COST Action ES0803
Open Access
Issue
J. Space Weather Space Clim.
Volume 3, 2013
COST Action ES0803
Article Number A06
Number of page(s) 21
DOI https://doi.org/10.1051/swsc/2013028
Published online 18 February 2013
  • Altadill, D., and E.M. Apostolov, Time and scale size of planetary wave signatures in the ionospheric F region: Role of the geomagnetic activity and mesosphere/lower thermosphere wind, J. Geophys. Res., 108, 1403, DOI: 10.1029/2003JA010015, 2003. [CrossRef] [Google Scholar]
  • Altadill, D., E.M. Apostolov, J.G. Sole, and Ch. Jacobi, Origin and development of vertical propagating oscillations with periods of planetary waves in the ionospheric F region, Phys. Chem. Earth Part C, 26, 387–393, 2001. [Google Scholar]
  • Altadill, D., J.M. Torta, and E. Blanch, Proposal of new models of the bottom-side B0 and B1 parameters for IRI, Adv. Space Res., 43, 1825–1834, 2009. [CrossRef] [Google Scholar]
  • Andonov, B., P. Mukhtarov, and D. Pancheva, Empirical model of the TEC response to the geomagnetic activity over the North American region, Adv. Space Res., 48, 1041–1048, DOI: 10.1016/j.asr.2011.05.007, 2011. [CrossRef] [Google Scholar]
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu, STORM: an empirical storm-time ionospheric correction model, 1, Model description, Radio Sci., 37, 5, 1070, DOI: 10.1029/2001RS002467, 2002. [CrossRef] [Google Scholar]
  • Bartels, J., Twenty-seven day recurrences in terrestrial-magnetic and solar activity, 1923–1933, Terr. Magn. Atmos. Electr., 39 (3), 201–202, DOI: 10.1029/TE039i003p00201, 1934. [CrossRef] [Google Scholar]
  • Belehaki, A., P. Marinov, I. Kutiev, N. Jakowski, and S.M. Stankov, Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside digisonde profiles, Adv. Space Res., 37, 963–966, 2006. [CrossRef] [Google Scholar]
  • Bilitza, D., International reference ionosphere 2000, Radio Science, 36 (2), 261–275, 2000. [CrossRef] [Google Scholar]
  • Blanch, E., Typical behaviour of the ionospheric vertical structure during quiet and disturbed conditions, Doctoral Thesis, Univ. Ramon Llull, Barcelona, Spain, 2009. [Google Scholar]
  • Blanch, E., and D. Altadill, Ionospheric peak height density disturbance in response to solar wind conditions: a potential empirical model, Paper presented at the COST ES0803 Workshop, 1–3 April, Frascati, Italy, 2009a. [Google Scholar]
  • Blanch, E., and D. Altadill, Empirical model for the electron density peak height disturbance in response to solar wind conditions, Paper presented at the 6th General Assembly of the European Geosciences Union, Session ST12, EGU2009- 4568, Vienna, Austria, 19-24 April, 2009b. [Google Scholar]
  • Blanch, E., and D. Altadill, Mid-latitude F-region peak height changes in response to interplanetary magnetic field conditions and modeling results, J. Geophys. Res., 117, A12, DOI: 10.1029/2012JA018009, 2012. [CrossRef] [Google Scholar]
  • Borovsky, J.E., and M.H. Denton, Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 111, A07S08, DOI: 10.1029/2005JA011447, 2006. [CrossRef] [Google Scholar]
  • Bremer, J., J. Laštovička, A.V. Mikhailov, D. Altadill, P. Bencze, D. Burešová, G. De Franceschi, C. Jacobi, S. Kouris, L. Perrone, and E. Turunen, Climate of the upper atmosphere, Ann. Geophys., 52 (3/4), 273–299, 2009. [Google Scholar]
  • Dasso, S., C.H. Mandrini, B. Schmieder, H. Cremades, C. Cid, et al., Linking two consecutive nonmerging magnetic clouds with their solar sources, J. Geophys. Res., 114, A2, DOI: 10.1029/2008JA013102, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Denton, M.H., T. Ulich, and E. Turunen, Modification of midlatitude ionospheric parameters in the F2 layer by persistent high-speed solar wind streams, Space Weather, 7, S04006, DOI: 10.1029/2008SW000443, 2009. [CrossRef] [Google Scholar]
