Open Access
Issue |
J. Space Weather Space Clim.
Volume 3, 2013
COST Action ES0803
|
|
---|---|---|
Article Number | A18 | |
Number of page(s) | 45 | |
DOI | https://doi.org/10.1051/swsc/2013039 | |
Published online | 30 April 2013 |
- Alexander, D., Space Sci. Rev., 123, 81, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Aly, J.J., On some properties of force-free magnetic fields in infinte regions of space, Astrophys. J., 283, 349–362, 1984. [NASA ADS] [CrossRef] [Google Scholar]
- Amari, T., J.F. Luciani, J.J. Aly, and M. Tagger, Very fast opening of a three-dimensional twisted magnetic flux tube, Astrophys. J., 466, L39, 1996. [NASA ADS] [CrossRef] [Google Scholar]
- Amari, T., J.F. Luciani, Z. Mikić, and J.A. Linker, A twisted flux rope model for coronal mass ejections and two-ribbon flares, Astrophys. J., 529, L49–L52, 2000. [Google Scholar]
- Amari, T., J.F. Luciani, J.J. Aly, Z. Mikić, and J.A. Linker, Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution, Astrophys. J., 585, 1073–1086, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Amari, T., J.J. Aly, Z. Mikic, and J. Linker, Coronal mass ejection initiation and complex topology configurations in the flux cancellation and breakout models, Astrophys. J., 671, L189–L192, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Amari, T., J.-J. Aly, Z. Mikic, and J. Linker, Coronal mass ejection initiation: on the nature of the flux cancellation model, Astrophys. J., 717, L26–L30, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Amari, T., J.-J. Aly, J.-F. Luciani, Z. Mikic, and J. Linker, Coronal mass ejection initiation by converging photospheric flows: toward a realistic model, Astrophys. J., 742, L27, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Amblard, P.-O., S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, and F. Auchère, The EUV Sun as the superposition of elementary Suns, A&A, 487, L13–L16, 2008. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Antiochos, S., C. DeVore, and J. Klimchuk, A model for solar coronal mass ejections, Astrophys. J., 510, 485–493, 1999. [NASA ADS] [CrossRef] [Google Scholar]
- Antiochos, S.K., J.T. Karpen, E.E. DeLuca, L. Golub, and P. Hamilton, Astrophys. J., 590, 547, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Archontis, V., F. Moreno-Insertis, K. Galsgaard, and A.W. Hood, The three-dimensional interaction between emerging magnetic flux and a large-scale coronal field: reconnection, current sheets, and jets, Astrophys. J., 635, 1299–1318, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Arge, C.N., and V.J. Pizzo, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res., 105, 10465–10480, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Arregui, I., R. Oliver, and J.L. Ballester, LRSP, 9, 2, 2012. [Google Scholar]
- Aulanier, G., T. Török, P. Démoulin, and E.E. DeLuca, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids, Astrophys. J., 708, 314–333, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Battarbee, M., T. Laitinen, and R. Vainio, Heavy-ion acceleration and self-generated waves in coronal shocks, A&A, 535, A34, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bemporad, A., Astrophys. J., 701, 298, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Bemporad, A., Prominence 3D reconstruction in the STEREO era: a review, J. Atmos. Sol. Terr. Phys., 73 (10), 1117–1128, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Bemporad, A., and S. Mancuso, First complete determination of plasma physical parameters across a coronal mass ejection-driven shock, Astrophys. J., 720, 130–143, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Bemporad, A., F.P. Zuccarello, C. Jacobs, et al., Study of multiple coronal mass ejections at solar minimum conditions, Sol. Phys., 281, 223–236, 2012. [Google Scholar]
- BenMoussa, A., A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, et al., Recent developments of wide-bandgap semiconductor based UV sensors, Diamond Relat. Mater., 18(5–8), 860–864, Proceedings of Diamond 2008, the 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, 2009. [CrossRef] [Google Scholar]
- Berger, M.A. and G.B. Field, The topological properties of magnetic helicity, J. Fluid Mech., 147, 133, 1984. [NASA ADS] [CrossRef] [Google Scholar]
- Berger, T.E., B. de Pontieu, L. Fletcher, et al., Sol. Phys., 190, 409, 1999. [NASA ADS] [CrossRef] [Google Scholar]
- Berger, T.E., R.A. Shine, G.L. Slater, et al., Astrophys. J., 676, L89, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Berger, T., P. Testa, A. Hillier, et al., Nature, 472, 197, 2011. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bethge, C., C. Beck, H. Peter, and A. Lagg, A&A, 537, A130, 2012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Billings, D.E., A Guide to the Solar Corona, Academic Press, NY, London, 1966. [Google Scholar]
- Bougeret, J.L., K. Goetz, M.L. Kaiser, S.D. Bale, P.J. Kellogg, M. Maksimovic, N. Monge, S.J. Monson, P.L. Astier, and S. Davy, S/WAVES: The radio and plasma wave investigation on the STEREO mission, SSRv, 136, 487–528, 2008. [Google Scholar]
- Brooks, D.H., H.P. Warren, and P.R. Young, Astrophys. J., 730, 85, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al., The large angle spectroscopic coronagraph (LASCO), Sol. Phys., 162, 357–402, 1995. [Google Scholar]
- Burlaga, L., E. Sittler, F. Mariani, and R. Schwenn, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations, JGR, 86, 6673–6684, 1981. [Google Scholar]
- Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge, A study of solar energetic particle events of 1997–2006: their composition and associations, J. Geophys. Res., 115, A08101, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Cargill, P.J., Astrophys. J., 422, 381, 1994. [NASA ADS] [CrossRef] [Google Scholar]
- Cargill, P.J., Sol. Phys., 221, 135, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J.-F. Hochedez, and M. Snow, Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cessateur, G., J. Lilensten, T. Dudok de Wit, A. BenMoussa, and M. Kretzschmar, New observation strategies for the solar UV spectral irradiance, J. Space Weather Space Clim., 2, A16, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
- Chae, J., Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of the field line footpoints, Astrophys. J., 560, L95, 2001. [NASA ADS] [CrossRef] [Google Scholar]
