Issue
J. Space Weather Space Clim.
Volume 3, 2013
EU-FP7 funded space weather projects
Article Number A05
Number of page(s) 17
DOI https://doi.org/10.1051/swsc/2013027
Published online 18 February 2013
  • Antiochos, S. K., P. J. MacNeice, D. S. Spicer, and J. A. Klimchuk, The dynamic formation of prominence condensations, Astrophys. J., 512, 985–991, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Baalrud, S.D., A. Bhattacharjee, Y.-M. Huang, and K. Germaschewski, Hall magnetohydrodynamic reconnection in the plasmoid unstable regime, Physics of Plasmas, 18 (9), 092108, 2011. [CrossRef] [Google Scholar]
  • Baty, H., R. Keppens, and P. Comte, The two-dimensional magnetohydrodynamic Kelvin-Helmholtz instability: Compressibility and large-scale coalescence effects, Phys. Plasmas, 10, 4661–4674, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Baumann, G., and Å. Nordlund, Particle-in-cell simulation of electron acceleration in solar coronal jets, Astrophys. J., 759, L9, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Baumann, G., K. Galsgaard, and Å. Nordlund, 3D solar null point reconnection MHD simulations, Sol. Phys., in press, DOI: 10.1007/s11207-012-0168-5, 2012a. [Google Scholar]
  • Baumann, G., T. Haugbølle, and Å. Nordlund, Kinetic modeling of particle acceleration in a solar null point reconnection region, Astrophys. J., accepted [arxiv:1204.4947] 2012b. [Google Scholar]
  • Bemporad, A., Spectroscopic detection of turbulence in post-CME current sheets, Astrophys. J., 689, 572–584, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Benck, S., M. Cyamukungu, J. Cabrera, L. Mazzino, and V. Pierrard, The Transient Observation-based Particle (TOP) model and its potential application in radiation effects evaluation, J. Space Weather Space Clim., 3, A03, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Birn, J., J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, and P.L. Pritchett, Geospace Environmental Modeling (GEM) magnetic reconnection challenge, J. Geophys. Res., 106, 3715–3720, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Birn, J., K. Galsgaard, M. Hesse, M. Hoshino, J. Huba, G. Lapenta, P.L. Pritchett, K. Schindler, L. Yin, J. Büchner, T. Neukirch, and E.R. Priest, Forced magnetic reconnection, Geophys. Res. Lett., 32, L06105, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Brackbill, J.U., FLIP MHD: A particle-in-cell method for magnetohydrodynamics, J. Comput. Phys., 96, 163–192, 1991. [NASA ADS] [CrossRef] [Google Scholar]
  • Brackbill, J.U., and B.I. Cohen, Eds. Multiple time scales, 1985. [Google Scholar]
  • Bruno, R., and V. Carbone, The Solar Wind as a Turbulence Laboratory, Living Rev. Sol. Phys., 2 (4), 2005. [Google Scholar]
  • Calder, A.C., B. Fryxell, T. Plewa, R. Rosner, L.J. Dursi, V.G. Weirs, T. Dupont, H.F. Robey, J.O. Kane, A.A. Remington, et al., On validating an astrophysical simulation code, Astrophys. J. Suppl., 143, 201, 2002. [NASA ADS] [CrossRef] [Google Scholar]
  • Califano, F., M. Faganello, F. Pegoraro, and F. Valentini, Solar wind interaction with the Earth’s magnetosphere: the role of reconnection in the presence of a large scale sheared flow, Nonlinear Processes Geophys., 16, 1–10, 2009. [CrossRef] [Google Scholar]
  • Cho, J., A. Lazarian, and E.T. Vishniac, Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium, Astrophys. J., 564, 291–301, 2002. [NASA ADS] [CrossRef] [Google Scholar]
  • Cho, J., A. Lazarian, and E.T. Vishniac, MHD Turbulence: Scaling Laws and Astrophysical Implications. Edited by E., Falgarone, and T. Passot (Berlin: Springer Verlag), Turbulence and Magnetic Fields in Astrophysics, Lecture Notes in Physics, 614, 56–98, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Ciaravella, A., and J.C. Raymond, The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width, Astrophys. J., 686, 1372–1382, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Darrouzet, F., V. Pierrard, J. Cabrera, K. Borremans, G. Lointier, N. Ganushkina, J. De Keyser, Links between the plasmapause and the radiation belt boundaries from Cluster measurements. Edited by A. Abbasi, and N. Giesen, EGU General Assembly Conference Abstracts, Vol. 14 of EGU General Assembly Conference Abstracts, pp. 8956, 2012. [Google Scholar]
