COST Action ES0803
Open Access
J. Space Weather Space Clim.
Volume 3, 2013
COST Action ES0803
Article Number A17
Number of page(s) 26
Published online 23 April 2013
  • Aguado, J., C. Cid, E. Saiz, and Y. Cerrato, Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms, J. Geophys. Res., 115, A07220, DOI: 10.1029/2009JA014658, 2010. [CrossRef] [Google Scholar]
  • Ahmed, O.W., R. Qahwaji, T. Colak, P.A. Higgins, P.T. Gallagher, and D. Shaun Bloomfield, Solar flare prediction using advanced feature extraction, machine learning, and feature selection, Sol. Phys., 283 (1), 157–175, DOI: 10.1007/s11207-011-9896-1, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Andonov, B., P. Muhtarov and I. Kutiev, Analogue model relating kp index to solar wind parameter, J. Atmos. Sol. Terr. Phys., 66 (11), 927, 2004. [CrossRef] [Google Scholar]
  • Aran, A., B. Sanahuja, and D. Lario, SOLPENCO: A solar particle engineering code, Adv. Space Res., 37 (6), 1240, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu, STORM: An empirical storm time ionospheric correction model: 1. Model description, Radio Sci., 37 (5), 1070, DOI: 10.1029/2001RS002467, 2002. [Google Scholar]
  • Araujo-Pradere, E.A., Transitioning space weather models into operations: The basic building blocks, Space Weather, 7, S10006, DOI: 10.1029/2009SW000524, 2009. [CrossRef] [Google Scholar]
  • Arge, C.N., J.G. Luhmann, D. Odstrcil, C.J. Schrijver, and Y. Li, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys., 66 (15–16), 1295–1309, 2004. [Google Scholar]
  • Balch, C.C., Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model, Space Weather, 6, S01001, DOI: 10.1029/2007SW000337, 2008. [CrossRef] [Google Scholar]
  • Barra, V., V. Delouille, M. Kretzschmar, and J.F. Hochedez, Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23, Astron. Astrophys., 505 (1), 361–371, 2009. [CrossRef] [EDP Sciences] [Google Scholar]
  • Belehaki, A., and J. Lilensten, COST724: Conclusions and Way Ahead, Edited by Jean, Lilensten, Anna Belehaki, Mauro Messerotti, Rami Vainio, and Jurgen Watermann, COST 724 Final Report: Developing the Scientific Basis for Monitoring, Modelling, and Predicting Space Weather, COST Office, Luxembourg, ISBN 978-92-898-0044-0, 2008. [Google Scholar]
  • Belehaki, A., N. Jakowski, and B. Reinisch, Comparison of Ionospheric ionization measurements over Athens using ground ionosonde and GPS derived TEC values, Radio Sci., 38 (6), DOI: 10.1029/2003RS002868, 2003. [CrossRef] [Google Scholar]
  • Belehaki, A., I. Kutiev, N. Jakowski, and S. Stankov, Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside Digisonde profiles, Adv. Space Res., 37 (5), 963–966, 2006a. [Google Scholar]
  • Belehaki, A., Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Monitoring and forecasting the ionosphere over Europe: The DIAS project, Space Weather, 4, S12002, DOI: 10.1029/2006SW000270, 2006b. [CrossRef] [Google Scholar]
  • Belehaki, A., L. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project, Acta Geophys., 55 (3), 398–409, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Belehaki, A., I. Kutiev, B. Reinisch, N. Jakowski, P. Marinov, I. Galkin, C. Mayer, I. Tsagouri, and T. Herekakis, Verification of the TSMP-assisted Digisonde (TaD) topside profiling technique, Acta Geophys., 58 (3), 432–452, DOI: 10.2478/s11600-009-0052-3, 2010. [CrossRef] [Google Scholar]
  • Belehaki, A., I. Stanislawska, and J. Lilensten, An overview of ionosphere – thermosphere models available for space weather purposes, Space Sci. Rev., 147, 271–313, DOI: 10.1007/s11214-009-9510-0, 2009a. [CrossRef] [Google Scholar]