- Chae, J., Adv. Space Res., 39, 1700, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Chae, J., Astrophys. J., 714, 618, 2010. [Google Scholar]
- Chae, J., Y. Moon, D.M. Rust, H. Wang, and P.R. Goode, Magnetic helicity pumping by twisted flux tube expansion, J. Kor. Astron. Soc., 36, 33, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Chamberlin, P.C., T.N. Woods, and F.G. Eparvier, Space Weather, 6, 5001, 2008. [CrossRef] [Google Scholar]
- Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Sol. Phys., 7, 3, http://www.livingreviews.org/lrsp-2010-3, 2010. [Google Scholar]
- Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 338, 453–470, 1989. [NASA ADS] [CrossRef] [Google Scholar]
- Chen, P.F., Coronal mass ejections: models and their observational basis, Living Rev. Sol. Phys., 8, 2011. [Google Scholar]
- Chen, J., and J. Krall, J. Geophys. Res., 108, 1410, 2003. [CrossRef] [Google Scholar]
- Chen, P., and K. Shibata, An emerging flux trigger mechanism for coronal mass ejections, Astrophys. J., 545, 524–531, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Chen, J., R.A. Howard, G.E. Brueckner, R. Santoro, J. Krall, S.E. Paswaters, O.C. St. Cyr, R. Schwenn, P. Lamy, and G.M. Simnett, Coronal mass evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13, Astrophys. J., 490, L191, 1997. [NASA ADS] [CrossRef] [Google Scholar]
- Cheng, X., J. Zhang, O. Olmedo, A. Vourlidas, M.D. Ding, and Y. Liu, Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection, Astrophys. J., 745, L5, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Chifor, C., H.E. Mason, D. Tripathi, H. Isobe, and A. Asai, A&A, 458, 965, 2006. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cirigliano, D., J.-C. Vial, and M. Rovira, Sol. Phys., 223, 95, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Cirtain, J.W., G. Del Zanna, E.E. DeLuca, et al., Astrophys. J., 655, 598, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Cohen, O., I.V. Sokolov, I.I. Roussev, and T.I. Gombosi, Validation of a synoptic solar wind model, J. Geophys. Res. (Space Phys.), 113, A03104, 2008. [Google Scholar]
- Connors, M., C.T. Russell, and V. Angelopoulos, Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation, AnGeo, 29, 619–622, 2011. [Google Scholar]
- Cremades, H., and V. Bothmer, On the three-dimensional configuration of coronal mass ejections, A&A, 422, 307–322, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Criscuoli, S., D. Del Moro, F. Giannattasio, et al., A&A, 546, A26, 2012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dammasch, I.E., W. Curdt, B.N. Dwivedi, and S. Parenti, Ann. Geophys., 26, 2955, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Davis, C.J., C.A. de Koning, J.A. Davies, D. Biesecker, G. Millward, et al., A comparison of space weather analysis techniques used to predict the arrival of the Earth-directed CME and its shockwave launched on 8 April 2010, SpWea, 9, CiteID S01005, 2011. [Google Scholar]
- de Koning, C.A., and V.J. Pizzo, Polarimetric localization: a new tool for calculating the CME speed and direction of propagation in near-real time, SpWea, 9, CiteID S03001, 2011. [Google Scholar]
- Del Moro, D., S. Giordano, and F. Berrilli, A&A, 472, 599, 2007. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Del Zanna, G., A&A, 481, L49, 2008. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Del Zanna, G., and H.E. Mason, A&A, 406, 1089, 2003. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Demoulin, P., and E. Pariat, Modelling and observations of photospheric magnetic helicity, Adv. Space Res., 43, 1013, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Dere, K.P., A&A, 491, 561, 2008. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dere, K.P., A&A, 497, 287, 2009. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dere, K.P., G.E. Brueckner, R.A. Howard, D.J. Michels, and J.P. Delaboudiniere, Astrophys. J., 516, 465, 1999. [NASA ADS] [CrossRef] [Google Scholar]
- Dere, K.P., D. Wang, and R. Howard, Three-dimensional structure of coronal mass ejections from LASCO polarization measurements, Astrophys. J., 620, L119–L122, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Ding, J.Y., and Y.Q. Hu, Astrophys. J., 674, 554, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Doschek, G.A., J.T. Mariska, H.P. Warren, et al., PASJ, 59, 707, 2007. [Google Scholar]
- Dubey, G., B. van der Holst, and S. Poedts, Initiation of CMEs by magnetic flux emergence, A&A, 27, 159–166, 2006. [Google Scholar]
- Dudok de Wit, T., J. Lilensten, J. Aboudarham, P.-O. Amblard, and M. Kretzschmar, Retrieving the solar EUV spectrum from a reduced set of spectral lines, Ann. Geophys., 23, 3055–3069, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods, Finding the best proxies for the solar UV irradiance, Geophys. Res. Lett., 36, 10107, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Engvold, O., Sol. Phys., 70, 315, 1981. [NASA ADS] [CrossRef] [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok de Wit, et al., Atmos. Chem. Phys. Discuss., 12, 24557, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Eyles, C.J., R.A. Harrison, C.J. Davis, N.R. Waltham, B.M. Shaughnessy, et al., The heliospheric imagers onboard the STEREO mission, Sol. Phys., 254, 387–445, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Fan, Y., Magnetic fields in the solar convection zone, Living Rev. Sol. Phys., 6, 4, http://www.livingreviews.org/lrsp-2009-4 , 2009. [Google Scholar]
- Fan, Y., and S.E. Gibson, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes, Astrophys. J., 609, 1123–1133, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Fan, Y., and S.E. Gibson, Onset of coronal mass ejections due to loss of confinement of coronal flux ropes, Astrophys. J., 668, 1232–1245, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Feynman, J., and S.F. Martin, The initiation of coronal mass ejections by newly emerging magnetic flux, J. Geophys. Res., 100, 3355–3367, 1995. [NASA ADS] [CrossRef] [Google Scholar]
- Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res. (Atmos.), 116, 20108, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Forbes, T.G., J. Geophys. Res., 105, 23153, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Forbes, T., Models of coronal mass ejections and flares, edited by C.J. Schrijver, and G.L. Siscoe, Cambridge University Press, p. 159, 2010. [Google Scholar]