  • Emmert, J.T., J.M. Picone, and R.R. Meier, Thermospheric global average density trends 1967–2007, derived from orbits of 5000 near-Earth objects, Geophys. Res. Lett., 35, L05101, DOI: 10.1029/2007GL032809, 2008. [CrossRef] [Google Scholar]
  • Hall, C.M., K. Rypdal, and M. Rypdal, The E region at 69° N, 19° E: trends, significances, and detectability, J. Geophys. Res., 116, A05309, DOI: 10.1029/2011JA016431, 2011. [CrossRef] [Google Scholar]
  • Heise, S., N. Jakowski, A. Wehrenpfennig, Ch. Reigber, and H. Luehr, Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: initial results, Geophys. Res. Lett., 29 (14), DOI: 10.1029/2002GL014738, 2002. [CrossRef] [Google Scholar]
  • Jakowski, N., TEC monitoring by using satellite positioning systems, in Modern Ionospheric Science, edited by H. Kohl, R. Rüster, and K. Schlegel, EGS, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin, pp. 371–390, 1996. [Google Scholar]
  • Jakowski, N., B. Fichtelmann, and A. Jungstand, Solar activity control of ionospheric and thermospheric processes, J. Atmos. Terr. Phys., 53, 1125–1130, 1991. [CrossRef] [Google Scholar]
  • Jakowski, N., J. Mielich, C. Borries, L. Cander, A. Krankowski, B. Nava, and S.M. Stankov, Large scale ionospheric gradients over Europe observed in October 2003, J. Atmos. Sol. Terr. Phys., 70, 15, DOI: 10.1016/j.jastp.2008.03.020, 2008. [Google Scholar]
  • Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken, TEC models and their use in ionosphere monitoring, Radio Sci., 46, RS0D18, DOI: 10.1029/2010RS004620, 2011. [CrossRef] [Google Scholar]
  • Koutroumbas, K., I. Tsagouri, and A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Ann. Geophys., 26 (2), 371–386, 2008. [CrossRef] [Google Scholar]
  • Kutiev, I., S. Watanabe, Y. Otsuka, and A. Saito, Total electron content behavior over Japan during geomagnetic storms, J. Geophys. Res., 110 (A1), A01308, DOI: 10.1029/2004JA010586, 2005. [CrossRef] [Google Scholar]
  • Kutiev, I., Y. Otsuka, D. Pancheva, and R. Heelis, Response of low-latitude ionosphere to medium-term changes of solar and geomagnetic activity, J. Geophys. Res., 117, A08330, DOI: 10.1029/2012JA017641, 2012. [CrossRef] [Google Scholar]
  • Lastovicka, J., Global pattern of trends in the upper atmosphere and ionosphere: recent progress, J. Atmos. Solar Terr. Phys., 71 (14-15), 1514–1528, 2009. [CrossRef] [Google Scholar]
  • Lastovicka, J., R.A. Akmaev, G. Beig, J. Bremer, and J.T. Emmert, Global change in the upper atmosphere, Science, 314, 1253–1254, DOI: 10.1126/science.1135134, 2006. [CrossRef] [Google Scholar]
  • Lastovicka, J., S.C. Solomon, and L. Qian, Trends in the neutral and ionized upper atmosphere, Space Sci. Rev., 168 113–145, DOI: 10.1007/s11214-011-9799-3, 2012. [CrossRef] [Google Scholar]
  • Lean, J.L., H.P. Warren, J.T. Mariska, and J. Bishop, A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather, J. Geophys. Res., 108 (A2), 1059, DOI: 10.1029/2001JA009238, 2003. [CrossRef] [Google Scholar]
  • Lei, J., J.P. Thayer, J.M. Forbes, E.K. Sutton, and R.S. Nerem, Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys. Res. Lett., 35, L10109, DOI: 10.1029/2008GL033875, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Magdaleno, S., D. Altadill, M. Herraiz, E. Blanch, and B. de la Morena, Ionospheric peak height behaviour for low, middle and high latitudes, A potential empirical model for quiet conditions – Comparison with the IRI-2007 model, J. Atmos. Sol. Terr. Phys., 73 (13), 1810–1817, DOI: 10.1016/j.jastp.2011.04.019, 2011. [CrossRef] [Google Scholar]