  • Belehaki, A., J. Watermann, J. Lilensten, A. Glover, M. Hapgood, M. Messerotti, R. van der Linden, and H. Lundstedt, Renewed support dawns in Europe: An action to develop space weather products and services, Space Weather, 7, S03001, 2009b. [CrossRef] [Google Scholar]
  • Belehaki, A., I. Tsagouri, and P. Marinov, An improved model for operational specification of the electron density structure up to GNSS orbits assisted by Digisonde data, Edited by J.M., Goodman (Editor-in-Chief), Proceedings of the 13th International Ionospheric Effects Symposium 2011, pp. 204–211, Alexandria, US, May 17–19, 2011. [Google Scholar]
  • Belehaki, A., I. Tsagouri, I. Kutiev, P. Marinov, and S. Fidanova, Upgrades to the topside sounders model assisted by Digisonde (TaD) and its validation at the topside ionosphere, J. Space Weather Space Clim., 2, A20, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bergeot, N., C. Bruyninx, P. Defraigne, S. Pireaux, J. Legrand, E. Pottiaux, and Q. Baire, Impact of the Halloween 2003 ionospheric storm on kinematic GPS positioning in Europe, GPS Solut., 15 (2), 171, DOI: 10.1007/s10291-010-0181-9, 2011. [Google Scholar]
  • Bourdarie, S., D. Boscher, T. Beutier, J.A. Sauvaud, M. Blanc, and R. Friedel, A Physic Based Model of the Radiation Belt Flux at the Day Timescale, Edited by W., Burke, and T.-D. Guyenne, Proceedings of the Symposium on Environment Modelling for Space-Based Applications, Eur. Space Agency Spec. Publ., ESA SP-392, pp. 159–163, 1996. [Google Scholar]
  • Bruinsma, S.L., N. Sánchez-Ortiz, E. Olmedo, and N. Guijarro, Evaluation of the DTM-2009 thermosphere model for benchmarking purposes, J. Space Weather Space Clim., 2, A04, DOI: 10.1051/swsc/2012005, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bruyninx, C., H. Habrich, W. Söhne, A. Kenyeres, G. Stangl, and C. Völksen, Enhancement of the EUREF Permanent Network Services and Products, Geodesy for Planet Earth, IAG Symposia Series, 136, 27–35, DOI: 10.1007/978-3-642-20338-1_4, 2012. [CrossRef] [Google Scholar]
  • Cid, C., E. Saiz, and Y. Cerrato, Comment on “Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ 250 nT) during solar cycle 23”, Geophys. Res. Lett., 35, L21107, DOI: 10.1029/2008GL034731, 2008. [CrossRef] [Google Scholar]
  • Colak, T., and R. Qahwaji, ASAP: hybrid computer platform using machine learning and solar imaging for automated prediction of significant solar flares, Space Weather, 7, S06001, DOI: 10.1029/2008SW000401, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Colak, T., and R. Qahwaji, Prediction of extreme ultraviolet variability experiment (EVE)/extreme ultraviolet spectro-photometer (ESP) irradiance from solar dynamics observatory (SDO)/atmospheric imaging assembly (AIA) images using fuzzy image processing and machine learning, Sol Phys., 283 (1), 143–156, DOI: 10.1007/s11207-011-9880-9, 2013. [Google Scholar]
  • Colak, T., R. Qahwaji, S. Ipson, and H.H. Ugail, Representation of solar features in 3D for creating visual solar catalogues, Adv. Space Res., Special Issue on Space Weather Advances, 47 (12), 2092–2104, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Corney, R.C., G.B. Burns, K. Michael, A.V. Frank-Kamenetsky, O.A. Troshichev, E.A. Bering, V.O. Papitashvili, A.M. Breed, and M.L. Duldig, The influence of polar-cap convection on the geoelectric field at Vostok, Antarctica, J. Atmos. Sol. Terr. Phys., 65, 345–354, 2003. [CrossRef] [Google Scholar]