- Forbes, T.G., and P.A. Isenberg, A catastrophe mechanism for coronal mass ejections, Astrophys. J., 373, 294–307, 1991. [NASA ADS] [CrossRef] [Google Scholar]
- Forbes, T.G., and E.R. Priest, Photospheric magnetic field evolution and eruptive flares, Astrophys. J., 446, 377, 1995. [NASA ADS] [CrossRef] [Google Scholar]
- Forbes, T.G., J.A. Linker, J. Chen, et al., CME theory and models, Space Sci. Rev., 123, 251–302, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Fröhlich, C., Total solar irradiance: what have we learned from the last three cycles and the recent minimum?, Space Sci. Rev., 366, 2011. [Google Scholar]
- Galsgaard, K., V. Archontis, F. Moreno-Insertis, and A.W. Hood, The effect of the relative orientation between the coronal field and new emerging flux. I. Global properties, Astrophys. J., 666, 516–531, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Gilbert, H.R., D. Alexander, and R. Liu, Sol. Phys., 245, 287, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Gissot, S.F., J. Hochedez, P. Chainais, and J. Antoine, Sol. Phys., 252, 397, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Golub, L., E. Deluca, G. Austin, et al., Sol. Phys., 243, 63, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy, N., A. Lara, R.P. Lepping, et al., Geophys. Res. Lett., 27, 145, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy, N., A. Lara, S. Yashiro, M.L. Kaiser, and R.A. Howard, J. Geophys. Res., 106, 29207, 2001. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy, N., M. Shimojo, W. Lu, S. Yashiro, K. Shibasaki, and R.A. Howard, Astrophys. J., 586, 562, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy, N., H. Xie, S. Akiyama, P. Mäkelä, S. Yashiro, and I. Usoskin, Heliocentric distance of CMEs at the time of energetic particle release: revisiting the ground level enhancement events of solar cycle 23, in: Proc. Internat. Cosmic Ray Conf. 10, 157, 2011. [Google Scholar]
- Gopalswamy, N., N. Nitta, S. Akiyama, P. Mäkelä, and S. Yashiro, Coronal magnetic field measurement from EUV images made by the solar dynamics observatory, Astrophys. J., 744, 72, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Goryaev, F.F., S. Parenti, A.M. Urnov, et al., A&A, 523, A44, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gosling, J.T., E. Hildner, R.M. MacQueen, et al., Sol. Phys., 48, 389, 1976. [NASA ADS] [CrossRef] [Google Scholar]
- Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al., Solar influences on climate, Rev. Geophys., 48, RG4001, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Grechnev, V.V., A.M. Uralov, V.G. Zandanov, N.Y. Baranov, and K. Shibasaki, PASJ, 58, 69, 2006. [Google Scholar]
- Guglielmino, S.L., Observational consequences of flux emergence form the photosphere to the corona: the role of interactions, 4th Hinode Science Meeting: Unsolved Problems and Recent Insights, ASP Conference series, 455, 109, 2012. [Google Scholar]
- Guglielmino, S.L., and F. Zuccarello, High-resolution observations of siphon flows in a solar magnetic pore, Astrophys. J. Lett., 743, L9–L14, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Guglielmino, S.L., L.R. Bellot Rubio, F. Zuccarello, G. Aulanier, S. Vargas Domínguez, and S. Kamio, Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere, Astrophys. J., 724, 1083–1098, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Guglielmino, S.L., V. Martínez Pillet, J.A. Bonet, J. Carlos del Toro Iniesta, L.R. Bellot Rubio, et al., The Frontier between small-scale bipoles and ephemeral regions in the solar photosphere: emergence and decay of an intermediate-scale bipole observed with SUNRISE/IMaX, Astrophys. J., 745, A160, 2012a. [NASA ADS] [CrossRef] [Google Scholar]
- Gui, B., C. Shen, Y. Wang, P. Ye, J. Liu, S. Wang, and X. Zhao, Quantitative analysis of CME deflections in the corona, Sol. Phys., 271, 111–139, 2011. [CrossRef] [Google Scholar]
- Gunár, S., S. Parenti, U. Anzer, P. Heinzel, and J.-C. Vial, A&A, 535, A122, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hagenaar, H.J., Ephemeral regions on a sequence of full-disk michelson doppler imager magnetograms, Astrophys. J., 555, 448–461, 2001. [NASA ADS] [CrossRef] [Google Scholar]
- Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder, An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, 2010. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hara, H., T. Watanabe, L.K. Harra, et al., Astrophys. J., 678, L67, 2008. [CrossRef] [Google Scholar]
- Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods, Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, 7801, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Hochedez, J.-F., W. Schmutz, Y. Stockman, U. Schühle, A. Benmoussa, et al., LYRA, a solar UV radiometer on Proba2, Adv. Space Res., 37, 303–312, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Holder, Z.A., R.C. Canfield, R.A. McMullen, D. Nandy, R.F. Howard, and A.A. Pevtsov, On the tilt and twist of solar active regions, Astrophys. J., 611, 1149–1155, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Howard, T., Coronal Mass Ejection: An Introduction, Springer, Berlin, 2011. [CrossRef] [Google Scholar]
- Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, and S.P. Plunkett, Sun Earth connection coronal and heliospheric investigation (SECCHI), Space Sci. Rev., 136, 67–115, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Hu, Q., and B.U.O. Sonnerup, Reconstruction of magnetic clouds in the solar wind: orientations and configurations, JGRA, 107, SSH 10-1, 2002. [Google Scholar]
- Hundhausen, A.J., J. Geophys. Res., 98 (A8), 177–13200, 1993. [NASA ADS] [CrossRef] [Google Scholar]
- Hundhausen, A.J., J.T. Burkepile, and O.C. St. Cyr, J. Geophys. Res., 99 (A4), 6543–6552, 1994. [NASA ADS] [CrossRef] [Google Scholar]
- Inhester, B. Stereoscopy basics for the STEREO mission, arXiv:astro-ph/0612649, 2006. [Google Scholar]
- Isenberg, P.A., T.G. Forbes, and P. Demoulin, Catastrophic evolution of a force-free flux rope: a model for eruptive flares, Astrophys. J., 417, 368, 1993. [NASA ADS] [CrossRef] [Google Scholar]
- Jacobs, C., and S. Poedts, A polytropic model for the solar wind, Adv. Space Res., 48, 1958–1966, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Jacobs, C., B. van der Holst, and S. Poedts, Comparison between 2.5D and 3D simulations of coronal mass ejections, Astrophys. J., 470, 359–365, 2007. [Google Scholar]
