schnack, Magnetohydrodynamics of Plasma Relaxation, World Scientific, Singapore, 1993. [Google Scholar]
  • Pouquet, A., U. Frisch, and J. Léorat, Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech., 77, 321–354, 1976. [NASA ADS] [CrossRef] [Google Scholar]
  • Subramanian, K., and A. Brandenburg, Magnetic helicity density and its flux in weakly inhomogeneous turbulence, Astrophys. J., 648, L71–L74, 2006. [Google Scholar]
  • Warnecke, J., and A. Brandenburg, Surface appearance of dynamogenerated large-scale fields, A&A, 523, A19, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Warnecke, J., A. Brandenburg, and D. Mitra, Dynamo-driven plasmoid ejections above a spherical surface, A&A, 534, A11, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Warnecke, J., P.J. Käpylä, M.J. Mantere, and A. Brandenburg, Sol. Phys., 2012, in press, arXiv:1112.0505. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.