  • Degtyarev, V.I., I.P. Kharchenko, A.S. Potapov, B. Tsegmed, and S.E. Chudnenko, Qualitative estimation of magnetic storm efficiency in producing relativistic electron flux in the Earth’s outer radiation belt using geomagnetic pulsations data, Adv. Space Res., 43 (5), 829–836, DOI: 10.1016/j.asr.2008.07.004, 2009. [CrossRef] [Google Scholar]
  • Degtyarev, V.I., I.P. Kharchenko, A.S. Potapov, B. Tsegmed, and S.E. Chudnenko, The relation between geomagnetic pulsations and an increase in the fluxes of geosynchronous relativistic electrons during geomagnetic storms, Geomag. Aeron., 50 (7), 885–893, 2010. [CrossRef] [Google Scholar]
  • Delouille, V., B. Mampaey, C. Verbeeck, and R. de Visscher, The SPoCA-suite: a software for extraction and tracking of active regions and coronal holes on EUV images, Arxive-prints, 1208.1483, 2012. [Google Scholar]
  • Dow, J.M., R.E. Neilan, and C. Rizos, The international GNSS service in a changing landscape of Global Navigation Satellite Systems, J. Geod., 83, 191–198, DOI: 10.1007/s00190-008-0300-3, 2009. [Google Scholar]
  • Egorova, T., E. Rozanov, Y. Ozolin, A. Shapiro, M. Calisto, T. Peter, and W. Schmutz, The atmospheric effects of October 2003 solar proton event simulated with the chemistry-climate model SOCOL using complete and parameterized ion chemistry, J. Atmos. Sol. Terr. Phys., 1073 (2–3), 356–365, DOI: 10.1016/j.jastp.2010.01.009, 2011. [CrossRef] [Google Scholar]
  • Feltens, J., M. Angling, N. Jackson-Booth, N. Jakowski, M. Hoque, M. Hernández-Pajares, A. Aragón-Àngel, R. Orús, and R. Zandbergen, Comparative testing of four ionospheric models driven with GPS measurements, Radio Sci., 46, RS0D12, DOI: 10.1029/2010RS004584, 2011. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T., E.A. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson, and A.R. Jacobson, US-TEC: a new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data, Radio Sci., 41, RS6003, DOI: 10.1029/2005RS003393, 2006. [CrossRef] [Google Scholar]
  • Gulyaeva, T.L., and N. Jakowski, Validation of consistency of GPS/NTCM2 and SMI-96 derived maps of total electron content through the ionosphere and plasmasphere, Edited by R., Hanbaba, and B.A. de la Morena, Proceedings of the 3rd COST251 Workshop, September, 1998, pp. 109–118, 1999. [Google Scholar]
  • Higgins, P.A., P.T. Gallagher, R.T.J. McAteer, and D.S. Bloomfield, Solar magnetic feature detection and tracking for space weather monitoring, Adv. Space Res., Space weather advances, 47 (12), 2105–2117, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Hochegger, G., B. Nava, S.M. Radicella, and R. Leitinger, A family of ionospheric models for different uses, Phys. Chem. Earth, 25 (4), 307–310, DOI: 10.1016/S1464-1917(00)00022-2, 2000. [CrossRef] [Google Scholar]
  • Hoque, M.M., and N. Jakowski, A new global empirical NmF2 model for operational use in radio systems, Radio Sci., 46, RS6015, DOI: 10.1029/2011RS004807, 2011. [Google Scholar]
  • Hoque, M.M., and N. Jakowski, A new global model for the ionospheric F2 peak height for radio wave propagation, Ann. Geophys., 30, 787–809, DOI: 10.5194/angeo-30-797-2012, 2012. [Google Scholar]
  • Houminer, Z., J.A. Bennett, and P.L. Dyson, Real-time ionospheric model updatingJournal of Electrical and Electronics Engineering, Australia, IE Aust. & IREE Aust., 13 (2), 99–104, 1993. [Google Scholar]
  • Jacchia, L.G., and J. Slowey, Accurate drag determinations for eight artificial satellites: atmospheric densities and temperatures, Smithsonian Contrib. Astrophys., 8, 1, 1963. [Google Scholar]
  • Jakowski, N., TEC Monitoring by Using Satellite Positioning Systems, Edited by H., Kohl, R. Ruester, and K. Schlegel, Modern Ionospheric Science, Eur. Geophys. Soc., Katlenburg‐Lindau, Germany, pp. 371–390, 1996. [Google Scholar]