- Joshi, V., and N. Srivastava, Bull. Astron. Soc India, 35, 447, 2007. [Google Scholar]
- Joshi, A.D., and N. Srivastava, Kinematics of two eruptive prominences observed by EUVI/STEREO, Astrophys. J., 104, 730, 2011a. [Google Scholar]
- Joshi, A.D., and N. Srivastava, Acceleration of coronal mass ejections from three-dimensional reconstruction of STEREO images, Astrophys. J., 739, 8, 2011b. [NASA ADS] [CrossRef] [Google Scholar]
- Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C. St. Cyr, M. Guhathakurta, and E. Christian, Space Sci. Rev., 136, 5, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Kahler, S.W., and D.F. Webb, V arc interplanetary coronal mass ejections observed with the solar mass ejection imager, JGR, 112, 1, DOI: 10.1029/2007JA012358, 2007. [CrossRef] [Google Scholar]
- Kilpua, E., M. Mierla, L. Rodriguez, A.N. Zhukov, N. Srivastava, and M. West, Estimating travel times of coronal mass ejections to 1 AU using multi-spacecraft coronagraph data, Sol. Phys., 279, 477–496, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Kim, R.-S., N. Gopalswamy, Y.-J. Moon, K.-S. Cho, and S. Yashiro, Magnetic field strength in the upper solar corona using white-light shock structures surrounding coronal mass ejections, Astrophys. J., 746, 118, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Kleimann, J., 4pi Models of CMEs and ICMEs, arXiv e-prints, 2012. [Google Scholar]
- Kliem, B., and T. Török, Torus instability, Phys. Rev. Lett., 96, 255002, 2006. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Klimchuk, J.A., Theory of coronal mass ejections, in: Geophys. Monograph Series, 125, Space Weather, edited by P., Song, H.J. Singer, and G.L. Siscoe, (AGU), 143, 2001. [Google Scholar]
- Klimchuk, J.A., Sol. Phys., 234, 41, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Klimchuk, J.A., S. Patsourakos, and P. J. Cargill, Astrophys. J., 682, 1351, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Ko, Y.-K., G.A. Doschek, H.P. Warren, and P.R. Young, Astrophys. J., 697, 1956, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Kozarev, K.A., K.E. Korreck, V.V. Lobzin, M.A. Weber, and N.A. Schwadron, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations: implications for particle production, Astrophys. J., 733, L25, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Krall, J., J. Chen, and R. Santoro, Astrophys. J., 539, 964, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Kretzschmar, M., J. Lilensten, and J. Aboudarham, Variability of the EUV quiet Sun emission and reference spectrum using SUMER, A&A, 419, 345–356, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kretzschmar, M., T. Dudok de Wit, J. Lilensten, J.-F. Hochedez, J. Aboudarham, P.-O. Amblard, F. Auchère, and S. Moussaoui, Solar EUV/FUV irradiance variations: analysis and observational strategy, Acta Geophys., 57, 42–51, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Krivova, N.A., S.K. Solanki, and L. Floyd, Reconstruction of solar UV irradiance in cycle 23, A&A, 452, 631–639, 2006. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kubo, M., T. Shimizu, and B.W. Lites, The evolution of vector magnetic fields in an emerging flux region, Astrophys. J., 595, 465–482, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Kucera, T.A., and E. Landi, Astrophys. J., 673, 611, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- LaBonte, B. J., M. K. Georgoulis, and D. M. Rust, Astrophys. J., 671, 955, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Labrosse, N., P. Heinzel, J. Vial, et al., arXiv e-prints, 2010. [Google Scholar]
- Lean, J.L., H.P. Warren, J.T. Mariska, and J. Bishop, A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather, J. Geophys. Res. (Space Phys.), 108, 1059, 2003. [CrossRef] [Google Scholar]
- Lean, J., G. Rottman, J. Harder, and G. Kopp, SORCE contributions to new understanding of global change and solar variability, Sol. Phys., 230, 27–53, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock, Astrophys. J.S, 158, 38–67, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Lepping, R.P., L.F. Burlaga, and J.A. Jones, Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11957–11965, 1990. [NASA ADS] [CrossRef] [Google Scholar]
- Li, T., J. Zhang, H. Zhao, and S. Yang, Astrophys. J., 720, 144, 2010. [CrossRef] [Google Scholar]
- Li, T., J. Zhang, H. Zhao, and S. Yang, Astrophys. J., 739 (1), 43, 2011. [CrossRef] [Google Scholar]
- Li, T., J. Zhang, S. Yang, and W. Liu, SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global EUV wave with solar coronal structures, Astrophys. J., 746, 13, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Liewer, P.C., E.M. de Jong, J.R. Hall, R.A. Howard, W.T. Thompson, J.L. Culhane, L. Bone, and L. van Driel-Gesztelyi, Sol. Phys., 256, 57–58, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Lin, J., and T.G. Forbes, Effects of reconnection on the coronal mass ejection process, J. Geophys. Res., 105, 2375–2392, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Lin, J., T.G. Forbes, P.A. Isenberg, and P. Demoulin, The effect of curvature on flux-rope models of coronal mass ejections, Astrophys. J., 504, 1006, 1998. [NASA ADS] [CrossRef] [Google Scholar]
- Lin, Y., S.F. Martin, and O. Engvold, in: Astronomical Society of the Pacific Conference Series, Vol. 383, Subsurface and Atmospheric Influences on Solar Activity, Edited by R., Howe, R.W. Komm, K.S. Balasubramaniam, and G.J.D. Petrie, 383, 235, 2008. [Google Scholar]
- Liu, Y.C.-M., M. Opher, O. Cohen, P.C. Liewer, and T.I. Gombosi, A simulation of a coronal mass ejection propagation and shock evolution in the lower solar corona, Astrophys. J., 680, 757–763, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Liu, W., N.V. Nitta, C.J. Schrijver, A.M. Title, and T.D. Tarbell, First SDO AIA observations of a global coronal EUV “Wave”: multiple components and “Ripples”, Astrophys. J., 723, L53–L59, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Liu, Y., J.G. Luhmann, S.D. Bale, and R.P. Lin, Solar source and heliospheric consequences of the 2010 april 3 coronal mass ejection: a comprehensive view, Astrophys. J., 734, 84, 2011. [CrossRef] [Google Scholar]
- Lopez, F.M., Extensin Espacial de CMEs Segn Imgenes Polarizadas de STEREO/COR1, Bach Thesis, Universidad Nacional de San Juan, Argentina, 104 pp, 2012. [Google Scholar]
- Low, B.C., Solar activity and the corona, Sol. Phys., 167, 217–265, 1996. [CrossRef] [Google Scholar]
