Open Access
Issue
J. Space Weather Space Clim.
Volume 3, 2013
Article Number A32
Number of page(s) 17
DOI https://doi.org/10.1051/swsc/2013055
Published online 21 November 2013
  • Adams, W.G., Comparison of simultaneous magnetic disturbance at several observatories, Phil. Trans. London (A), 183, 131, 1892. [CrossRef] [Google Scholar]
  • Akasofu, S.-I., and S. Chapman, On the asymmetric development of magnetic storm field in low and middle latitudes, Planet. Space Sci., 12, 607, 1964. [CrossRef] [Google Scholar]
  • Akasofu, S.-I., and S. Chapman, Solar Terrestrial Physics, Oxford University Press, Oxford, 1972. [Google Scholar]
  • Barlow, J.L., Chapter 9: Numerical Aspects of Solving Linear Least Squares Problems. In C.R. Rao, Handbook of statistics – computational statistics, Amsterdam, London, New York, Tokyo, North Holland, p. 920, ISBN: 0-444-88096-8, 1993. [Google Scholar]
  • Bartels, J., N.H. Heck, and H.F. Johnston, The three-hour range index measuring geomagnetic activity, Geophys. Res., 44, 411–454, 1939. [NASA ADS] [CrossRef] [Google Scholar]
  • Björck, Åke., Numerical methods for least squares problems, SIAM, Philadelphia, 1996. [CrossRef] [Google Scholar]
  • Bossi, A., J.E. Dind, J.M. Frisson, U. Khoudiakov, H.F. Light, D.V. Narke, Y. Tournier, and J. Verdon, An international survey on failures in large power transformers in service, Cigré Electra, 88, 21–48, 1983. [Google Scholar]
  • Broun, J.A., On the horizontal force of the Earth’s magnetism, Proc. Roy. Soc. Edinburgh, 22, 511, 1861. [CrossRef] [Google Scholar]
  • Cahill, L.J.., Jr, Inflation of the inner magnetosphere during a magnetic storm, J. Geophys. Res., 71, 4505, 1966. [CrossRef] [Google Scholar]
  • Campbell, W.H., Introduction to Geomagnetic Fields, Cambridge University Press, 2002. [Google Scholar]
  • Carlowicz, M., and R. Lopez, Storms from the Sun, National Academies Press, 2002. [Google Scholar]
  • Chambers, J.M., and T.J. Hastie, Statistical Models in S. Wadsworth & Brooks/Cole, 1992. [Google Scholar]
  • Chapman, S., The electric current-systems of magnetic storms, Terr. Mag. Atomos. Phys., 40, 349, 1935. [CrossRef] [Google Scholar]
  • Chapman, S., and V.C.A. Ferraro, A new theory of magnetic storms, Nature, 129, 3169, 1930. [Google Scholar]
  • Chapman, S., The morphology of magnetic storms: an extension of the analysis of Ds, the disturbance local-time inequality, Annali di Geofisica, 5, 481, 1952. [Google Scholar]
  • Coetzee, G., and C.T. Gaunt, Transformer failures in regions incorrectly considered to have low GIC-risk, APAN (All Partners Access Network), US Department of Defence, https://community.apan.org/space_weather_task_force/m/mediagallery/107001.aspx, 2007. [Google Scholar]
  • Cohen, J., P. Cohen, S.G. West, and L.S. Aiken, Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd ed. Lawrence Erlbaum Associates, Hillsdale, NJ, 2003. [Google Scholar]
  • Crooker, N.U., and G.L. Siscoe, Birkeland currents as the cause of the low-latitude asymmetric disturbance field, J. Geophys. Res., 86, 11201, 1981. [CrossRef] [Google Scholar]
  • Daniel, W.W., and J.C. Terrell, Business Statistics for Management & Economics, Houghton Mifflin, 1995. [Google Scholar]
  • Draper, N.R., and H. Smith, Applied Regression Analysis, Wiley Series in Probability and Statistics, 3rd ed., ISBN: 978-0-471-17082-2, 1998. [Google Scholar]
  • Dessler, A.J., W.E. Francis, and E.N. Parker, Geomagnetic storm sudden – commencement rise times, J. Geophys. Res., 65, 9, 1960. [CrossRef] [Google Scholar]
  • Frank, L.A., Direct detection of asymmetric increases of extraterrestrial ring proton intensities in the outer radiation zone, J. Geophys. Res., 75, 1263, 1970. [CrossRef] [Google Scholar]
  • Fukushima, N., and Y. Kamide, Partial ring current models for world geomagnetic disturbances, Rev. Geophys. Space Phys., 11, 795, 1973. [CrossRef] [Google Scholar]
  • Gaunt, C.T., and J. Kohen, Geomagnetically Induced Currents at Mid-Latitudes, Proceedings of the XXVIIth URSI General Assembly in Maastricht, see http://www.ursi.org/Proceedings/ProcGA02/papers/p1065.pdf, 2009. [Google Scholar]
  • Glicksberg, I., Measures Orthogonal to Algebras and Sets of Antisymmetry, Trans. Am. Math. Soc., 105 (3), 415–435, 1962. [CrossRef] [Google Scholar]