  • Jakowski, N., E. Sardón, and S. Schlueter, GPS‐based TEC observations in comparison with IRI95 and the European TEC model NTCM2, Adv. Space Res., 22, 803–806, DOI: 10.1016/S0273-1177(98)00101-X, 1998. [CrossRef] [Google Scholar]
  • Jakowski, N., M.M. Hoque, and C. Mayer, A new global TEC model for estimating transionospheric radio wave propagation errors, J. Geod., 85, 965–974, DOI: 10.1007/s00190-011-0455-1, 2011a. [Google Scholar]
  • Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken, Total electron content models and their use in ionosphere monitoring, Radio Sci., 46, RS0D18, DOI: 10.1029/2010RS004620, 2011b. [CrossRef] [Google Scholar]
  • Janhunen, P., GUMICS-3: a global ionosphere-magnetosphere coupling simulation with high ionospheric resolution, Proceedings of Environmental Modelling for Space-Based Applications, 18–20 Sep 1996, Eur. Space Agency Spec. Publ., ESA SP-392, 1996. [Google Scholar]
  • Koutroumbas, K., I. Tsagouri, and A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Ann. Geophys., 26 (2), 371–386, 2008. [Google Scholar]
  • Kutiev, I., and P. Marinov, Topside sounder model of scale height and transition height characteristics of the ionosphere, Adv. Space Res., 39, 759–766, DOI: 10.1016/j.asr.2006.06.013, 2007. [CrossRef] [Google Scholar]
  • Kutiev, I., P. Marinov, and S. Watanabe, Model of topside ionosphere scale height based on topside sounder data, Adv. Space Res., 37 (5), 943–950, 2006. [Google Scholar]
  • Kutiev, I., P. Muhtarov, B. Andonov, and R. Warnant, Hybrid model for nowcasting and forecasting the K index, J. Atmos. Sol. Terr. Phys., 71, 589–596, DOI: 10.1016/j.jastp.2009.01.005, 2009a. [Google Scholar]
  • Kutiev, I., P. Marinov, A. Belehaki, B. Reinisch, and N. Jakowski, Reconstruction of topside density profile by using the Topside Sounder Model Profiler and Digisonde data, Adv. Space Res., 43, 1683–1687, 2009b. [Google Scholar]
  • Kutiev, I., P. Marinov, A. Belehaki, N. Jakowski, B. Reinisch, C. Mayer, and I. Tsagouri, Plasmaspheric electron density reconstruction based on the Topside Sounder Model Profiler, Acta Geophys., 58 (3), 420–431, DOI: 10.2478/s11600-009-0051-4, 2010. [CrossRef] [Google Scholar]
  • Kutiev, I., P. Marinov, S. Fidanova, A. Belehaki, and I. Tsagouri, Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes, J. Space Weather Space Clim., 2, A21, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kutiev, I., I. Tsagouri, L. Perrone, D. Pancheva, P. Mukhtarov, et al., Solar activity impact on the Earth’s upper atmosphere, J. Space Weather Space Clim., 3, A06, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lathuillere, C., M. Menvielle, J. Lilensten, T. Amari, and S.M. Radicella, From the Sun’s atmosphere to the Earth’s atmosphere: an overview of scientific models available for space weather developments, Ann. Geophys., 20, 1081–1104, 2002. [Google Scholar]
  • Lei, F., P.R. Truscott, C.S. Dyer, B. Quaghebeur, D. Heynderickx, P. Nieminen, H. Evans, and E. Daly, MULASSIS: a Geant4-based multilayered shielding simulation tool, IEEE T. Nucl. Sci., 49, 6, 2002. [Google Scholar]
  • Leitinger, R., M.L. Zhang, and S.M. Radicella, An improved bottomside for the ionospheric electron density model NeQuick, Ann. Geophys., 48 (3), 525–534, 2005. [Google Scholar]
  • Lilensten, J., T. Clark, and A. Belehaki, Europe’s first space weather think tank, Space Weather, 2, S04001, 2004. [CrossRef] [Google Scholar]
  • Makarova, L.N., A.V. Shirochkov, and K.V. Koptjaeva, The Earth’s magnetopause as an element of the global electric circuit, IEEE T. Nucl. Sci., 38 (3), 156–159, (in Russian), 1998. [Google Scholar]
