Space Climate
Open Access
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A09
Number of page(s) 9
Published online 24 July 2012
  • Baldwin, M.P., and T.J. Dunkerton, Propagation of the Arctic oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30937–30946, 1999. [CrossRef]
  • Beer, J., and B. van Geel, Holocene Climate Change and the Evidence for Solar and other Forcings. In Natural Climate Variability and Global Warming: A Holocene Perspective, ed. R.W., Battarbee, and H.A. Binney, Oxford, UK, Wiley Blackwell, 2008.
  • Berger, A., Milankovitch theory and climate, Rev. Geophys., 26, 624–657, 1988. [CrossRef]
  • Bond, G., W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. deMenocal, P. Priore, H. Cullen, I. Hajdas, and G. Bonani, A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science, 278, 1257–1266, 1997. [CrossRef]
  • Bond, G., B. Kromer, J. Beer, R. Muscheler, M.N. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, and G. Bonani, Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, 2001. [NASA ADS] [CrossRef] [PubMed]
  • Broecker, W.S., Was the medieval warm period global? Science, 291, 1497–1499, 2001. [CrossRef]
  • Chen, L., K.A.F. Zonneveld, and G.J.M. Versteegh, Short term climate variability during “Roman Classic Period” in the eastern Mediterranean, Quat. Sci. Rev., 30, 3880–3891, 2011. [CrossRef]
  • Cléroux, C., M. Debret, E. Cortijo, J.-C. Duplessy, F. Dewilde, J. Reijmer, and N. Massei, High-resolution sea surface reconstructions off Cape Hatteras over the last 10 ka, Paleoceanography, 27, PA1205, 2012. [CrossRef]
  • Clilverd, M.A., E. Clarke, T. Ulich, H. Rishbeth, and M.J. Jarvis, Predicting solar cycle 24 and beyond, Space Weather, 4, S09005, 2006. [CrossRef]
  • Cubasch, U., R. Voss, G.C. Hegerl, J. Waszkewitz, and T.C. Crowley, Simulation with an O‐AGCM of the influence of variations of the solar constant on the global climate, Clim. Dyn., 13, 757–767, 1997. [CrossRef]
  • Cubasch, U., E. Zorita, F. Kaspar, J.F. Gonzales‐Rouco, H. von Storch, and K. Prommel, Simulation of the role of solar and orbital forcing on climate, Adv. Space Res., 37, 1629–1634, 2006. [CrossRef]
  • de Jager, C., and S. Duhau, Forecasting the parameters of sunspot cycle 24 and beyond, J. Atm. Solar-Terr. Phys., 71, 239–245, 2009. [CrossRef]
  • Debret, M., D. Sebag, X. Crosta, N. Massei, J.-R. Petit, E. Chapron, and V. Bout-Roumazeilles, Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing, Quat. Sci. Rev., 28, 2675–2688, 2009. [CrossRef]
  • Diffenbaugh, N.S., and L.C. Sloan, Global climate sensitivity to land surface change: the mid Holocene revisited, Geophys. Res. Lett., 29, 2002. [CrossRef]
  • Eddy, J.A., The Maunder Minimum, Science, 192, 1189–1202, 1976. [NASA ADS] [CrossRef] [PubMed]
  • Feulner, G., and S. Rahmstorf, On the effect of a new grand minimum of solar activity on the future climate of Earth, Geophys. Res. Lett., 37, L05707, 2010. [CrossRef]
  • Frame, T.H.A., and L.J. Gray, The 11-year solar cycle in ERA-40 data: an update to 2008, J. Clim., 23, 2213–2222, 2010. [CrossRef]
  • Fröhlich, C., Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21, Space Sci. Rev., 125, 53–65, 2006. [NASA ADS] [CrossRef]
  • Fröhlich, C., Observational evidence of a long-term trend in total solar irradiance, Astronom. Astrophys., 501, L27–L30, 2009. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gierens, K., and M. Ponater, Comment on “Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships” by H. Svensmark and E. Friis-Christensen, J. Atm. Solar-Terr. Phys., 61, 795–797, 1999. [CrossRef]
  • Graf, H.-F., I. Kirchner, A. Robock, and I. Schult, Pinatubo eruption winter climate effects: Model versus observations, Clim. Dyn., 9, 81–93, 1993.