- Lugaz, N., A. Vourlidas, and I.I. Roussev, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction, Ann. Geophys., 27, 3479–3488, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz, N., I.I. Roussev, and T.I. Gombosi, Determining CME parameters by fitting heliospheric observations: Numerical investigation of the accuracy of the methods, Adv. Space Res., 48, 292–299, 2011. [CrossRef] [Google Scholar]
- Lynch, B.J., S.K. Antiochos, C.R. DeVore, J.G. Luhmann, and T.H. Zurbuchen, Topological evolution of a fast magnetic breakout CME in three dimensions, Astrophys. J., 683, 1192–1206, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Ma, S., J.C. Raymond, L. Golub, J. Lin, H. Chen, P. Grigis, P. Testa, and D. Long, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA, Astrophys. J., 738, 160, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- MacNeice, P., S.K. Antiochos, A. Phillips, et al., A numerical study of the breakout model for coronal mass ejection initiation, Astrophys. J., 614, 1028–1041, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- MacQueen, R.M., and R.R. Fisher, Sol. Phys., 89, 89, 1983. [NASA ADS] [CrossRef] [Google Scholar]
- MacTaggart, D., Flux emergence within mature solar active regions, A&A, 531, A108, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Manchester, W.B. IV, T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev, K.G. Powell, J. Kóta, G. Tóth, and T.H. Zurbuchen, Coronal mass ejection shock and sheath structures relevant to particle acceleration, Astrophys. J., 622, 1225–1239, 2005. [CrossRef] [Google Scholar]
- Manoharan, P.K., and A. Mujiber Rahman, J. Atmos. Sol. Terr. Phys., 73, 671, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Martens, P.C.H., C.C. Kankelborg, and T.E. Berger, Astrophys. J., 537, 471, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Martin, S.F., Sol. Phys., 182, 107, 1998. [NASA ADS] [CrossRef] [Google Scholar]
- Martin, S.F., Adv. Space Res., 32, 1883, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Martínez González, M.J., and L.R. Bellot Rubio, Emergence of small-scale magnetic loops through the quiet solar atmosphere, Astrophys. J., 700, 1391–1403, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods, The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys. Res. Lett., 38, 13802, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Messerotti, M., F. Zuccarello, S.L. Guglielmino, V. Bothmer, J. Lilensten, G. Noci, M. Storini, and H. Lundstedt, Space Sci. Rev., 147, 121, 2009. [CrossRef] [Google Scholar]
- Mierla, M., J. Davila, W. Thompson, B. Inhester, N. Srivastava, M. Kramar, O.C. StCyr, G. Stenborg, and R.A. Howard, A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images, Sol. Phys., 252, 385–396, 2008. [CrossRef] [Google Scholar]
- Mierla, M., B. Inhester, C. Marque, L. Rodriguez, S. Gissot, A. Zhukov, D. Berghmans, and J. Davila, On 3D reconstruction of coronal mass ejections: I. Method description and application to SECCHI-COR data, Sol. Phys., 259, 123–141, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Mierla, M., B. Inhester, A. Antunes, Y. Boursier, J.P. Byrne, et al., On the 3-D reconstruction of coronal mass ejections using coronagraph data, Ann. Geophys., 28, 203–215, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Mierla, M., I. Chifu, B. Inhester, L. Rodriguez, and A. Zhukov, Low polarised emission from the core of coronal mass ejections, A&A, 530, L1–L4, DOI: 10.1051/0004-6361/201016295, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Mikic, Z., and J.A. Linker, Disruption of coronal magnetic field arcades, Astrophys. J., 430, 898–912, 1994. [NASA ADS] [CrossRef] [Google Scholar]
- Moon, Y.-J., G.S. Choe, H. Wang, et al., Astrophys. J., 581, 694, 2002. [NASA ADS] [CrossRef] [Google Scholar]
- Moran, T.G., and J.M. Davila, Three-dimensional polarimetric imaging of coronal mass ejections, Science, 305, 66–70, 2004. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Moreno-Insertis, F., K. Galsgaard, and I. Ugarte-Urra, Hinode Observations and Three-dimensional Computer Modeling, Astrophys. J., 673, L211–L214, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Möstl, C., M. Temmer, T. Rollett, C.J. Farrugia, Y. Liu, A.M. Veronig, M. Leitner, and H.K. Biernat, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010, GeoRL, 37, L24103, 2010. [Google Scholar]
- Ng, C.K., and D.V. Reames, Shock acceleration of solar energetic protons: the first 10 minutes, Astrophys. J., 686, L123–L126, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- November, L.J., and G.W. Simon, Precise proper-motion measurement of solar granulation, Astrophys. J., 333, 427, 1988. [NASA ADS] [CrossRef] [Google Scholar]
- Ofman, L., and B.J. Thompson, SDO/AIA observation of Kelvin-Helmholtz instability in the solar corona, Astrophys. J. Lett., 734, id L11, 2011. [Google Scholar]
- Oliver, R., Space Sci. Rev., 39, 2009. [Google Scholar]
- Ontiveros, V., and A. Vourlidas, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations, Astrophys. J., 693, 267–275, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Panasenco, O., S.F. Martin, A.D. Joshi, and N. Srivastava, Rolling motion in erupting prominences observed by STEREO, J. Atmos. Sol. Terr. Phys., 73, 1129–1137, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Parenti, S., and J.-C. Vial, A&A, 469, 1109, 2007. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Parenti, S., and P.R. Young, A&A, 492, 857, 2008. [CrossRef] [EDP Sciences] [Google Scholar]
- Parenti, S., J.-C. Vial, and P. Lemaire, Sol. Phys., 220, 61, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Parenti, S., P. Lemaire, and J Vial, A&A, 443, 685, 2005a. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Parenti, S., J.-C. Vial, and P. Lemaire, A&A, 443, 679, 2005b. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Parenti, S., E. Buchlin, P.J. Cargill, S. Galtier, and J.-C. Vial, 651, 1219, 2006. [Google Scholar]
- Parenti, S., F. Reale, and K.K. Reeves, A&A, 517, A41, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Parenti, S., B. Schmieder, P. Heinzel, and L. Golub, On the nature of prominence emission observed by SDO/AIA, Astrophys. J., 754, A66, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Pariat, E., P. Démoulin, and M.A. Berger, Photospheric flux density of magnetic helicity, A&A, 439, 1191, 2005. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Park, S.H., J. Lee, G.S. Choe, J. Chae, H. Jeong, G. Yang, J. Jing, and H. Wang, 686, 1379, 2008. [Google Scholar]