  • Dulk, G.A., and D.J. McLean, Coronal magnetic fields, Sol. Phys., 57, 279–295, 1978. [NASA ADS] [CrossRef] [Google Scholar]
  • Escoubet, C.P., A. Pedersen, R. Schmidt, and P.A. Lindqvist, Density in the magnetosphere inferred from ISEE 1 spacecraft potential, J. Geophys. Res., 102, 17595–17610, 1997. [CrossRef] [Google Scholar]
  • Eyink, G.L., A. Lazarian, and E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity, Astrophys. J., 743, 51, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Faganello, M., F. Califano, and F. Pegoraro, Time window for magnetic reconnection in plasma configurations with velocity shear, Phys. Rev. Lett., 101 (17), 175003, 2008a. [CrossRef] [Google Scholar]
  • Faganello, M., F. Califano, and F. Pegoraro, Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth’s magnetosphere: formation of electromagnetic coherent structures, Phys. Rev. Lett., 101 (10), 105001, 2008b. [CrossRef] [Google Scholar]
  • Faganello, M., F. Califano, and F. Pegoraro, Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth’s magnetosphere, Physical Review Letters, 100 (1), 015001, 2008c. [CrossRef] [Google Scholar]
  • Faganello, M., F. Califano, and F. Pegoraro, Being on time in magnetic reconnection, New J. Phys., 11, 063008, 2009. [CrossRef] [Google Scholar]
  • Fairfield, D.H., A. Otto, T. Mukai, S. Kokubun, R.P. Lepping, J.T. Steinberg, A.J. Lazarus, and T. Yamamoto, Geotail observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105, 21159–21174, 2000. [CrossRef] [Google Scholar]
  • Frederiksen, J.T., T. Haugb0lle, and Å. Nordlund, Trans-Debye Scale plasma modeling & stochastic grb wakefield plasma processes. Edited by M. Axelsson, American Institute of Physics Conference Series, 1054, 87–97, 2008. [Google Scholar]
  • Fromang, S., P. Hennebelle, and R. Teyssier, A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics, A&A, 457, 371–384, 2006. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Galsgaard, K., and Å. Nordlund, Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field, J. Geophys. Res., 101, 13445–13460, 1996. [NASA ADS] [CrossRef] [Google Scholar]
  • Galsgaard, K., and Å. Nordlund, Heating and activity of the solar corona. 2. Kink instability in a flux tube, J. Geophys. Res., 102, 219–230, 1997. [NASA ADS] [CrossRef] [Google Scholar]
  • Gibson, S.E., A. Fludra, F. Bagenal, D. Biesecker, G. del Zanna, and B. Bromage, Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets, J. Geophys. Res., 104, 9691–9700, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Gomez, D.O., and C. Ferro Fontan, Development of magnetohydrodynamic turbulence in coronal loops, Astrophys. J., 394, 662–669, 1992. [NASA ADS] [CrossRef] [Google Scholar]
  • Hasegawa, H., B. Sonnerup, M. Dunlop, A. Balogh, S. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, and H. Rème, Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method, Ann. Geophys., 22, 1251–1266, 2004. [CrossRef] [Google Scholar]
  • Haugboelle, T., Modelling relativistic astrophysics at the large and small scale, Astrophys. J., [arXiv:astroph/0510292], 2005. [Google Scholar]
  • Henri, P., F. Califano, M. Faganello, and F. Pegoraro, Magnetised Kelvin-Helmholtz instability in the intermediate regime between subsonic and supersonic regimes, Phys. Plasmas, 19 (7), 072908, 2012. [CrossRef] [Google Scholar]
  • Henri, P., O. Sebek, J.T. Frederiksen, R. Keppens, S.S. Cerri, et al., Magnetopause challenge: magnetised Kelvin-Helmholtz instability, In preparation, 2013. [Google Scholar]
  • Hewett, D.W., and A.B. Langdon, Electromagnetic direct implicit plasma simulation, J. Comput. Phys., 72, 121–155, 1987. [CrossRef] [Google Scholar]
  • Ji, H., and W. Daughton, Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas, Phys. Plasmas, 18 (11), 111–207, 2011. [Google Scholar]
  • Keppens, R., and O. Porth, Coupling strategies for hyperbolic pdes, J. Comput. Appl. Math., submitted, 2012. [Google Scholar]
