Space Climate
Open Access
Issue
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A10
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2012010
Published online 31 July 2012
  • Aellig, M.R., A.J. Lazarus, and J.T. Steinberg, The solar wind helium abundance: variation with wind speed and the solar cycle, Geophys. Res. Lett., 28 (14), 2767–2770, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Alexander, D., I.G. Richardson, and T.H. Zurbuchen, A brief history of CME science, Space Sci. Rev., 123, 3–11, 2006. [CrossRef] [Google Scholar]
  • Bame, S.J., J.R. Asbridge, W.C. Feldman, M.D. Montgomery, and P.D. Kearney, Solar wind heavy ion abundances, Sol. Phys., 43, 463, 1975. [CrossRef] [Google Scholar]
  • Bame, S.J., J.R. Asbridge, W.C. Feldman, E.E. Fenimore, and J.T. Gosling, Solar wind heavy ions from flare heated coronal plasma, Sol. Phys., 62, 179–201, 1979. [CrossRef] [Google Scholar]
  • Bothmer, V., and R. Schwenn, Eruptive prominences as sources of magnetic clouds in the solar wind, Space Sci. Rev., 70, 215, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al., The large angle spectroscopic coronagraph (LASCO), Sol. Phys., 162, 357, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., Micro-scale structures in the interplanetary medium, Sol. Phys., 4, 67, 1968. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., Interplanetary Magnetohydrodynamics, Oxford University Press, Oxford, ISBN-0-19-508472-1, 1995. [Google Scholar]
  • Burlaga, L.F., and K.W. Behannon, Compound streams, magnetic clouds and major geomagnetic storms, J. Geophys. Res., 92, 5725, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., and K.W. Ogilvie, Magnetic and thermal pressures in the solar wind, Sol. Phys., 15, 61–71, 1970. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., L.W. Klein, N.R. Sheeley Jr., D.J. Michels, R.A. Howard, M.J. Koomen, R. Schwenn, and H. Rosenbauer, A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 9, 317, 1982. [Google Scholar]
  • Burlaga, L.F., J.D. Scudder, L.W. Klein, and P.A. Isenberg, Pressure-balanced structures between 1 AU and 24 AU and their implications for solar wind electrons and interstellar pickup ions, J. Geophys. Res., 95, 2229, 1990. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L., R. Fitzenreiter, R. Lepping, K. Ogilvie, A. Szabo, et al., A magnetic cloud containing prominence material: January 1997, J. Geophys. Res., 103 (A1), 277–285, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Chandra, R., E. Pariat, B. Schmieder, C.H. Mandrini, and W. Uddin, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Sol. Phys., 261, 127–148, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Chandra, R., B. Schmieder, C. Mandrini, P. Demoulin, E. Pariat, et al., Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003, Sol. Phys., 269, 83–104, DOI: 10.1007/s11207-010-9670-9, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Crooker, N.U., and T.S. Horbury, Solar imprint on ICMEs, their magnetic connectivity and heliospheric evolution, Space Sci. Rev., 123, 93–109, 2006. [Google Scholar]
  • Feldman, W.C., J.R. Asbridge, S.J. Bame, and J.T. Gosling, Long-term variations of selected solar wind properties: Imp 6, 7, and 8 results, J. Geophys. Res., 83, 2177–2189, 1978. [Google Scholar]
  • Feldman, W.C., B.L. Barraclough, and J.L. Phillips, Constraints on high-speed solar wind structure near its coronal base: a Ulysses perspective, A&A, 316, 355, 1996. [Google Scholar]
  • Ferraro, V.C.A., and C. Plumpton, An Introduction to Magneto-Fluid Dynamics, Clarendon Press, Oxford, 1966. [Google Scholar]
  • Filippov, B., and S. Koutchmy, About the prominence heating mechanisms during its eruptive phase, Sol. Phys., 208, 283–295, 2002. [NASA ADS] [CrossRef] [Google Scholar]
  • Forsyth, R.J., V. Bothmer, C. Cid, N.U. Crooker, T.S. Horbury, et al., ICMEs in the inner heliosphere: origin, evolution and propagation effects, Space Sci. Rev., 123, 383–416, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Galvin, A.B., Minor ion composition in CME-related solar wind, In Coronal Mass Ejections, eds. N., Crooker, J.A. Joselyn, and J. Feynmann, AGU, Washington, 253, 1997. [CrossRef] [Google Scholar]