- Park, S.H., J. Chae, and H. Wang, Astrophys. J., 718, 43, 2010. [CrossRef] [Google Scholar]
- Patsourakos, S., and A. Vourlidas, On the nature and genesis of EUV Waves: a synthesis of observations from SOHO, STEREO, SDO, and hinode, arXiv e-prints, http://arxiv.org/abs/1203.1135, 2012. [Google Scholar]
- Pick, M., T.G. Forbes, G. Mann, H.V. Cane, J. Chen, et al., Multi-wavelength observations of CMEs and associated phenomena. Report of Working Group F, Space Sci. Rev., 123, 341–382, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Pomoell, J., and R. Vainio, Influence of solar wind heating formulations on the properties of shocks in the corona, Astrophys. J., 745, 151, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Pomoell, J., R. Vainio, and R. Kissmann, MHD simulation of the evolution of shock structures in the solar corona: implications for coronal shock acceleration, Astrophys. Space Sci. Trans., 7, 387–394, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Porter, L.J., and J.A. Klimchuk, Astrophys. J., 454, 499, 1995. [NASA ADS] [CrossRef] [Google Scholar]
- Priest, E.R., Astrophys. J., 328, 848, 1988. [NASA ADS] [CrossRef] [Google Scholar]
- Raadu, M.A., J.M. Malherbe, B. Schmieder, and P. Mein, Sol. Phys., 109, 59, 1987. [CrossRef] [Google Scholar]
- Rachmeler, L.A., C.E. DeForest, and C.C. Kankelborg, Reconnectionless CME eruption: putting the aly-sturrock conjecture to rest 2009, Astrophys. J., 693, 1431, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Reale, F., Living Rev. Sol. Phys., 7, 5, 2010. [Google Scholar]
- Reale, F., S. Parenti, K.K. Reeves, et al., Science, 318, 1582, 2007. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Reale, F., P. Testa, J.A. Klimchuk, and S. Parenti, Astrophys. J., 698, 756, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Reames, D.V., Particle acceleration at the Sun and in the heliosphere, Space Sci. Rev., 90, 413–491, 1999. [Google Scholar]
- Robbrecht, E., and D. Berghmans, Automated recognition of coronal mass ejections (CMEs) in near-real-time data, A&A, 425, 1097–1106, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Robbrecht, E., D. Berghmans, and R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? Astrophys. J., 691, 1222–1234, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Romano, P., and F. Zuccarello, Flare occurrence and the spatial distribution of the magnetic helicity flux, A&A, 535, A1, 2012. [Google Scholar]
- Romano, P., E. Pariat, M. Sicari, and F. Zuccarello, A solar eruption triggered by the interaction between two magnetic flux systems with opposite magnetic helicity, A&A, 525, A13, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Romano, P., F. Zuccarello, S. Poedts, A. Soenen, and F.P. Zuccarello, Magnetic helicity and active filament configuration, A&A, 506, 895, 2009. [CrossRef] [EDP Sciences] [Google Scholar]
- Rouillard, A.P., D. Odstrcil, N.R. Sheeley, A. Tylka, A. Vourlidas, et al., Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks, Astrophys. J., 735, ID 7, 2011. [CrossRef] [Google Scholar]
- Roussev, I.I., T.G. Forbes, T.I. Gombosi, et al., A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium, Astrophys. J., 588, L45–L48, 2003. [CrossRef] [Google Scholar]
- Roussev, I.I., I.V. Sokolov, T.G. Forbes, T.I. Gombosi, M.A. Lee, and J.I. Sakai, A numerical model of a coronal mass ejection: shock development with implications for the acceleration of GeV protons, Astrophys. J., 605, L73–L76, 2004. [CrossRef] [Google Scholar]
- Sainz Dalda, A., S. Vargas Domínguez, and T.D. Tarbell, Magnetic topology of a naked sunspot: is it really naked? Astrophys. J., 746, L13, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Sandroos, A., and R. Vainio, Particle acceleration at shocks propagating in inhomogeneous magnetic fields, A&A, 455, 685–695, 2006. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Sandroos, A., and R. Vainio, Reacceleration of flare ions in coronal and interplanetary shock waves, Astrophys. J. Suppl., 181, 183–196, 2009a. [NASA ADS] [CrossRef] [Google Scholar]
- Sandroos, A., and R. Vainio, Diffusive shock acceleration to relativistic energies in the solar corona, A&A, 507, L21–L24, 2009b. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schmieder, B., M.A. Raadu, and J.E. Wiik, A&A, 252, 353, 1991. [Google Scholar]
- Schmieder, B., C. Delannée, D.Y. Yong, J.C. Vial, and M. Madjarska, A&A, 358, 728, 2000. [Google Scholar]
- Schmutz, W., A. Fehlmann, G. Hüsen, P. Meindl, R. Winkler, et al., The PREMOS/PICARD instrument calibration, Metrologia, 46, S202–S206, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver, C.J., A.W. Sandman, M.J. Aschwanden, and M.L. De Rosa, Astrophys. J., 615, 512, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver, C.J., C. Elmore, B. Kliem, T. Török, and A.M. Title, Astrophys. J., 674, 586–595, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Schuck, P.W., Local correlation tracking and the magnetic induction equation, Astrophys. J., 632, L53, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Seaton, D.B., M. Mierla, D. Berghmans, A.N. Zhukov, and L. Dolla, Astrophys. J., 727, L10, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Selwa, M., S. Poedts, and C.R. DeVore, Dome-shaped EUV waves from rotating active regions, Astrophys. J., 747, L21, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Shapiro, A.I., W. Schmutz, M. Schoell, M. Haberreiter, and E. Rozanov, NLTE solar irradiance modeling with the COSI code, A&A, 517, A48, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Sheeley, N.R., J.H. Walters, Y.-M. Wang, and R.A. Howard, Continuous tracking of coronal outflows: two kinds of coronal mass ejections, J. Geophys. Res., 104, 24739–24768, 1999. [CrossRef] [Google Scholar]
- Smyrli, A., F. Zuccarello, P. Romano, F.P. Zuccarello, S.L. Guglielmino, D. Spadaro, A.W. Hood, and D. Mackay, Trend of photospheric magnetic helicity flux in active regions generating halo coronal mass ejections, A&A, 521, A56, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Solanki, S.K., Sunspots: an overview, A&A Review, 11, 153–286, 2003. [NASA ADS] [CrossRef] [Google Scholar]