  • Keppens, R., M. Nool, G. Tóth, and J.P. Goedbloed, Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation, Comput. Phys. Commun., 153, 317–339, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Keppens, R., Z. Meliani, A.J. van Marle, P. Delmont, A. Vlasis, and B. van der Holst, Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics, J. Comput. Phys., 231, 718–744, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Ko, Y.-K., J.C. Raymond, J. Lin, G. Lawrence, J. Li, and A. Fludra, Dynamical and physical properties of a post-coronal mass ejection current sheet, Astrophys. J., 594, 1068–1084, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Kolmogorov, A., The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers, Akademiia Nauk SSSR Doklady, 30, 301–305, 1941. [Google Scholar]
  • Kritsuk, A.G., Å. Nordlund, D. Collins, P. Padoan, M.L. Norman, et al., Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence, Astrophys. J., 737, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Lapenta, G., Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales, Phys. Rev. Lett., 100, 235001, 2008. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lapenta, G., Particle simulations of space weather, J. Comput. Phys., 231, 795–821, 2012. [CrossRef] [Google Scholar]
  • Lapenta, G., and L. Bettarini, Spontaneous transition to a fast 3D turbulent reconnection regime, Europhys. Lett., 93, 65001, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lapenta, G., and A. Lazarian, Achieving fast reconnection in resistive MHD models via turbulent means, Nonlinear Processes Geophys., 19, 251–263, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Lapenta, G., J.U. Brackbill, and P. Ricci, Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas, Phys. Plasmas, 13 (5), 055904, 2006. [CrossRef] [Google Scholar]
  • Lazarian, A., and E.T. Vishniac, Reconnection in a weakly stochastic field, Astrophys. J., 517, 700–718, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Lazarian, A., G.L. Eyink, and E.T. Vishniac, Relation of astrophysical turbulence and magnetic reconnection, Phys. Plasmas, 19 (1), 012105, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Longcope, D.W., and R.N. Sudan, Evolution and statistics of current sheets in coronal magnetic loops, Astrophys. J., 437, 491–504, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Mac Low, M.-M., R.S. Klessen, A. Burkert, and M.D. Smith, Kinetic energy decay rates of supersonic and super-Alfvénic turbulence in star-forming clouds, Phys. Rev. Lett., 80, 2754–2757, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Mackay, D.H., and A.A. van Ballegooijen, Models of the large-scale corona. I. formation, evolution, and liftoff of magnetic flux ropes, Astrophys. J., 641, 577–589, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Markidis, S., G. Lapenta, and Rizwan-uddin, Multi-scale simulations of plasma with iPIC3D, Math. Comput. Simul., 80, 1509–1519, 2010. [CrossRef] [Google Scholar]
  • Matthews, A. P., Current advance method and cyclic Leapfrog for 2D multispecies hybrid plasma simulations, J. Comput. Phys., 112, 102–116, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Mikic, Z., D.D. Schnack, and G. van Hoven, Creation of current filaments in the solar corona, Astrophys. J., 338, 1148–1157, 1989. [NASA ADS] [CrossRef] [Google Scholar]
  • Miura, A., Kelvin-Helmholtz instability for supersonic shear flow at the magnetospheric boundary, Geophys. Res. Lett., 17, 749–752, 1990. [CrossRef] [Google Scholar]
  • Nordlund, Å., and K. Galsgaard, Topologically Forced Reconnection, edited by G.M. Simnett, C.E. Alissandrakis, and L. Vlahos (Berlin: Springer Verlag), European Meeting on Solar Physics, Lecture Notes in Physics, 489, pp. 179, 1997. [NASA ADS] [CrossRef] [Google Scholar]
  • Padoan, P., and Å. Nordlund, A super-Alfvénic model of dark clouds, Astrophys. J., 526, 279–294, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Palermo, F., M. Faganello, F. Califano, and F. Pegoraro, Kelvin-Helmholtz vortices and secondary instabilities in super-magnetosonic regimes, Ann. Geophys., 29, 1169–1178, 2011a. [CrossRef] [Google Scholar]
  • Palermo, F., M. Faganello, F. Califano, F. Pegoraro, and O. Le Contel, Compressible Kelvin-Helmholtz instability in supermagnetosonic regimes, J. Geophys. Res. (Space Physics), 116, A04223, 2011b. [CrossRef] [Google Scholar]
  • Parker, E.N., Sweet’s mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., 62, 509–520, 1957. [NASA ADS] [CrossRef] [Google Scholar]
  • Parker, E.N., Topological dissipation and the small-scale fields in turbulent gases, Astrophys. J., 174, 499, 1972. [NASA ADS] [CrossRef] [Google Scholar]
