Space Climate
Open Access
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A10
Number of page(s) 13
Published online 31 July 2012
  • Aellig, M.R., A.J. Lazarus, and J.T. Steinberg, The solar wind helium abundance: variation with wind speed and the solar cycle, Geophys. Res. Lett., 28 (14), 2767–2770, 2001. [NASA ADS] [CrossRef]
  • Alexander, D., I.G. Richardson, and T.H. Zurbuchen, A brief history of CME science, Space Sci. Rev., 123, 3–11, 2006. [CrossRef]
  • Bame, S.J., J.R. Asbridge, W.C. Feldman, M.D. Montgomery, and P.D. Kearney, Solar wind heavy ion abundances, Sol. Phys., 43, 463, 1975. [CrossRef]
  • Bame, S.J., J.R. Asbridge, W.C. Feldman, E.E. Fenimore, and J.T. Gosling, Solar wind heavy ions from flare heated coronal plasma, Sol. Phys., 62, 179–201, 1979. [CrossRef]
  • Bothmer, V., and R. Schwenn, Eruptive prominences as sources of magnetic clouds in the solar wind, Space Sci. Rev., 70, 215, 1994. [NASA ADS] [CrossRef]
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al., The large angle spectroscopic coronagraph (LASCO), Sol. Phys., 162, 357, 1995. [NASA ADS] [CrossRef]
  • Burlaga, L.F., Micro-scale structures in the interplanetary medium, Sol. Phys., 4, 67, 1968. [NASA ADS] [CrossRef]
  • Burlaga, L.F., Interplanetary Magnetohydrodynamics, Oxford University Press, Oxford, ISBN-0-19-508472-1, 1995.
  • Burlaga, L.F., and K.W. Behannon, Compound streams, magnetic clouds and major geomagnetic storms, J. Geophys. Res., 92, 5725, 1987. [NASA ADS] [CrossRef]
  • Burlaga, L.F., and K.W. Ogilvie, Magnetic and thermal pressures in the solar wind, Sol. Phys., 15, 61–71, 1970. [CrossRef]
  • Burlaga, L.F., L.W. Klein, N.R. Sheeley Jr., D.J. Michels, R.A. Howard, M.J. Koomen, R. Schwenn, and H. Rosenbauer, A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 9, 317, 1982. [NASA ADS] [CrossRef]
  • Burlaga, L.F., J.D. Scudder, L.W. Klein, and P.A. Isenberg, Pressure-balanced structures between 1 AU and 24 AU and their implications for solar wind electrons and interstellar pickup ions, J. Geophys. Res., 95, 2229, 1990. [CrossRef]
  • Burlaga, L., R. Fitzenreiter, R. Lepping, K. Ogilvie, A. Szabo, et al., A magnetic cloud containing prominence material: January 1997, J. Geophys. Res., 103 (A1), 277–285, 1998. [NASA ADS] [CrossRef]
  • Chandra, R., E. Pariat, B. Schmieder, C.H. Mandrini, and W. Uddin, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Sol. Phys., 261, 127–148, 2010. [NASA ADS] [CrossRef]
  • Chandra, R., B. Schmieder, C. Mandrini, P. Demoulin, E. Pariat, et al., Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003, Sol. Phys., 269, 83–104, DOI: 10.1007/s11207-010-9670-9, 2011. [NASA ADS] [CrossRef]
  • Crooker, N.U., and T.S. Horbury, Solar imprint on ICMEs, their magnetic connectivity and heliospheric evolution, Space Sci. Rev., 123, 93–109, 2006. [CrossRef]
  • Feldman, W.C., J.R. Asbridge, S.J. Bame, and J.T. Gosling, Long-term variations of selected solar wind properties: Imp 6, 7, and 8 results, J. Geophys. Res., 83, 2177–2189, 1978. [NASA ADS] [CrossRef]
  • Feldman, W.C., B.L. Barraclough, and J.L. Phillips, Constraints on high-speed solar wind structure near its coronal base: a Ulysses perspective, A&A, 316, 355, 1996.
  • Ferraro, V.C.A., and C. Plumpton, An Introduction to Magneto-Fluid Dynamics, Clarendon Press, Oxford, 1966.