  • Mares, V., T. Maczka, G. Leuthold, and W. Ruehm, Air crew dosimetry with a new version of EPCARD, Radiation Protection Dosimetry, 136 (4), 262–266, 2009. [CrossRef] [Google Scholar]
  • Martin, A.R., Spacecraft/Plasma Interactions and Electromagnetic Effects in LEO and Polar Orbits, Final Report for ESA/ESTEC Contract No.7989/88/NL/PB(SC), Vol. 3, 1991. [Google Scholar]
  • Messenger, C.G., and M.S. Ash, Single Event Phenomena, Chapman & Hall, New York, 1997. [CrossRef] [Google Scholar]
  • Messerotti, M., F. Zuccarello, S.L. Guglielmino, V. Bothmer, J. Lilensten, G. Noci, M. Storini, and H. Lundstedt, Solar weather event modelling and prediction, Space Sci. Rev., 147, 121–185, DOI: 10.1007/s11214-009-9574-x, 2009. [CrossRef] [Google Scholar]
  • Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routinely observed F2-layer Ne(h) profiles at the geomagnetic equator, J. Space Weather Space Clim., 3, A15, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Muhtarov, P., I. Kutiev, and L. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionopsheric parameters, Inverse Prob., 18, 49–65, 2002. [CrossRef] [Google Scholar]
  • Nava, B., P. Coisson, and S.M. Radicella, A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol. Terr. Phys., 76, 1856–1862, 2008. [Google Scholar]
  • Núñez, M., Predicting Solar Energetic Proton Events (E > 10 MeV), Space Weather, 9, S07003, DOI: 10.1029/2010SW000640, 2011. [CrossRef] [Google Scholar]
  • Pietrella, M., A short-term ionospheric forecasting empirical regional model (IFERM) to predict the critical frequency of the F2 layer during moderate, disturbed, and very disturbed geomagnetic conditions over the European area, Ann. Geophys., 30, 343–355, DOI: 10.5194/angeo-30-343-2012, 2012. [CrossRef] [Google Scholar]
  • Pizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, and D. Odstrcil, Wang-Sheeley-Arge-Enlil cone model transitions to operations, Space Weather, 9, S03004, DOI: 10.1029/2011SW000663, 2011. [CrossRef] [Google Scholar]
  • Potapov, A.S., and T.N. Polyushkina, Experimental evidence for direct penetration of ULF waves from the solar wind and their possible effect on acceleration of radiation belt electrons, Geomag. Aeron., 50 (8), 28–34, 2010. [Google Scholar]
  • Pulkkinen, A., M. Hesse, L. Van der Zel, B. Damsky, F. Policelli, D. Fugate, W. Jacobs, and E. Creamer, Solar shield: forecasting and mitigating space weather effects on high-voltage power transmission systems, Nat. Hazards, 53, 333–345, DOI: 10.1007/s11069-009-9432-x, 2010. [Google Scholar]
  • Radicella, S.M., and R. Leitinger, The evolution of the DGR approach to model electron density profiles, Adv. Space Res., 27, 35–40, DOI: 10.1016/S0273-1177(00)00138-1, 2001. [Google Scholar]
  • Reitz, G., and T. Berger, The Matroshka facility – dose determination during an EVA, Radiat. Prot. Dosim., 120, 442–445, 2006. [Google Scholar]
  • Saiz, E., C. Cid, and Y. Cerrato, Forecasting intense geomagnetic activity using interplanetary magnetic field data, Ann. Geophys., 26, 3989–3998, 2008. [CrossRef] [Google Scholar]
  • Schaer, S., W. Gurtner, and J. Feltens, IONEX: the IONosphere Map EXchange Format version 1, Proceedings of the 1998 IGS analysis centres workshop, ESOC, Darmstadt, Germany, 9–11 Feb, pp. 233–247, 1998. [Google Scholar]
  • Stanislawska, I., A. Belehaki, N. Jakowski, B. Zolesi, T. Gulyaeva, Lj.R. Cander, B.W. Reinisch, M. Pezzopane, I. Tsagouri, L. Tomasik, and I. Galkin, COST 296 scientific results designed for operational use, Ann. Geophys., 54 (3/4), 423–435, 2009. [Google Scholar]