- Spadaro, D., S. Billotta, L. Contarino, P. Romano, and F. Zuccarello, AFS dynamic evolution during the emergence of an active region, A&A, 425, 309–319, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Srivastava, N., and A. Ambastha, Ap&SS, 262, 29, 1998. [CrossRef] [Google Scholar]
- Srivastava, N., A. Ambastha, and A. Bhatnagar, Sol. Phys., 133, 339, 1991. [CrossRef] [Google Scholar]
- Srivastava, N., R. Schwenn, B. Inhester, G. Stenborg, and B. Podlipnik, Space Sci. Rev., 87, 303, 1999. [CrossRef] [Google Scholar]
- Srivastava, N., R. Schwenn, B. Inhester, S.F. Martin, and Y. Hanaoka, Astrophys. J., 534, 468, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Sterling, A.C., and R.L. Moore, Astrophys. J., 602, 1024, 2004a. [NASA ADS] [CrossRef] [Google Scholar]
- Sterling, A.C., and R.L. Moore, Astrophys. J., 613, 1221, 2004b. [NASA ADS] [CrossRef] [Google Scholar]
- Sterling, A.C., and R.L. Moore, Astrophys. J., 630, 1148, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Sterling, A.C., L.K. Harra, and R.L. Moore, Astrophys. J., 669, 1359, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Sturrock, P.A., Maximum energy of semi-infinite magnetic field configurations, Astrophys. J., 380, 655–659, 1991. [NASA ADS] [CrossRef] [Google Scholar]
- Su, Y., V. Surges, A. van Ballegooijen, E. DeLuca, and L. Golub, Observations and magnetic field modeling of the flare/coronal mass ejection event on 2010 April 8, Astrophys. J., 734, id 53, 2011. [CrossRef] [Google Scholar]
- Tandberg-Hanssen, E., S.F. Martin, and R.T. Hansen, Sol. Phys., 65, 357, 1980. [CrossRef] [Google Scholar]
- Temmer, M., A.M. Veronig, E.P. Kontar, S. Krucker, and B. Vršnak, Astrophys. J., 712, 1410, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Temmer, M., T. Rollett, C. Mostl, A. Veronig, B. Vršnak Bojan, and D. Odstrcil, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections, Astrophys. J., 743, CiteID 101, 2011. [CrossRef] [Google Scholar]
- Teriaca, L., D. Banerjee, and J.G. Doyle, A&A, 349, 636, 1999. [Google Scholar]
- Teriaca, L., D. Banerjee, A. Falchi, J.G. Doyle, and M.S. Madjarska, A&A, 427, 1065, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Thernisien, A., R.A. Howard, and A. Vourlidas, Modeling of flux rope coronal mass ejections, Astrophys. J., 652, 763–773, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Thernisien, A., A. Vourlidas, and R.A. Howard, Forward modelling of coronal mass ejections using stereo-secchi data, Sol. Phys., 256, 1110, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Thernisien, A., A. Vourlidas, and R.A. Howard, CME reconstruction: pre-STEREO and STEREO era, JASTP, 73, 1156–1165, 2011. [Google Scholar]
- Thompson, W.T., Strong rotation of an erupting quiescent polar crown prominence, JASTP, 73, 1138, 171147, 2011. [CrossRef] [Google Scholar]
- Tian, L., D. Alexander, Y. Liu, and J. Yang, Magnetic twist and writhe of δ active regions, Sol. Phys., 229, 63–77, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Titov, V.S., and P. Démoulin, Basic topology of twisted magnetic configurations in solar flares, A&A, 351, 707–720, 1999. [Google Scholar]
- Tripathi, D., H. Isobe, and H.E. Mason, A&A, 453, 1111, 2006. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Tripathi, D., H.E. Mason, G. Del Zanna, and P.R. Young, A&A, 518, A42, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Tripathi, D., J.A. Klimchuk, and H.E. Mason, Astrophys. J., 740, 111, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Torsti, J., L.G. Kocharov, M. Teittinen, and B.J. Thompson, Injection of ≳ 10 MeV protons in association with a coronal moreton wave, Astrophys. J., 510, 460–465, 1999. [NASA ADS] [CrossRef] [Google Scholar]
- Tylka, A.J., and M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events, Astrophys. J., 646, 1319–1334, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Tylka, A.J., C.M.S. Cohen, W.F. Dietrich, M.A. Lee, C.G. Maclennan, R.A. Mewaldt, C.K. Ng, and D.V. Reames, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events, Astrophys. J., 625, 474–495, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Török, T., and B. Kliem, The evolution of twisting coronal magnetic flux tubes, A&A, 406, 1043–1059, 2003. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Török, T., and B. Kliem, Numerical simulations of fast and slow coronal mass ejections, Astron. Nachr., 328, 743, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Török, T., and B. Kliem, Confined and ejective eruptions of kink-unstable flux ropes, Astrophys. J., 630, L97–L100, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Török, T., B. Kliem, and V.S. Titov, Ideal kink instability of a magnetic loop equilibrium, A&A, 413, L27–L30, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ugarte-Urra, I., H.P. Warren, and D.H. Brooks, Astrophys. J., 695, 642, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Ugarte-Urra, I., A.R. Winebarger, and H.P. Warren, Astrophys. J., 643, 1245, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Unruh, Y.C., W.T. Ball, and N.A. Krivova, Solar irradiance models and measurements: a comparison in the 220 nm to 240 nm wavelength band, ArXiv e-prints, 2011. [Google Scholar]
- Vaiana, G.S., and R. Rosner, ARA&A, 16, 393, 1978. [NASA ADS] [CrossRef] [Google Scholar]
- Vainio, R., and T. Laitinen, Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence, Astrophys. J., 658, 622–630, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- van Ballegooijen, A.A., and P.C.H. Martens, Formation and eruption of solar prominences, Astrophys. J., 343, 971–984, 1989. [CrossRef] [Google Scholar]
- van der Holst, B., W. Manchester, I.V. Sokolov, et al., Breakout coronal mass ejection or streamer blowout: the bugle effect, Astrophys. J., 693, 1178–1187, 2009. [CrossRef] [Google Scholar]
- van Driel-Gesztelyi, L., Emergence and loss of magnetic flux on the solar surface, in SOLMAG 2002, Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference, edited by H., Sawaya-Lacoste 505, Noordwijk, Netherlands, ESA Publications Division, 113–120, 2002. [Google Scholar]
- Veronig, A.M., N. Muhr, I.W. Kienreich, M. Temmer, and B. Vršnak, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave, Astrophys. J., 716, L57–L62, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Vial, J.-C., K. Olivier, A.A. Philippon, A. Vourlidas, and V. Yurchyshyn, A&A, 541, A108, 2012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Viall, N.M., and J.A. Klimchuk, Astrophys. J., 738, 24, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Vieira, L.E., T. Dudok de Wit, and M. Kretzschmar, Short-term forecast of the total and spectral solar irradiance, submitted, 2012. [Google Scholar]