  • Gray, L.J., S.T. Rumbold, and K.P. Shine, Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone, J. Atm. Sci., 66, 2402–2417, 2009. [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al., Solar influences on climate, Rev. Geophys., 48, 1–53, 2010. [NASA ADS] [CrossRef]
  • Grosjean, M., M.A. Geyh, B. Messerli, H. Schreier, and H. Veit, A late-Holocene (<2600 BP) glacial advance in the south-central Andes (29°S), northern Chile, Holocene, 8, 473–479, 1998. [CrossRef]
  • Haigh, J.D., The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 370, 544–546, 1994. [NASA ADS] [CrossRef]
  • Haigh, J.D., The impact of solar variability on climate, Science, 272, 981–984, 1996. [NASA ADS] [CrossRef] [PubMed]
  • Haltia-Hovi, E., T. Saarinen, and M. Kukkonen, A 2000-year record of solar forcing on varved lake sediment in eastern Finland, Quat. Sci. Rev., 26, 678–689, 2007. [CrossRef]
  • Herschel, W., Observations tending to investigate the nature of the Sun, in order to find the causes or symptoms of its variable emission of light and heat: with remarks on the use that may possibly be drawn from solar observations, Philos. Trans. R. Soc. London, 91, 265–318, 1801. [NASA ADS] [CrossRef]
  • Hurrell, J.W., and H. van Loon, Decadal variations in climate associated with the North Atlantic Oscillation, Clim. Change, 36, 301–326, 1997. [CrossRef]
  • Indermühle, A., T.F. Stocker, F. Joos, H. Fischer, H.J. Smith, et al., Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121–126, 1999. [CrossRef]
  • Ineson, S., A.A. Scaife, J.R. Knight, J.C. Manners, N.J. Dunstone, L.J. Gray, and J.D. Haigh, Solar forcing of winter climate variability in the Northern Hemisphere, Nature Geosci., 4, 753–757, 2011. [CrossRef]
  • IPCC, Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC, ISBN 978 0521 88009-1, 2007.
  • Johnsen, S.J., H.B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C.U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, and J.P. Steffensen, Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, 1992. [CrossRef]
  • Jones, G.S., M. Lockwood, and P.A. Stott, What influence will future solar activity changes over the 21st century have on projected global near-surface temperature change? J. Geophys. Res., 117, D05103, 2012. [CrossRef]
  • Joos, F., and R. Spahni, Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years, Proc. Nat. Acad. Sci., 105, 1425–1430, 2008. [CrossRef]
  • Jørgensen, T.S., and A.W. Hansen, Comments on “Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships” by Henrik Svensmark and Eigil Friis-Christensen, J. Atm. Solar-Terr. Phys., 62, 73–77, 2000. [CrossRef]
  • Kilian, M.R., J. van der Plicht, and B. van Geel, Dating raised bogs: new aspects of AMS 14C wiggle matsching, a reservoir effect and climatic change, Quat. Sci. Rev., 14, 959–966, 1995. [CrossRef]
  • Kirkby, J., J. Curtius, J. Almeida, E. Dunne, J. Duplissy, et al., Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429–433, 2011. [CrossRef]
  • Kodera, K., and Y. Kuroda, Dynamical response to the solar cycle: winter stratopause and lower stratosphere, Geophys. Res. Lett., 33, 2002.
  • Kushner, P.J., and L.M. Polvani, Stratosphere-troposphere coupling in a relatively simple AGCM: the role of eddies, J. Clim., 17, 629–639, 2004. [CrossRef]
  • Lockwood, M., Solar influence on global and regional climates, Surv. Geophys., 3–4, 503–534, 2012. [NASA ADS] [CrossRef]
  • Lockwood, M., A.P. Rouillard, and I.D. Finch, The rise and fall of open solar flux during the current grand solar maximum, J. Astrophys., 700, 937–944, 2009. [NASA ADS] [CrossRef]
  • Lockwood, M., C. Bell, T. Woollings, R.G. Harrison, L.J. Gray, and J.D. Haigh, Top-down solar modulation of climate: evidence for centennial-scale change, Environ. Res. Lett., 5, 034008, 2010. [NASA ADS] [CrossRef]
  • Luterbacher, J., R. Rickli, E. Xoplaki, C. Tinguely, C. Beck, C. Pfister, and H. Wanner, The late Maunder Minimum (1675–1715) – a key period for studying decadal scale climatic change in Europe, Clim. Change, 49, 441–462, 2001. [CrossRef]
  • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, European seasonal and annual temperature variability, trends and extremes since 1500, Science, 303, 1499–1503, 2004. [CrossRef]
  • Magny, M., Solar influences on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric 14C record, Quat. Res., 40, 1–9, 1993. [CrossRef]
  • Magny, M., Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements, Quat. Int., 113, 65–79, 2004. [CrossRef]
  • Magny, M., Holocene fluctuations of lake levels in west-central Europe: methods of reconstruction, regional pattern, palaeoclimatic significance and forcing factors, Encycl. Quat. Geol., 2, 1389–1399, 2006.