  • Tinsley, B.A., G.B. Burns, and L. Zhou, The role of the global electric circuit in solar and internal forcing of clouds and climate, Adv. Space Res., 40, 1126–1139, 2007. [CrossRef] [Google Scholar]
  • Tobiska, W.K., Space Weather Management, AIAA-2009-1494, 2009. [Google Scholar]
  • Tonev, P., and P.I.Y. Velinov, Conditions for creation of streamers in lower ionosphere above lightning discharges with continuing currents, C.R. Acad. Bulg. Sci., 63 (12), 1787–1794, 2010. [Google Scholar]
  • Tonev, P.T., and P.I.Y. Velinov, Model study of the influence of solar wind parameters on electric currents and fields in middle atmosphere at high latitudes, C.R. Acad. Bulg. Sci., 64 (12), 1733–1742, 2011. [Google Scholar]
  • Tsagouri, I., Evaluation of the performance of DIAS ionospheric forecasting models, J. Space Weather Space Clim., 1, A02, DOI: 10.1051/swsc/2011110003, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tsagouri, I., and A. Belehaki, An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm time response, J. Atmos. Sol. Terr. Phys., 70 (16), 2061–2076, DOI: 10.1016/j.jastp.2008.09.010, 2008. [Google Scholar]
  • Tsagouri, I., B. Zolesi, A. Belehaki, and L. Cander, Evaluation of the performance of the real-time updated Simplified Ionospheric Regional Model for the European area, J. Atmos. Sol. Terr. Phys., 67, 1137–1146, 2005. [Google Scholar]
  • Tsagouri, I., K. Koutroumbas, and A. Belehaki, Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters, Radio Sci., 44, RS0A35, DOI: 10.1029/2008RS004112, 2009. [CrossRef] [Google Scholar]
  • Tsagouri, I., B. Zolesi, Lj.R. Cander, and A. Belehaki, DIAS effective sunspot number as an indicator of the ionospheric activity level over Europe, Acta Geophys., 58 (3), 491–512, 2010. [CrossRef] [Google Scholar]
  • Ünal, I., E.T. Şenalp, A. Yeşil, E. Tulunay, and Y. Tulunay, Performance of IRI based Ionospheric Critical Frequency Computations with reference to Forecasting, Radio Sci., 46, RS1004, DOI: 10.1029/2010RS004428, 2011. [Google Scholar]
  • Vainio, R., L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, R.B. Horne, G.A. Kovaltsov, K. Kudela, M. Laurenza, S. McKenna-Lawlor, H. Rothkaehl, and I.G. Usoskin, Dynamics of the Earth’s particle radiation environment, Space Sci. Rev., 147, 187–231, DOI: 10.1007/s11214-009-9496-7, 2009. [Google Scholar]
  • Velinov, P.I.Y., and L. Mateev, Improved cosmic ray ionization model for the system ionosphere – atmosphere. Calculation of electron production rate profiles, J. Atmos. Sol. Terr. Phys., 70, 574–582, 2008a. [Google Scholar]
  • Velinov, P.I.Y., and L. Mateev, Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere – distribution of galactic CR effects, Adv. Space Res., 42, 1586–1592, 2008b. [NASA ADS] [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., and P. Tonev, Electric currents from thunderstorms to the ionosphere during a solar cycle: quasi-static modeling of the coupling mechanism, Adv. Space Res., 42, 1569–1575, 2008. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., A. Mishev, and L. Mateev, Model for induced ionization by galactic cosmic rays in the earth atmosphere and ionosphere, Adv. Space Res., 44, 1002–1007, 2009. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., S. Asenovski, and L. Mateev, Simulation of cosmic ray ionization profiles in the middle atmosphere and lower ionosphere with account to characteristic energy intervals, C.R. Acad. Bulg. Sci., 64 (9), 1303–1310, 2011a. [Google Scholar]