  • Gary, S.P., L. Yin, D. Winske, J.T. Steinberg, and R.M. Skoug, Solar wind ion scattering by Alfven-cyclotron fluctuations: ion temperature anisotropies versus relative alpha particle densities, New J. Phys., 8, 17, 2006. [CrossRef] [Google Scholar]
  • Geiss, J., G. Gloeckler, R. von Steiger, H. Balsiger, L.A. Fisk, et al., The southern high-speed stream – results from the SWICS instrument on Ulysses, Science, 268, 1033, 1995. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gloeckler, G., J. Cain, F.M. Ipavich, E.O. Tums, P. Bedini, et al., Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, et al., What is a geomagnetic storm? J. Geophy. Res., 99 A4, 5771–5792, 1994. [Google Scholar]
  • Gopalswamy, N., Properties of interplanetary coronal mass ejections, Space Sci. Rev., 124, 145–168, DOI: 10.1007/s 11214-006-9102-1, 2006. [Google Scholar]
  • Gopalswamy, N., Y. Hanaoka, T. Kosugi, R.P. Lepping, J.T. Steinberg, et al., On the relationship between coronal mass ejections and magnetic clouds, Geophys. Res. Lett., 25 (14), 2485–2488, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N., S. Yashiro, G. Michalek, H. Xie, R.P. Lepping, and R.A. Howard, Solar source of the largest geomagnetic storm of cycle 23, Geophys. Res. Lett., 32, L12S09, DOI: 10.1029/2004GL021639, 2005. [CrossRef] [Google Scholar]
  • Gosling, J.T., V. Pizzo, and S.J. Bame, Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J. Geophys. Res., 78, 2001, 1973. [Google Scholar]
  • Gosling, J.T., J.R. Asbridge, S.J. Bame, and W.C. Feldman, Observations of large fluxes of He+ in the solar wind following an interplanetary shock, J. Geophys. Res., 85, 3431, 1980. [CrossRef] [Google Scholar]
  • Harrison, R.A., J.A. Davies, C. Möstl, Y. Liu, M. Temmer, et al., An analysis of the origin and propagation of the multiple coronal mass ejection of 2010 August 1, Astrophys. J., 750, 45, DOI: 10.1088/0004-637X/750/1/45, 2012. [Google Scholar]
  • Hovestadt, D., M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, et al., CELIAS – Charge, Element and Isotope Analysis System for SOHO, Sol. Phys., 162, 441, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Howard, R.A., D.J. Michels, N.R. Sheeley Jr., and M.J. Koomen, The observation of a coronal transient directed at Earth, Astrophys. J., 263, 1982. [Google Scholar]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al., Sun earth connection coronal and heliospheric investigation (SECCHI), Space Sci. Rev., 136, 67–115, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Hu, Q., and B.U.Ö. Sonnerup, Reconstruction of magnetic clouds in the solar wind: orientations and configurations, J. Geophys. Res., 107 (A7), 1142, DOI: 10.1029/2001JA000293, 2002. [CrossRef] [Google Scholar]
  • Hudson, H.S., J.L. Bougeret, and J. Burkepile, Coronal mass ejections: overview of observations, Space Sci. Rev., 123, 13, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Hundhausen, A.J., Coronal expansion and solar wind, Springer-Verlag, New York, 1972. [CrossRef] [Google Scholar]
  • Hundhausen, A.J., The origin and propagation of coronal mass ejections, in Solar Wind Six, eds. V.J., Pizzo, T.E. Holzer, and D.G. Sime, Proc, Natl. Cent. for Atmos. Res., Boulder, Colo, p. 181, Tech. Note, 306, 1988. [Google Scholar]
  • Hundhausen, A.J., H.E. Gilbert, and S.J. Bame, Ionization state of the interplanetary plasma, J. Geophys. Res., 73, 5485, 1968a. [Google Scholar]
  • Hundhausen, A.J., H.E. Gilbert, and S.J. Bame, The state of ionization of oxygen in the solar wind, Astrophys. J., 152, 1968b. [Google Scholar]
  • Klein, L.W., and L.F. Burlaga, Interplanetary magnetic cloud at 1 AU, J. Geophys. Res., 87, 613, 1982. [Google Scholar]