  • Goodall, C.R., Chapter 13: Computation using the QR decomposition. In C.R. Rao, Handbook of Statistics – Computational Statistics, Amsterdam, London, New York, Tokyo, North Holland, p. 852, ISBN: 0-444-88096-8, 1993. [Google Scholar]
  • Hamilton, D.C., G. Gloeckler, F.M. Ipavich, W. Stüdemann, B. Wilken, and G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93, 14343, 1988. [CrossRef] [Google Scholar]
  • Haymes, Robert C., Introduction to Space Science, Wiley & sons, 1971. [Google Scholar]
  • Hess, W.N., The Radiation Belt and Magnetosphere, Blaisdell Publishing Co, 1968. [Google Scholar]
  • Jeffreys, H., Weierstrass’s Theorem on Approximations by Polynomials, in Methods of Mathematical Physics, 3rd ed., Cambridge University Press, 1988. [Google Scholar]
  • Kallio, E., T.I. Pulkkinen, H.H.J. Koskinen, A. Viljanen, Loading-unloading processes in the nightside ionosphere, J. Geophys. Res., 27, 125, 2000. [Google Scholar]
  • Kamide, Y., and W. Baumjohann, Magnetosphere-ionosphere coupling, Physics and Chemistry in Space, 23, 112, 1993. [Google Scholar]
  • Kamide, Y., Geomagnetic Storms as a Dominant Component of Space Weather: Classic Picture and Recent Issues. In Space Storms and Space Weather Hazards, Nato Science Series, Ed. I. Daglis (Kluwer Academic Publishers), 43, 2001. [CrossRef] [Google Scholar]
  • Kaw, A., and E. Kalu, Numerical Methods with Applications (Chapter 6 deals with linear and non-linear regression), Florida University Press, p. 145, Paperback, ISBN: 978-0-578-05765-1, 2008. [Google Scholar]
  • Kennedy Jr, and J.E. Gentle, W.J., Statistical Computing, Marcel Dekker, 1980. [Google Scholar]
  • Kertz, W., Ein neues Mass für die Feldstärke des erdmagnetischen aquatorialen Ringstroms, Abh. Akad. Wiss. Göttingen Math. Phys., 2, 83, 1958. [Google Scholar]
  • Kertz, W., Ring current variations during the IGY, Ann. Int. Geophys., 35, 49, 1964. [Google Scholar]
  • Kivelson, M., and C. Russell, Introduction to Space Physics, Cambridge University Press, 1995. [Google Scholar]
  • Koen, J., and C.T. Gaunt, Disturbances in the Southern African power network due to geomagnetically induced currents, Cigré Session, Paper 36-206, Paris, 2002. [Google Scholar]
  • Langel, R.A., R.H. Estes, G.D. Mead, E.B. Fabiano, and E.R. Lancaster, Initial geomagnetic field model from Magsat vector data, Geophys. Res. Lett., 7, 793, 1980. [CrossRef] [Google Scholar]
  • Langel, R.A., J. Berbert, T. Jennings, and R. Horner. Magsat data processing: a report for investigators, NASA Technical Memorandum 82160, Goddard Space Flight Center, 1981 [Google Scholar]
  • Lehtinen, M., and R. Pirjola, Currents produced in earthed conductor networks by geomacnetically induced electric fields, Ann. Geophys., 3, 4, 1985. [Google Scholar]
  • Lindahl, S., Effects of geomagnetically induced currents on protection systems, Elforsk Report 03:34, Elforsk AB, Stockholm, Sweden [Google Scholar]
  • Mayaud, P.N., Derivation, Meaning, and Use of Geomagnetic Indices, Geophysical Monograph 22, American Geophysical Union, Washington, DC, 1980. [CrossRef] [Google Scholar]
  • Minhas, M.S.A., J.P. Reynders, and P.J. De Klerk, Failures in power system transformers and appropriate monitoring techniques, Proc. 11th International Symposium on High Voltage Engineering (Conf. Publ. No 467), London, Vol. 1, pp. 94–97, 1999. [Google Scholar]
  • Moos, N.A.F., Magnetic observations made at the government observatory, Bombay, for the period 1846 to 1905, and their discussion, Part II: the phenomenon and its discussion, Bombay, 1910. [Google Scholar]
  • Nievergelt, Y., Total least squares: state-of-the-art regression in numerical analysis, SIAM Rev., 36 (2), 258–264, 1994. [CrossRef] [Google Scholar]
  • Parks, George K., Physics of Space Plasmas “1”: An Introduction, Addison-Wesley, 1991. [Google Scholar]
  • Pedhazur, E., Multiple Regression in Behavioral Research: Explanation and Prediction, 2nd ed., Holt, Rinehart and Winston, New York, 1982. [Google Scholar]
  • Pindyck, R.S., and D.L. Rubinfeld, Econometric Models and Economic Forecasts, ch. 1 (Introduction including appendices on Σ operators & derivation of parameter estimations) & Appendix 4.3 (multiple regression in matrix form), 4th ed., 1998. [Google Scholar]
  • Price, P.R., Geomagnetically induced current effects on transformers, IEEE Trans. Power Delivery, 17 (4), 1002–1008, 2002. [CrossRef] [Google Scholar]