  • Filippov, B., and S. Koutchmy, About the prominence heating mechanisms during its eruptive phase, Sol. Phys., 208, 283–295, 2002. [NASA ADS] [CrossRef]
  • Forsyth, R.J., V. Bothmer, C. Cid, N.U. Crooker, T.S. Horbury, et al., ICMEs in the inner heliosphere: origin, evolution and propagation effects, Space Sci. Rev., 123, 383–416, 2006. [NASA ADS] [CrossRef]
  • Galvin, A.B., Minor ion composition in CME-related solar wind, In Coronal Mass Ejections, eds. N., Crooker, J.A. Joselyn, and J. Feynmann, AGU, Washington, 253, 1997. [CrossRef]
  • Gary, S.P., L. Yin, D. Winske, J.T. Steinberg, and R.M. Skoug, Solar wind ion scattering by Alfven-cyclotron fluctuations: ion temperature anisotropies versus relative alpha particle densities, New J. Phys., 8, 17, 2006. [CrossRef]
  • Geiss, J., G. Gloeckler, R. von Steiger, H. Balsiger, L.A. Fisk, et al., The southern high-speed stream – results from the SWICS instrument on Ulysses, Science, 268, 1033, 1995. [NASA ADS] [CrossRef] [PubMed]
  • Gloeckler, G., J. Cain, F.M. Ipavich, E.O. Tums, P. Bedini, et al., Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497, 1998. [NASA ADS] [CrossRef]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, et al., What is a geomagnetic storm? J. Geophy. Res., 99 A4, 5771–5792, 1994. [NASA ADS] [CrossRef]
  • Gopalswamy, N., Properties of interplanetary coronal mass ejections, Space Sci. Rev., 124, 145–168, DOI: 10.1007/s 11214-006-9102-1, 2006. [NASA ADS] [CrossRef]
  • Gopalswamy, N., Y. Hanaoka, T. Kosugi, R.P. Lepping, J.T. Steinberg, et al., On the relationship between coronal mass ejections and magnetic clouds, Geophys. Res. Lett., 25 (14), 2485–2488, 1998. [CrossRef]
  • Gopalswamy, N., S. Yashiro, G. Michalek, H. Xie, R.P. Lepping, and R.A. Howard, Solar source of the largest geomagnetic storm of cycle 23, Geophys. Res. Lett., 32, L12S09, DOI: 10.1029/2004GL021639, 2005. [CrossRef]
  • Gosling, J.T., V. Pizzo, and S.J. Bame, Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J. Geophys. Res., 78, 2001, 1973. [CrossRef]
  • Gosling, J.T., J.R. Asbridge, S.J. Bame, and W.C. Feldman, Observations of large fluxes of He+ in the solar wind following an interplanetary shock, J. Geophys. Res., 85, 3431, 1980. [CrossRef]
  • Harrison, R.A., J.A. Davies, C. Möstl, Y. Liu, M. Temmer, et al., An analysis of the origin and propagation of the multiple coronal mass ejection of 2010 August 1, Astrophys. J., 750, 45, DOI: 10.1088/0004-637X/750/1/45, 2012. [NASA ADS] [CrossRef]
  • Hovestadt, D., M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, et al., CELIAS – Charge, Element and Isotope Analysis System for SOHO, Sol. Phys., 162, 441, 1995. [NASA ADS] [CrossRef]
  • Howard, R.A., D.J. Michels, N.R. Sheeley Jr., and M.J. Koomen, The observation of a coronal transient directed at Earth, Astrophys. J., 263, 1982. [NASA ADS] [CrossRef]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al., Sun earth connection coronal and heliospheric investigation (SECCHI), Space Sci. Rev., 136, 67–115, 2008. [NASA ADS] [CrossRef]
  • Hu, Q., and B.U.Ö. Sonnerup, Reconstruction of magnetic clouds in the solar wind: orientations and configurations, J. Geophys. Res., 107 (A7), 1142, DOI: 10.1029/2001JA000293, 2002. [CrossRef]
  • Hudson, H.S., J.L. Bougeret, and J. Burkepile, Coronal mass ejections: overview of observations, Space Sci. Rev., 123, 13, 2006. [NASA ADS] [CrossRef]
  • Hundhausen, A.J., Coronal expansion and solar wind, Springer-Verlag, New York, 1972. [CrossRef]
  • Hundhausen, A.J., The origin and propagation of coronal mass ejections, in Solar Wind Six, eds. V.J., Pizzo, T.E. Holzer, and D.G. Sime, Proc, Natl. Cent. for Atmos. Res., Boulder, Colo, p. 181, Tech. Note, 306, 1988.