  • Kumar, P., P.K. Manoharan, and W. Uddin, Multiwavelength study on solar and interplanetary origins of the strongest geomagnetic storm of solar cycle 23, Sol. Phys., 271 (1–2), 149–167, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Lemen, J.R., A.M. Title, C. Akin, J.F. Drake, D.W. Duncan, et al., Atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO), Sol. Phys., 275, 17–40, DOI: 10.1007/s11207-011-9776-8, 2011. [Google Scholar]
  • Lepping, R.P., M.H. Acuna, L.F. Burlaga, W.M. Farrell, J.A. Slavin, et al., The WIND magnetic field investigation, Space Sci. Rev., 207, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Lepri, S.T., and T.H. Zurbuchen, Direct observational evidence of filament material within interplanetary coronal mass ejections, Astrophys. J. Lett., 723, 22–27, DOI: 10.1088/2041-8205/723/1/L22, 2010. [CrossRef] [Google Scholar]
  • Lopez, R.E., Solar cycle invariance in solar wind proton temperature relationships, J. Geophys. Res., 92 (A10), DOI: 10.1029/JA092iA10p11189, 1987. [CrossRef] [Google Scholar]
  • Lopez, R.E., and J.W. Freeman, Solar wind proton temperature-velocity relationship, J. Geophys. Res., 91, 1701–1705, 1986. [NASA ADS] [CrossRef] [Google Scholar]
  • Marsch, E., and C.Y., Tu, Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves, J. Geophys. Res., 106, 8357, 2001. [CrossRef] [Google Scholar]
  • Marsch, E., K.H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, and F.M. Neubauer, Solar wind protons: three dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87 (A1), 52–72, 1982. [NASA ADS] [CrossRef] [Google Scholar]
  • Marsch, E., X.Z. Ao, and C.Y. Tu, On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind, J. Geophys. Res., 109, A04102, DOI: 10.1029/2003JA010330, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Martens, P.C.H., and N.P.M. Kuin, A circuit model for filament eruptions and two ribbon flares, Sol. Phys., 122, 263–302, 1989. [NASA ADS] [CrossRef] [Google Scholar]
  • Martens, P.C., and C. Zwaan, Origin and evolution of filament-prominence systems, Astrophys. J., 558, 872–887, 2001. [Google Scholar]
  • Marubashi, K., Structure of interplanetary magnetic clouds and their solar origins, Adv. Space Res., 6 (6), 33, 1986. [Google Scholar]
  • McComas, D.J., S.J., Bame, P., Barker, W.C., Feldman, J.L., Phillips, P., Riley, and J.W., Griffee, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563–612, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Möstl, C., C. Miklenic, C.J. Farrugia, M. Temmer, A. Veronig, A.B. Galvin, B. Vršnak, and H.K. Biernat, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source, Ann. Geophys., 26, 3139–3152, 2008. [CrossRef] [Google Scholar]
  • Möstl, C., C.J. Farrugia, E.K.J. Kilpua, L. Jian, and Y. Liu, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere, Astrophys. J., 2012, in press. [Google Scholar]
  • Neugebauer, M., Observations of solar wind helium, Fund. Cosmic Phys., 7, 131, 1981. [Google Scholar]
  • Neugebauer, M., B.E. Goldstein, D. Winterhalter, E.J. Smith, R.J. MacDowall, and S.P. Gary, Ion distributions in large magnetic holes in the fast solar wind, J. Geophys. Res., 106, 5635, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Neukomm, R.O., and P. Bochsler, Diagnostics of closed magnetic structures in the solar corona using charge states of helium and of minor ions, Astrophys. J., 465, 462, 1996. [CrossRef] [Google Scholar]
  • Ogilvie, K.W., and J. Hirshberg, The solar cycle variation of the solar wind helium abundance, J. Geophys. Res., 79, 4595–4602, 1974. [CrossRef] [Google Scholar]
  • Ogilvie, K.W., M.A. Coplan, and P. Bochsler, Solar wind observations with the ion composition instrument aboard the ISEE-3/ICE spacecraft, Sol. Phys., 124, 167–183, 1989. [CrossRef] [Google Scholar]
  • Ogilvie, K.W., D.J. Chornay, R.J. Fritzenreiter, F. Hunsaker, J. Keller, et al., SWE, a comprehensive plasma instrument for the WIND spacecraft, Space Sci. Rev., 71, 55, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Owocki, S.P., and J.D. Scudder, The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar wind, Astrophys. J., 270, 758, 1983. [Google Scholar]