- Vourlidas, A., and Russell A. Howard, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations, Astrophys. J., 642, 1216–1221, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Vourlidas, A., and V. Ontiveros, X., Ao, and G.Z.R. Burrows, A review of coronagraphic observations of shocks driven by coronal mass ejections, Am. Inst. Phys. Conf. Ser., 1183, 139–146, 2009. [Google Scholar]
- Vourlidas, A., B. Sanchez Andrade-Nuño, E. Landi, S. Patsourakos, L. Teriaca, U. Schühle, C.M. Korendyke, and I. Nestoras, SoPh, 261, 53, 2010. [Google Scholar]
- Vršnak, B., Deceleration of coronal mass ejections, Sol. Phys., 202, 173–189, 2001. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak, B., and E.W. Cliver, Origin of coronal shock waves. Invited review, Sol. Phys., 253, 215–235, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak, B., V. Ruždjak, B. Rompolt, Sol. Phys., 136, 151, 1991. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak, B., V. Ruždjak, B. Rompolt, D. Roša, and P. Zlobec, Sol. Phys., 146, 147, 1993. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak, B., T. Žic, T.V. Falkenberg, et al., A&A, 512, A43, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Warmuth, A., Large-scale waves in the solar corona, Adv. Space Res., 45, 527–536, 2010. [NASA ADS] [CrossRef] [Google Scholar]
- Warren, H.P., and A.R. Winebarger, Astrophys. J., 666, 1245, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Warren, H.P., J.T. Mariska, and J. Lean, A new reference spectrum for the EUV irradiance of the quiet Sun 1. Emission measure formulation, J. Geophys. Res., 103, 12077–12090, 1998a. [NASA ADS] [CrossRef] [Google Scholar]
- Warren, H.P., J.T. Mariska, and J. Lean, A new reference spectrum for the EUV irradiance of the quiet Sun 2, Comparisons with observations and previous models, 103, 12091–12102, 1998b. [Google Scholar]
- Warren, H.P., I. Ugarte-Urra, G.A. Doschek, D.H. Brooks, and D.R. Williams, Astrophys. J., 686, L131, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Warren, H.P., D.H. Brooks, and A.R. Winebarger, Astrophys. J., 734, 90, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Webb, D.F., and T.A. Howard, LRSP, 9, 3, 2012. [Google Scholar]
- Weber, M.A., J.T. Schmelz, E.E. DeLuca, and J.K. Roames, Astrophys. J., 635, L101, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Winebarger, A.R., and H.P. Warren, Astrophys. J., 626, 543, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Winebarger, A.R., J.T. Schmelz, H.P. Warren, S.H. Saar, and V.L. Kashyap, Astrophys. J., 740, 2, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Wolfson, R., and B. Dlamini, Cross-field currents: an energy source for coronal mass ejections? Astrophys. J., 483, 961, 1997. [CrossRef] [Google Scholar]
- Wood, B.E., C.-C. Wu, R.A. Howard, D.G. Socker, and A.P. Rouillard, Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24, Astrophys. J., 729, ID 70, 2011. [CrossRef] [Google Scholar]
- Woods, T.N., F.G. Eparvier, R. Hock, A.R. Jones, D. Woodraska, et al., Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, Instrument Design, Data Products, and Model Developments, Jan, 3, 2010. [Google Scholar]
- Xie, H., D. Odstrcil, L. Mays, O.C. St. Cyr, N. Gopalswamy, and H. Cremades, Understanding shock dynamics in the inner heliosphere with modeling and Type II radio data: The 2010-04-03 event, J. Geophys. Res. A: Space Phys., 117, id A04105, 2012. [Google Scholar]
- Yashiro, S., N. Gopalswamy, G. Michalek, et al., J. Geophys. Res., 109, 7105, 2004. [NASA ADS] [CrossRef] [Google Scholar]
- Yokoyama, T., and K. Shibata, Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun, Nature, 375, 42–44, 1995. [NASA ADS] [CrossRef] [Google Scholar]
- Yurchyshyn, V., Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds, Astrophys. J., 675, L49–L52, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang, J., and K.P. Dere, Astrophys. J., 649, 1100, 2006. [NASA ADS] [CrossRef] [Google Scholar]
- Zuccarello, F., V. Battiato, L. Contarino, P. Romano, D. Spadaro, and L. Vlahos, AFS dynamics in a short-lived active region, A&A, 442, 661–671, 2005. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zuccarello, F., V. Battiato, L. Contarino, S. Guglielmino, P. Romano, and D. Spadaro, A C-level flare observed in an arch filament system: reconnection between pre-existing and emerging field lines? A&A, 488, 1117–1123, 2008. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zuccarello, F.P., A. Soenen, S. Poedts, F. Zuccarello, and C. Jacobs, Initiation of coronal mass ejections by magnetic flux emergence in the framework of the breakout model, Astrophys. J., 689, L157–L160, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Zuccarello, F., P. Romano, S.L. Guglielmino, M. Centrone, S. Criscuoli, I. Ermolli, F. Berrilli, and D. Del Moro, Observation of bipolar moving magnetic features streaming out from a naked spot, A&A, 500, L5–L8, 2009a. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zuccarello, F., S.L. Guglielmino, V. Battiato, L. Contarino, D. Spadaro, and P. Romano, Emergence and evolution of active and ephemeral regions: comparison between observations and models, Acta Geophys., 57, 15–23, 2009b. [NASA ADS] [CrossRef] [Google Scholar]
- Zuccarello, F.P., C. Jacobs, A. Soenen, et al., Modelling the initiation of coronal mass ejections: magnetic flux emergence versus shearing motions, A&A, 507, 441–452, 2009. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zuccarello, F.P., P. Romano, F. Zuccarello, and S. Poedts, Magnetic helicity balance during a filament eruption that occurred in active region NOAA 9682, A&A, 530, 36–530, 2011. [Google Scholar]
- Zuccarello, F.P., A. Bemporad, C. Jacobs, et al., Astrophys. J., 744, 66, 2012a. [NASA ADS] [CrossRef] [Google Scholar]
- Zuccarello, F.P., Z. Meliani, and S. Poedts, Numerical modeling of the initiation of coronal mass ejections in active region NOAA 9415, Astrophys. J., 758, 117, 2012b. [NASA ADS] [CrossRef] [Google Scholar]
- Zuccarello, F.P., P. Romano, F. Zuccarello, and S. Poedts, The role of photospheric shearing motions in a filament eruption related to the 2010 April 3 coronal mass ejection, A&A, 537, A28, 2012c. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.