  • Velinov, P.I.Y., A. Mishev, S. Asenovski, and L. Mateev, New operational models for cosmic ray ionization in space physics, Bulg. J. Phys., 38, 264–273, 2011b. [Google Scholar]
  • Velinov, P.I.Y., S. Asenovski, and L. Mateev, Improved cosmic ray ionization model for the ionosphere and atmosphere (CORIMIA) with account of 6 characteristic intervals, C.R. Acad. Bulg. Sci., 65, 6, 2012a. [Google Scholar]
  • Velinov, P.I.Y., S. Asenovski, and L. Mateev, Ionization of anomalous cosmic rays in ionosphere and middle atmosphere simulated by CORIMIA code, C.R. Acad. Bulg. Sci., 65, 7, 2012b. [Google Scholar]
  • Velinov, P.I.Y., S. Asenovski, and L. Mateev, Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals, Acta Geophys., 61 (2), 494–509, 2013. [CrossRef] [Google Scholar]
  • Verbeeck, C., P. Higgins, T. Colak, T. Watson, V. Delouille, B. Mampaey, and R. Qahwaji, A multi-wavelength analysis of active regions and sunspots by comparison of automatic detection, Sol. Phys., 283 (1), 67–95, DOI: 10.1007/s11207-011-9859-6, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Viljanen, A., A. Pulkkinen, R. Pirjola, K. Pajunpää, P. Posio, and A. Koistinen, Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system, Space Weather, 4, S10004, DOI: 10.1029/2006SW000234, 2006. [CrossRef] [Google Scholar]
  • Viljanen, A., R. Pirjola, M. Wik, A. Ádám, E. Prácser, Ya. Sakharov, and J. Katkalov, Continental scale modelling of geomagnetically induced currents, J. Space Weather Space Clim., 2, A17, DOI:, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Watermann, J., R. Vainio, J. Lilensten, A. Belehaki, and M. Messerotti, The state of space weather scientific modeling – an introduction, Space Sci. Rev., 147, 111–120, DOI: 10.1007/s11214-009-9576-8, 2009a. [CrossRef] [Google Scholar]
  • Watermann, J., P. Wintoft, B. Sanahuja, E. Saiz, S. Poedts, M. Palmroth, A. Milillo, F.-A. Metallinou, C. Jacobs, N.Y. Ganushkina, I.A. Daglis, C. Cid, Y. Cerrato, G. Balasis, A.D. Aylward, and A. Aran, Models of solarwind structures and their interaction with the Earth’s space environment, Space Sci. Rev., 147, 233–270, DOI: 10.1007/s11214-009-9494-9, 2009b. [Google Scholar]
  • Wing, S., J.R. Johnson, J. Jen, C.-I. Meng, D.G. Sibeck, K. Bechtold, J. Freeman, K. Costello, M. Balikhin, and K. Takahashi, Kp forecast models, J. Geophys. Res., 110, A04203, DOI: 10.1029/2004JA010500, 2005. [CrossRef] [Google Scholar]
  • Wintoft, P., M. Wik, H. Lundstedt, and L. Eliasson, Predictions of local ground geomagnetic field fluctuations during the 7–10 November 2004 events studied with solar wind driven models, Ann. Geophys., 23, 3095–3101, SRef-ID: 1432-0576/ag/2005-23-3095, 2005. [CrossRef] [Google Scholar]
  • Wrenn, G.L., Time-weighted accumulations ap(τ) and Kp(τ), J. Geophys. Res., 92, 10125–10129, 1987. [Google Scholar]
  • Wrenn, G.L., and A.S. Rodger, Geomagnetic modification of the mid-latitude ionosphere: toward a strategy for the improved forecasting of foF2, Radio Sci., 24, 99–111, 1989. [CrossRef] [Google Scholar]
  • Wu, J., and P.J. Wilkinson, Time-Weighted magnetic indices as predictors of ionospheric behaviour, J. Atm. Sol. Terr. Phys, 57 (14), 1763–1770, 1995. [CrossRef] [Google Scholar]
  • Zolesi, B., Lj.R. Cander, and G. De Franceschi, Simplified ionospheric regional model for telecommunication applications, Radio Sci., 28 (4), 603–612, 1993. [CrossRef] [Google Scholar]
  • Zolesi, B., A. Belehaki, I. Tsagouri, and Lj.R. Cander, Real-time updating of the Simplified Ionospheric Regional Model for operational applications, Radio Sci., 39, RS2011, DOI: 10.1029/2003RS002936, 2004. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.