  • Hundhausen, A.J., H.E. Gilbert, and S.J. Bame, Ionization state of the interplanetary plasma, J. Geophys. Res., 73, 5485, 1968a. [CrossRef]
  • Hundhausen, A.J., H.E. Gilbert, and S.J. Bame, The state of ionization of oxygen in the solar wind, Astrophys. J., 152, 1968b. [NASA ADS] [CrossRef]
  • Klein, L.W., and L.F. Burlaga, Interplanetary magnetic cloud at 1 AU, J. Geophys. Res., 87, 613, 1982. [NASA ADS] [CrossRef]
  • Kumar, P., P.K. Manoharan, and W. Uddin, Multiwavelength study on solar and interplanetary origins of the strongest geomagnetic storm of solar cycle 23, Sol. Phys., 271 (1–2), 149–167, 2011. [NASA ADS] [CrossRef]
  • Lemen, J.R., A.M. Title, C. Akin, J.F. Drake, D.W. Duncan, et al., Atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO), Sol. Phys., 275, 17–40, DOI: 10.1007/s11207-011-9776-8, 2011. [NASA ADS] [CrossRef]
  • Lepping, R.P., M.H. Acuna, L.F. Burlaga, W.M. Farrell, J.A. Slavin, et al., The WIND magnetic field investigation, Space Sci. Rev., 207, 1995. [NASA ADS] [CrossRef]
  • Lepri, S.T., and T.H. Zurbuchen, Direct observational evidence of filament material within interplanetary coronal mass ejections, Astrophys. J. Lett., 723, 22–27, DOI: 10.1088/2041-8205/723/1/L22, 2010. [CrossRef]
  • Lopez, R.E., Solar cycle invariance in solar wind proton temperature relationships, J. Geophys. Res., 92 (A10), DOI: 10.1029/JA092iA10p11189, 1987. [CrossRef]
  • Lopez, R.E., and J.W. Freeman, Solar wind proton temperature-velocity relationship, J. Geophys. Res., 91, 1701–1705, 1986. [NASA ADS] [CrossRef]
  • Marsch, E., and C.Y., Tu, Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves, J. Geophys. Res., 106, 8357, 2001. [CrossRef]
  • Marsch, E., K.H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, and F.M. Neubauer, Solar wind protons: three dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87 (A1), 52–72, 1982. [NASA ADS] [CrossRef]
  • Marsch, E., X.Z. Ao, and C.Y. Tu, On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind, J. Geophys. Res., 109, A04102, DOI: 10.1029/2003JA010330, 2004. [CrossRef]
  • Martens, P.C.H., and N.P.M. Kuin, A circuit model for filament eruptions and two ribbon flares, Sol. Phys., 122, 263–302, 1989. [NASA ADS] [CrossRef]
  • Martens, P.C., and C. Zwaan, Origin and evolution of filament-prominence systems, Astrophys. J., 558, 872–887, 2001. [NASA ADS] [CrossRef]
  • Marubashi, K., Structure of interplanetary magnetic clouds and their solar origins, Adv. Space Res., 6 (6), 33, 1986. [NASA ADS] [CrossRef]
  • McComas, D.J., S.J., Bame, P., Barker, W.C., Feldman, J.L., Phillips, P., Riley, and J.W., Griffee, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563–612, 1998. [NASA ADS] [CrossRef]
  • Möstl, C., C. Miklenic, C.J. Farrugia, M. Temmer, A. Veronig, A.B. Galvin, B. Vršnak, and H.K. Biernat, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source, Ann. Geophys., 26, 3139–3152, 2008. [CrossRef]
  • Möstl, C., C.J. Farrugia, E.K.J. Kilpua, L. Jian, and Y. Liu, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere, Astrophys. J., 2012, in press.
  • Neugebauer, M., Observations of solar wind helium, Fund. Cosmic Phys., 7, 131, 1981.