  • Pudovkin, M.I., S.A. Zaitseva, and E.E. Benevolenska, The structure and parameters of flare streams, J. Geophys. Res., 84 (A11), 6649–6652, DOI: 10.1029/JA084iA11p06649, 1979. [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta, J. Geophys. Res., 100, 23397–23412, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Schmieder, B., P. D’emoulin, E. Pariat, T. Török, Molodij, et al., Actors of the main activity in large complex centres during the 23 solar cycle maximum, Adv. Space Res., 47, 2081–2091, DOI: 10.1016/j.asr.2011.02.001, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Schwenn, R., H. Rosenbauer, and K.H. Mühlhäuser, Singly ionized helium in the driver gas of an interplanetary shock wave, Geophys. Res. Lett., 7 (3), 201–204, 1980. [CrossRef] [Google Scholar]
  • Schwenn, R., J.C. Raymond, D. Alexander, A. Ciaravella, N. Gopalswamy, et al., Coronal observations of CMEs: report of Working Group A, Space Sci. Rev., 123, 127–176, 2006. [CrossRef] [Google Scholar]
  • Shull, J.M., and M. van Steenberg, The ionization equilibrium of astrophysically abundant elements, Astrophys. J. Suppl., 48, 95, 1982. [CrossRef] [Google Scholar]
  • Skoug, R.M., S.J. Bame, W.C. Feldman, J.T. Gosling, D.J. McComas, et al., A prolonged He+ enhancement within a coronal mass ejection in the solar wind, Geophys. Res. Lett., 26 (2), 161–164, DOI: 10.1029/1998GL900207, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith, C.W., J. L’Heureux, N.F. Ness, M.H. Acuna, L.F. Burlaga, and J. Scheifele, The ACE Magnetic Field Experiment, Space Sci. Rev., 86 (1-4), 613–632, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith, C.W., W.H. Matthaeus, G.P. Zank, N.F. Ness, S. Oughton, and J.D. Richardson, Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations, J. Geophys. Res., 106, 8253–8272, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Srivastava, N., S.K. Mathew, and R.E. Louis, Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23, J. Geophys. Res., 114, A03107, 2009. [CrossRef] [Google Scholar]
  • Temmer, M., B. Vrsnak, T. Rollett, B. Bein, and C.A. de Koning, Characteristics of the kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event, Astrophys. J., 749, 57, DOI: 10.1088/0004-637X/749/1/57, 2012. [Google Scholar]
  • Tu, C.Y., and E. Marsch, Anisotropy regulation and plateau formation through pitch angle diffusion of solar wind protons in resonance with cyclotron waves, J. Geophys. Res., 107, 1249, DOI: 10.1029/2001JA000150, 2002. [CrossRef] [Google Scholar]
  • von Steiger, R., R.F. Wimmer-Schweingruber, J. Geiss, and G. Gloeckler, Abundance variations in the solar wind, Adv. Space Res., 15 (7), 3–12, 1995. [CrossRef] [Google Scholar]
  • Wang, Y., G. Zhou, P. Ye, S. Wang, and J. Wang, A study of the orientation of interplanetary magnetic clouds and solar filaments, Astrophys. J., 651, 1245–1255, 2006. [Google Scholar]
  • Wilson, R.M., and E. Hildner, Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU? Sol. Phys., 91, 169, 1984. [CrossRef] [Google Scholar]
  • Wilson, R.M., and E. Hildner, On the association of magnetic clouds with disappearing filaments, J. Geophys. Res., 91, 5867, 1986. [CrossRef] [Google Scholar]
  • Yao, S., E. Marsch, C.Y. Tu, and R. Schwenn, Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere, J. Geophys. Res., 115, A05103, DOI: 10.1029/2009JA014914, 2010. [CrossRef] [Google Scholar]
  • Yurchyshyn, V., Q. Hu, and V. Abramenko, Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta, Space Weather, 3, S08C02, 2005. [CrossRef] [Google Scholar]
  • Zurbuchen, T.H., and I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31–43, DOI: 10.1007/s11214-006-9010-4, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Zwickl, R.D., J.R. Asbridge, S.J. Bame, W.C. Feldman, J.T. Gosling, and E.J. Smith, Plasma properties of driver gas following interplanetary shocks observed by ISEE3, in Solar Wind Five, ed. M., Neugebauer, NASA Conf. Publ., CP2280, 711–717, 1983. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.