  • Marchitto, T.M., R. Muscheler, J.D. Ortiz, J.D. Carriquiry, and A. van Geen, Dynamical response of the tropical Pacific Ocean to solar forcing during the Early Holocene, Science, 330, 1378–1381, 2010. [CrossRef]
  • Martin-Puertas, C., K. Matthes, A. Brauer, R. Muscheler, F. Hansen, C. Petrick, A. Aldahan, G. Possnert, and B. van Geel, Regional atmospheric circulation shifts induced by a grand solar minimum, Nature Geosci., 5, 397–401, 2012. [CrossRef]
  • Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz, Transfer of the solar signal from the stratosphere to the troposphere: northern winter, J. Geophys. Res., 111, D06108, 2006. [CrossRef]
  • Mauquoy, D., T. Engelkes, M.H.M. Groot, F. Markesteijn, M.G. Oudejans, J. van der Plicht, and B. van Geel, High-resolution records of late-Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs, Palaeogeog., Palaeoclimatol., Palaeoecol., 186, 275–310, 2002. [CrossRef]
  • McHargue, L.R., and P.E. Damon, The global Beryllium 10 cycle, Rev. Geophys., 29, 141–158, 1991. [NASA ADS] [CrossRef]
  • Meehl, G.A., W.M. Washington, C.M. Amman, J.M. Arblaster, T.M.L. Wigley, and C. Tebaldi, Combinations of natural and anthropogenic forcings and 20th century climate, J. Clim., 17, 3721–3727, 2004. [CrossRef]
  • Meehl, G.A., J.M. Arblaster, G. Branstator, and H. van Loon, A coupled air‐sea response mechanism to solar forcing in the Pacific region, J. Clim., 21, 2883–2897, 2008. [CrossRef]
  • Meehl, G.A., J.M. Arblaster, K. Matthes, F. Sassi, and H. van Loon, Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science, 325, 1114–1118, 2009. [NASA ADS] [CrossRef] [PubMed]
  • Milankovitch, M., Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem [Canon of insolation of the Earth and its application to the problem of the Ice Ages], Royal Serb. Sci. Spec. Publ., 132, 1941.
  • Neff, U., S.J. Burns, A. Mangini, M. Mudelsee, D. Fleitmann, and A. Matter, Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago, Nature, 411, 290–293, 2001. [CrossRef]
  • Oldfield, F., R. Thompson, P.R.J. Crooks, S.J. Gedye, V.A. Hall, et al., Radiocarbon dating of a recent high-latitude peat profile: Stor Åmyrân, northern Sweden, Holocene, 7, 283–290, 1997. [CrossRef]
  • Reimer, P.J., M.G.L. Baillie, E. Bard, A. Bayliss, J.W. Beck, et al., IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP, Radiocarbon, 51, 1111–1150, 2009.
  • Renssen, H., B. van Geel, J. van der Plicht, and M. Magny, Reduced solar activity as a trigger for the start of the Younger Dryas? Quat. Int., 68–71, 373–383, 2000. [CrossRef]
  • Renssen, H., H. Seppä, O. Heiri, D.M. Roche, H. Goosse, and T. Fichefet, The spatial and temporal complexity of the Holocene thermal maximum, Nature Geosci., 2, 411–414, 2009. [CrossRef]
  • Reynaud-Farrera, I., J. Maley, and D. Wirrman, Végétation et climat dans les fôrets du Sud-Ouest Cameroun depuis 4470 ans BP: analyse pollinique des sediments du Lac Ossa [Vegetation and climate in the forests of southwest Cameroon since 4470 years BP: pollen-analysis on the sediments of Lake Ossa], C. R. Acad. Sci., 322, 749–755, 1996.