  • Neugebauer, M., B.E. Goldstein, D. Winterhalter, E.J. Smith, R.J. MacDowall, and S.P. Gary, Ion distributions in large magnetic holes in the fast solar wind, J. Geophys. Res., 106, 5635, 2001. [NASA ADS] [CrossRef]
  • Neukomm, R.O., and P. Bochsler, Diagnostics of closed magnetic structures in the solar corona using charge states of helium and of minor ions, Astrophys. J., 465, 462, 1996. [CrossRef]
  • Ogilvie, K.W., and J. Hirshberg, The solar cycle variation of the solar wind helium abundance, J. Geophys. Res., 79, 4595–4602, 1974. [CrossRef]
  • Ogilvie, K.W., M.A. Coplan, and P. Bochsler, Solar wind observations with the ion composition instrument aboard the ISEE-3/ICE spacecraft, Sol. Phys., 124, 167–183, 1989. [CrossRef]
  • Ogilvie, K.W., D.J. Chornay, R.J. Fritzenreiter, F. Hunsaker, J. Keller, et al., SWE, a comprehensive plasma instrument for the WIND spacecraft, Space Sci. Rev., 71, 55, 1995. [NASA ADS] [CrossRef]
  • Owocki, S.P., and J.D. Scudder, The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar wind, Astrophys. J., 270, 758, 1983. [NASA ADS] [CrossRef]
  • Pudovkin, M.I., S.A. Zaitseva, and E.E. Benevolenska, The structure and parameters of flare streams, J. Geophys. Res., 84 (A11), 6649–6652, DOI: 10.1029/JA084iA11p06649, 1979. [CrossRef]
  • Richardson, I.G., and H.V. Cane, Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta, J. Geophys. Res., 100, 23397–23412, 1995. [NASA ADS] [CrossRef]
  • Schmieder, B., P. D’emoulin, E. Pariat, T. Török, Molodij, et al., Actors of the main activity in large complex centres during the 23 solar cycle maximum, Adv. Space Res., 47, 2081–2091, DOI: 10.1016/j.asr.2011.02.001, 2011. [NASA ADS] [CrossRef]
  • Schwenn, R., H. Rosenbauer, and K.H. Mühlhäuser, Singly ionized helium in the driver gas of an interplanetary shock wave, Geophys. Res. Lett., 7 (3), 201–204, 1980. [CrossRef]
  • Schwenn, R., J.C. Raymond, D. Alexander, A. Ciaravella, N. Gopalswamy, et al., Coronal observations of CMEs: report of Working Group A, Space Sci. Rev., 123, 127–176, 2006. [CrossRef]
  • Shull, J.M., and M. van Steenberg, The ionization equilibrium of astrophysically abundant elements, Astrophys. J. Suppl., 48, 95, 1982. [NASA ADS] [CrossRef]
  • Skoug, R.M., S.J. Bame, W.C. Feldman, J.T. Gosling, D.J. McComas, et al., A prolonged He+ enhancement within a coronal mass ejection in the solar wind, Geophys. Res. Lett., 26 (2), 161–164, DOI: 10.1029/1998GL900207, 1999. [CrossRef]
  • Smith, C.W., J. L’Heureux, N.F. Ness, M.H. Acuna, L.F. Burlaga, and J. Scheifele, The ACE Magnetic Field Experiment, Space Sci. Rev., 86 (1-4), 613–632, 1998. [NASA ADS] [CrossRef]
  • Smith, C.W., W.H. Matthaeus, G.P. Zank, N.F. Ness, S. Oughton, and J.D. Richardson, Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations, J. Geophys. Res., 106, 8253–8272, 2001. [NASA ADS] [CrossRef]
  • Srivastava, N., S.K. Mathew, and R.E. Louis, Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23, J. Geophys. Res., 114, A03107, 2009. [CrossRef]
  • Temmer, M., B. Vrsnak, T. Rollett, B. Bein, and C.A. de Koning, Characteristics of the kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event, Astrophys. J., 749, 57, DOI: 10.1088/0004-637X/749/1/57, 2012. [NASA ADS] [CrossRef]
  • Tu, C.Y., and E. Marsch, Anisotropy regulation and plateau formation through pitch angle diffusion of solar wind protons in resonance with cyclotron waves, J. Geophys. Res., 107, 1249, DOI: 10.1029/2001JA000150, 2002. [CrossRef]
  • von Steiger, R., R.F. Wimmer-Schweingruber, J. Geiss, and G. Gloeckler, Abundance variations in the solar wind, Adv. Space Res., 15 (7), 3–12, 1995. [CrossRef]
  • Wang, Y., G. Zhou, P. Ye, S. Wang, and J. Wang, A study of the orientation of interplanetary magnetic clouds and solar filaments, Astrophys. J., 651, 1245–1255, 2006. [NASA ADS] [CrossRef]
  • Wilson, R.M., and E. Hildner, Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU? Sol. Phys., 91, 169, 1984. [CrossRef]
  • Wilson, R.M., and E. Hildner, On the association of magnetic clouds with disappearing filaments, J. Geophys. Res., 91, 5867, 1986. [CrossRef]
  • Yao, S., E. Marsch, C.Y. Tu, and R. Schwenn, Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere, J. Geophys. Res., 115, A05103, DOI: 10.1029/2009JA014914, 2010. [CrossRef]
  • Yurchyshyn, V., Q. Hu, and V. Abramenko, Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta, Space Weather, 3, S08C02, 2005. [CrossRef]
  • Zurbuchen, T.H., and I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31–43, DOI: 10.1007/s11214-006-9010-4, 2006. [NASA ADS] [CrossRef]
  • Zwickl, R.D., J.R. Asbridge, S.J. Bame, W.C. Feldman, J.T. Gosling, and E.J. Smith, Plasma properties of driver gas following interplanetary shocks observed by ISEE3, in Solar Wind Five, ed. M., Neugebauer, NASA Conf. Publ., CP2280, 711–717, 1983.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.