  • Mayer, C., and N. Jakowski, Enhanced E layer ionization in the auroral zones observed by radio occultation measurements onboard CHAMP and Formosat-3/COSMIC, Ann. Geophys., 27, 1207–1212, 2009. [CrossRef] [Google Scholar]
  • C., Mayer, B. Belabbas, N. Jakowski, M. Meurer, and W. Dunkel, Ionosphere threat space model assessment for GBAS, Proc. ION GNSS 2009, Savannah, GA, USA, 22–25 September, 2009. [Google Scholar]
  • Maunder, W.E., Magnetic disturbances, 1882 to 1903, as recorded at the Royal Observatory, Greenwich, and their association withsunspots, Mon. Not. R. Astron. Soc., 65 (1), 2–34, 1904. [Google Scholar]
  • Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, DOI: 10.1051/swsc/2012002, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mlynczak, M.G., F.J. Martin-Torres, C.J. Mertens, B.T. Marshall, R.E. Thompson, J.U. Kozyra, E.E. Remsberg, L.L. Gordley, J.M. Russel III, and T. Woods, Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere, Geophys. Res. Lett., 35, L05808, 2008. [CrossRef] [Google Scholar]
  • Mlynczak, M., L. Hunt, B.T. Marshall, F.J. Martin-Torres, C.J. Mertens, et al., Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument, J. Geophys. Res., 115, A03309, DOI: 10.1029/2009JA014713, 2010. [CrossRef] [Google Scholar]
  • Muhtarov, P., I. Kutiev, and L.R. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionopsheric parameters, Inverse Prob., 18, 49–65, 2002. [CrossRef] [Google Scholar]
  • Mukhtarov, P., and D. Pancheva, Thermosphere-ionosphere coupling in response to recurrent geomagnetic activity, J. Atmos. Sol. Terr. Phys., 74, 132–145, DOI: 10.1016/j.jastp.2012.02.013, 2012. [CrossRef] [Google Scholar]
  • Mursula, K., and D. Martini, Centennial increase in geomagnetic activity: Latitudinal difference and global estimates, J. Geophys. Res., 111, A08209, DOI: 10.1029/2005JA011549, 2006. [CrossRef] [Google Scholar]
  • Pancheva, D., and P. Mukhtarov, Wavelet analysis on transient behaviour of tidal amplitude fluctuations observed by meteor radar in the lower thermosphere above Bulgaria, Ann. Geophys., 18, 316–333, 2000. [CrossRef] [Google Scholar]
  • Pancheva, D., N. Mitchell, R.R. Clark, J. Drobjeva, and J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above, Ann. Geophys., 20, 1807–1819, 2002. [CrossRef] [Google Scholar]
  • Perrone, L., L. Alfonsi, V. Romano, and G. De Franceschi, Polar cap absorption events of Novembre 2001 at Terra Nova Bay, Antartica, Ann. Geophys., 22, 1633–1648, 2004. [CrossRef] [Google Scholar]
  • Perrone, L., M. Parisi, A. Meloni, M. Damasso, and M. Galliani, Study on solar sources and polar cap absorption events recorded in Antarctica, Adv. Space Res., 43 (11), 1660–1668, 2009. [CrossRef] [Google Scholar]
  • W.R., Piggot, and K. Rawer, URSI Handbook of Ionograms Interpretation and Reduction, 2nd edn. Report UAG-23A, WDC-A for STP, Boulder, Co, 1972. [Google Scholar]
  • Qian, L., S.C. Solomon, R.G. Roble, and T.J. Kane, Model simulations of global change in the ionosphere, Geophys. Res. Lett., 35, L07811, DOI: 10.1029/2007GL033156, (2008). [CrossRef] [Google Scholar]
  • Qian, L., J. Lastovicka, R.G. Roble, and S.C. Solomon, Progress in observations and simulations of global change in the upper atmosphere, J. Geophys. Res., 116 (A4), A00H03, DOI: 10.1029/2010JA016317, 2011. [CrossRef] [Google Scholar]