  • Parker, E.N., Magnetic neutral sheets in evolving fields. I – General theory, Astrophys. J., 264, 635–647, 1983a. [NASA ADS] [CrossRef] [Google Scholar]
  • Parker, E. N., Absence of equilibrium among close-packed twisted flux tubes, Geophys. Astrophys. Fluid Dyn., 23, 85–102, 1983b. [CrossRef] [Google Scholar]
  • Parker, E. N., Magnetic reorientation and spontaneous formation of tangential discontinuities in deformed magnetic fields, Astrophys. J., 318, 876–887, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Parker, E. N., Nanoflares and the solar X-ray corona, Astrophys. J., 330, 474–479, 1988. [NASA ADS] [CrossRef] [Google Scholar]
  • Patsourakos, S., and A. Vourlidas, Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations, A&A, 525, A27, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Petrinec, S. M., T. Mukai, A. Nishida, T. Yamamoto, T. K. Nakamura, and S. Kokubun, Geotail observations of magnetosheath flow near the magnetopause, using Wind as a solar wind monitor, J. Geophys. Res., 102, 26943–26960, 1997. [CrossRef] [Google Scholar]
  • Pierrard, V., N.V. Pogorelov, E. Audit, and G.P. Zank, The kinetic approach to model space plasmas, Numerical modeling of space plasma flows, Astronum-2009, Vol. 429 of Astronomical Society of the Pacific Conference Series, 233, 2010. [Google Scholar]
  • Pierrard, V., A numerical method to determine the particle velocity distribution functions in space, Numerical modeling of space plasma flows, Astronomical Society of the Pacific Conference series, 444, pp. 166–176, 2011a. [Google Scholar]
  • Pierrard, V., Solar wind electron transport: interplanetary electric field and heat conduction, Space Sci. Rev., 100, February 2011b. [Google Scholar]
  • Pierrard, V., Effects of suprathermal particles in space plasmas, ICNS Annual International Astrophysics Conference Proc., American Institute of Physics, 1436, pp. 61–66, 2012a. [Google Scholar]
  • Pierrard, V., Kinetic models for solar wind electrons, protons and ions, INTECH, ISBN 978-953-51-0339-4, 2012b. [Google Scholar]
  • Pierrard, V., and S. Benck, The dynamics of the terrestrial radiation belts and its links to the plasmasphere, in Edited by Q., Hu, G. Li, G.P. Zank, X. Ao, O. Verkhoglyadova, and J.H. Adams. American Institute of Physics Conference Series, 1500, pp. 216–221, DOI: 10.1063/1.4768769, 2012. [Google Scholar]
  • Pierrard, V., and K. Borremans, Fitting the AP8 spectra to determine the proton momentum distribution functions in space radiations, Radiat. Meas., 47, 401–405, 2012a. [CrossRef] [Google Scholar]
  • Pierrard, V., K. Borremans, A. Abbasi, and N. Giesen, Space weather effect on the inner magnetosphere: kinetic models for the plasmasphere-ionosphere coupled system, the polar wind and the radiation belts, EGU General Assembly Conference Abstracts, Vol. 14 of EGU General Assembly Conference Abstracts, 1769, 2012b. [Google Scholar]
  • Pierrard, V., and K. Stegen, A three-dimensional dynamic kinetic model of the plasmasphere, J. Geophys. Res. (Space Physics), 113, A10209, 2008. [CrossRef] [Google Scholar]
  • Pierrard, V., and M. Voiculescu, The 3D model of the plasmasphere coupled to the ionosphere, Geophys. Res. Lett., 38, L12104, 2011. [CrossRef] [Google Scholar]
  • Pierrard, V., M. Lazar, and R. Schlickeiser, Evolution of the electron distribution function in the whistler wave turbulence of the solar wind, Sol. Phys., 269, 421–438, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284–309, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Ricci, P., G. Lapenta, and J.U. Brackbill, A simplified implicit maxwell solver, J. Comput. Phys., 183, 117–141, 2002. [CrossRef] [Google Scholar]
  • Saint-Hilaire, P., S. Krucker, and R.P. Lin, X-ray emission from the base of a current sheet in the wake of a coronal mass ejection, Astrophys. J., 699, 245–253, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Skender, M., and G. Lapenta, On the instability of a quasi equilibrium current sheet and the onset of impulsive bursty reconnection, Phys. Plasmas, 17, 022905, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Stone, J.M., E.C. Ostriker, and C.F. Gammie, Dissipation in compressible magnetohydrodynamic turbulence, Astrophys. J., 508, L99–L102, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Strauss, H.R., Three-dimensional driven reconnection in an axially bounded magnetic field, Astrophys. J., 381, 508–514, 1991. [CrossRef] [Google Scholar]