  • Robock, A., Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000. [CrossRef]
  • Ruddiman, W.F., The anthropogenic greenhouse era began thousands of years ago, Clim. Change, 61, 261–293, 2003. [CrossRef]
  • Sejrup, H.P., S.J. Lehman, H. Haflidason, D. Noone, R. Muscheler, I.M. Berstad, and J.T. Andrews, Response of Norwegian Sea temperature to solar forcing since 1000 A.D., J. Geophys. Res., 115, C12034, 2010. [CrossRef]
  • Shindell, D., G. Schmidt, R. Miller, and M. Mann, Volcanic and solar forcing of climate change during the preindustrial era, J. Clim., 16, 4094–4107, 2003. [NASA ADS] [CrossRef]
  • Simpson, I.R., M. Blackburn, and J.D. Haigh, The role of eddies in driving the tropospheric response to stratospheric heating perturbations, J. Atmos. Sci., 66, 1347–1365, 2009. [CrossRef]
  • Solheim, J.-E., K. Stordahl, and O. Humlum, The long sunspot cycle 23 predicts a significant temperature decrease in cycle 24, J. Atm. Solar-Terr. Phys., 80, 267–284, 2012. [CrossRef]
  • Steinhilber, F., J. Beer, and C. Fröhlich, Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, 2009. [NASA ADS] [CrossRef]
  • Stott, P.A., S.F.B. Tett, G.S. Jones, M.R. Allen, J.F.B. Mitchell, and G.J. Jenkins, External control of 20th century temperature variations by natural and anthropogenic forcings, Science, 209, 2133–2137, 2000. [CrossRef]
  • Stuiver, M., and J. van der Plicht, INTCAL 98: calibration issue, Radiocarbon, 40, 1041–1159, 1998.
  • Stuiver, M., P.J. Reimer, E. Bard, J.W. Beck, G.S. Burr, K.A. Hughen, B. Kromer, J. van der Plicht, and M. Spurk, INTCAL98 radiocarbon age calibration, 24,000–0 cal BP, Radiocarbon, 40, 1041–1083, 1998.
  • Svensmark, H., and E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships, J. Atm. Solar-Terr. Phys., 59, 1225–1232, 1997. [NASA ADS] [CrossRef]
  • Svensmark, H., T. Bondo, and J. Svensmark, Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett., 36, L15101, 2009. [CrossRef]
  • Tett, S.F.B., G.S. Jones, P.A. Stott, D.C. Hill, F.J.B. Mitchell, et al., Estimation of natural and anthropogenic contributions to twentieth century temperature change, J. Geophys. Res., 107, 2002. [CrossRef]
  • Thejll, P., and K. Lassen, Solar forcing of the Northern Hemisphere land air temperature: new data, J. Atm. Solar-Terr. Phys., 62, 1207–1213, 2000. [NASA ADS] [CrossRef]
  • van Geel, B., A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, Rev. Palaeobot. Palynol., 25, 1–120, 1978. [CrossRef]
  • van Geel, B., and H. Renssen, Abrupt climate change around 2650 BP in North-West Europe: evidence for climatic teleconnections and a tentative explanation, In Water, Environment and Society in Times of Climate Change, ed. A., Issar, and N. Brown, Dordrecht, Kluwer, 21–41, 1998. [CrossRef]
  • van Geel, B., J. Buurman, and H.T. Waterbolk, Archeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP, J. Quat. Sci., 11, 451–460, 1996. [CrossRef]
  • van Geel, B., C.J. Heusser, H. Renssen, and C.J.E. Schuurmans, Climatic change in Chile at around 2700 BP and global evidence for solar forcing: a hypothesis, Holocene, 10, 659–664, 2000. [CrossRef]
  • van Geel, B., H. Renssen, and J. van der Plicht, Evidence from the past: solar forcing of climate change by way of cosmic rays and/or by solar UV? In Proceedings Workshop on Ion-Aerosol-Cloud Interactions, ed. J., Kirkby, Geneva, CERN, 24–29, 2001.
  • van Geel, B., N.A. Bokovenko, N.D. Burova, K.V. Chugunov, V.A. Dergachev, et al., Climate change and the expansion of the Scythian culture after 850 BC: a hypothesis, J. Archaeol. Sci., 31, 1735–1742, 2004. [CrossRef]
  • Vandenberghe, J., G.R. Coope, and C. Kasse, Quantitative reconstructions of palaeoclimates during the last interglacial-glacial in western and central Europe: an introduction, J. Quat. Sci., 13, 361–366, 1998. [CrossRef]
  • Wanner, H., J. Beer, J. Bütikofer, T.J. Crowley, E. Cubasch, and et al., Mid- to late Holocene climate change: an overview, Quat. Sci. Rev., 27, 1791–1828, 2008. [CrossRef]
  • Xoplaki, E., E.J. Luterbacher, H. Paeth, D. Dietrich, N. Steiner, M. Grosjean, and H. Wanner, European spring and autumn temperature variability and change of extremes over the last half millennium, Geophys. Res. Lett., 32, 2005. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.