  • Reinisch, B.W. and X. Huang, Automatic calculation of electron density profiles from digital ionoograms 3. Processing of bottomside ionograms, Radio Sci., 18 (3), 477–492, DOI: 10.1029/RS18i003p00477, 1983. [CrossRef] [Google Scholar]
  • Saiz, E., C. Cid, and Y. Cerrato, Forecasting intense geomagnetic activity using interplanetary magnetic field data, Ann. Geophys., 26, 3989–3998, 2008. [CrossRef] [Google Scholar]
  • Solomon, S.C., T.N. Woods, L.V. Didkovsky, J.T. Emmert, and L. Qian, Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum, Geophys. Res. Lett., 37, L16103, DOI: 10.1029/2010GL044468, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Temmer, M., B. Vršnak, and A.M. Veronig, Periodic appearance of coronal holes and the related variation of solar wind parameters, Sol. Phys., 241, 371–383, DOI: 10.1007/s11207-007-0336-1, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Thayer, J.P., J. Lei, J.M. Forbes, E.K. Sutton, and R.S. Nerem, Thermospheric density oscillations due to periodic solar wind high-speed streams, J. Geophys. Res., 113, A06307, DOI: 10.1029/2008JA013190, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Torrence, C., and G. Compo, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61–78, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsagouri, I., B. Zolesi, A. Belehaki, and L.R. Cander, Evaluation of the performance of the real-time updated simplified ionospheric regional model for the European area, J. Atmos. Sol.-Terr. Phys., 67 (12), 1137–1146, DOI: 10.1016/j.jastp.2005.01.012, 2005. [CrossRef] [Google Scholar]
  • Tsagouri, I., Evaluation of the performance of DIAS ionospheric forecasting models, J. Space Weather Space Space Clim., 1, A02, DOI: 10.1051/swsc/2011110003, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tsagouri, I., and A. Belehaki, “A new empirical model of middle latitude ionospheric response for space weather applications, Adv. Space Res., 37 (2), 420–425, 2006. [CrossRef] [Google Scholar]
  • Tsagouri, I., and A. Belehaki, An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response, J. Atmos. Sol. Terr. Phys., 70 (16), 2061–2076, 2008. [CrossRef] [Google Scholar]
  • Tsagouri, I., B. Zolesi, R. Cander Lj, and A. Belehaki, DIAS effective sunspot number as an indicator of the ionospheric activity level over Europe, Acta Geophys., DOI: 10.2478/s11600-009-0045-2, 2009. [Google Scholar]
  • Tsurutani, B., W. Gonzalez, A. Gonzalez, A.L.C. Gonzalez, F. Guarnieri, et al., Corotating solar wind streams and recurrent geomagnetic: a review, J. Geophys. Res., 111, A07S01, DOI: 10.1029/2005JA011273, 2006. [CrossRef] [Google Scholar]
  • Vršnak, B., M. Temmer, and A.M. Veroning, Coronal holes and solar with high-speed streams: I. Forecasting the solar wind parameters, Sol. Phys., 240, 315–330, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Xie, H.N., N. Gopalswamy, P.K. Manoharan, A. Lara, S. Yashiro, and S. Lepri, Long-lived geomagnetic storms and corononal mass ejections, J. Geophys. Res, 111, A1, DOI: 10.10129/2005JA011287, 2006. [Google Scholar]
  • Zolesi, B., A. Belehaki, I. Tsagouri, and L.R. Cander, Real-time updating of the simplified ionospheric regional model for operational applications, Radio Sci., 39, RS2011, DOI: 10.1029/2003RS002936, 2004. [CrossRef] [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, Correction to Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −1000 nT) during 1996–2005, J. Geophys. Res, 112, DOI: 10.10129/2007JA012891, 2007. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.