  • Sugiyama, T., and K. Kusano, Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model, J. Comput. Phys., 227, 1340–1352, 2007. [CrossRef] [Google Scholar]
  • Sugiyama, T., K. Kusano, S. Hirose, and A. Kageyama. MHD PIC connection model in a magnetosphere ionosphere coupling system, J. Plasma Phys., 72, 945, 2006. [CrossRef] [Google Scholar]
  • Sulem, P.L., and T. Passot. FLR Landau fluids for collisionless plasmas, Commun. Nonlinear Sci. Numer. Simul., 13, 189–196, 2008. [CrossRef] [Google Scholar]
  • Sweet, P.A., The neutral point theory of solar flares. In Edited by B. Lehnert, Electromagnetic Phenomena in Cosmical Physics, IAU Symposium, 6, pp. 123, 1958. [Google Scholar]
  • Tenerani, A., M. Faganello, F. Califano, and F. Pegoraro. Nonlinear vortex dynamics in an inhomogeneous magnetized plasma with a sheared velocity field, Plasma Phys. Controlled Fusion, 53 (1), 015003, 2011. [CrossRef] [Google Scholar]
  • Tóth, G.. A General Code for Modeling MHD Flows on Parallel Computers: Versatile Advection Code, Astrophys. Lett. Commun., 34, 245, 1996. [Google Scholar]
  • Tóth, G.. The lasy preprocessor and its application to general multi-dimensional codes, J. Comput. Phys., 138, 981, 1997. [NASA ADS] [CrossRef] [Google Scholar]
  • Tóth, G., I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, et al., Space weather modeling framework: a new tool for the space science community, J. Geophys. Res., 110 (A12226), 1–21, 2005. [Google Scholar]
  • Tóth, G., B. van der Holst, I.V. Sokolov, D.L. de Zeeuw, T.I. Gombosi, et al., Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870–903, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Uzdensky, D.A., D.A. Loureiro, and A.A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated Regime, Phys. Rev. Lett., 105, 235002, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Valentini, F., F. Califano, and P. Veltri, Two-dimensional kinetic turbulence in the solar wind, Phys. Rev. Lett., 104 (20), 205002, 2010. [CrossRef] [PubMed] [Google Scholar]
  • van Ballegooijen, A.A., Electric currents in the solar corona and the existence of magnetostatic equilibrium, Astrophys. J., 298, 421–430, 1985. [NASA ADS] [CrossRef] [Google Scholar]
  • van Ballegooijen, A.A., Cascade of magnetic energy as a mechanism of coronal heating, Astrophys. J., 311, 1001–1014, 1986. [NASA ADS] [CrossRef] [Google Scholar]
  • Vásquez, A.M., A.A. van Ballegooijen, and J.C. Raymond, The effect of proton temperature anisotropy on the solar minimum corona and wind, Astrophys. J., 598, 1361–1374, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Webb, D.F., J. Burkepile, T.G. Forbes, and P. Riley, Observational evidence of new current sheets trailing coronal mass ejections, J. Geophys. Res. (Space Physics), 108, 1440, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Xia, C., P.F. Chen, R. Keppens, and A.J. van Marle, Formation of solar filaments by steady and nonsteady chromospheric heating, Astrophys. J., 737, 27, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Xia, C., P.F. Chen, and R. Keppens, Simulations of prominence formation in the magnetized solar corona by chromospheric heating, Astrophys. J. Lett., 748, 26, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Yeates, A.R., and D.H. Mackay, Initiation of coronal mass ejections in a global evolution model, Astrophys. J., 699, 1024–1037, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Yeates, A.R., D.H. Mackay, and A.A. van Ballegooijen, Modelling the global solar corona: filament chirality observations and surface simulations, Sol. Phys., 245, 87–107, 2007. [CrossRef] [Google Scholar]
  • Yeates, A.R., D.H. Mackay, and A.A. van Ballegooijen, Modelling the global solar corona II: coronal evolution and filament chirality comparison, Sol. Phys., 247, 103–121, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Ziegler, U., Self-gravitational adaptive mesh refinement magnetohydrodynamics with the nirvana code, A&A, 435, 385–395, 2005. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.