  • Pulkkinen, A., Geomagnetic Induction During Highly Disturbed Space Weather Conditions: Studies of Ground Effects, Finnish Meteorological Institut, Helsinki, Finland, 2003. [Google Scholar]
  • Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov, Modelling of space weather effects on pipelines, J. Appl. Geophys., 48, 233, 2001a. [CrossRef] [Google Scholar]
  • Pulkkinen, A., A. Viljanen, K. Pajunpaa, and R. Pirjola, Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network, J. Appl. Geophys., 48, 219, 2001b. [CrossRef] [Google Scholar]
  • Pulkkinen, A., O. Amm, A. Viljanen, and BEAR Working Group, Ionospheric equivalent current distributions determined with the method of spherical elementary current systems, J. Geophys. Res., 108, DOI: 10.1029/2001JA005085, 2003a. [Google Scholar]
  • Pulkkinen, A., A. Thomson, E. Clarke, and A. McKay, April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents, Ann. Geophys., 21, 709, 2003b. [CrossRef] [Google Scholar]
  • Pulkkinen, A., O. Amm, A. Viljanen, and BEAR Working Group, Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method, Earth, Planets Space, 55, 117, 2003c. [Google Scholar]
  • Pulkkinen, A., R. Pirjola, and A. Viljanen, Statistics of extreme geomagnetically induced current events, Space Weather, 6, S07001, 2008. [CrossRef] [Google Scholar]
  • Pulkkinen, A., M. Hesse, H. Shahid, L. Van der Zel, B. Damsky, F. Policelli, D. Fugate, W. Jacobs, and E. Creamer, Solar shield: forecasting and mitigating space weather effects on high-voltage power transmission systems, Nat Hazards, 53, 333–345, 2010. [CrossRef] [Google Scholar]
  • Pulkkinen, A., E. Bernaneu, J. Eichner, C. Beggan, and A. Thomson, Generation geomagnetically induced current scenarios, Submitted, 2012. [Google Scholar]
  • Rangarajan, G.K., Indices of Geomagnetic Activity. In Geomagnetism, Ed. J.A. Jacobs (Academic Press, London), p. 323, 1989. [Google Scholar]
  • Rostoker, G., Geomagnetic Indices, Rev. Geophys. Space Phys., 10, 157, 1972. [CrossRef] [Google Scholar]
  • Rudin, W., Principles of Mathematical Analysis, 3rd. ed., McGraw-Hill, 1976. [Google Scholar]
  • Schrijver, C.J., and S.D. Mitchell, Disturbances in the US electric grid associated with geomagnetic activity, J. Space Weather Space Clim., 3, A19, http://dx.doi.org/10.1051/swsc/2013041, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Shapiro, S.S., and M.B. Wilk, An analysis of variance test for normality (complete samples), Biometrica, 52 (3–4), 591–611, 1965. [Google Scholar]
  • Shelley, E.O., Heavy ions in the magnetosphere, Space Sci. Rev., 23, 465, 1979. [CrossRef] [Google Scholar]
  • Smith, P.H., N.K. Bewtra, and R.A. Hoffman, Inference of the ring current ion composition by means of charge exchange decay, J. Geophys. Res., 86, 34–70, 1981. [Google Scholar]
  • Snedecor, G.W., and W.G. Cochran, Statistical Methods, 8th ed., Iowa State University Press, 1989. [Google Scholar]
  • Sugiura, M., Dst Index, http://wdc.kugi.kyoto-u.ac.jp/dstdir/, 1991. [Google Scholar]
  • Sugiura, M., and S. Hendricks, Provisional hourly values of equatorial Dst for 1961, 1962 and 1963, NASA Tech. note D-4047, 1967. [Google Scholar]
  • Takasu, N., T. Oshi, F. Miyawaki, S. Saito, and Y. Fujiwara, An experimental analysis of DC excitation of transformers by geomagnetically induced currents, IEEE Trans. Power Delivery, 9, 1173–1179, 1994. [CrossRef] [Google Scholar]
  • Tascione, Thomas.F., Introduction to the Space Environment, 2nd ed., Kreiger, Malabar, FL, 1994. [Google Scholar]
  • Tsunomura, S., Characteristics of geomagnetic sudden commencement observed in middle and low latitudes, Earth, Planets, Space, 50, 1998. [Google Scholar]
  • Tsurutani, B., and W. Gonzalez, The interplanetary causes of magnetic storms: a review, Magnetic Storms, AGU Geophysical Monograph, 98, 1997. [CrossRef] [Google Scholar]
  • United States National Academy of Sciences Report, Severe Space Weather Events – Understanding Societal and Economic Impacts Workshop Report, http://www.nap.edu/catalog.php?record_id=12507, 2008. [Google Scholar]
  • United Kingdom Royal Academy of Engineering, Extreme Space Weather: impacts on engineered systems and infrastructure, http://www.raeng.org.uk/news/publications/list/reports/Space_Weather_Full_Report_Final.PDF, 2013. [Google Scholar]
  • Van Allen James, A., Origins of Magnetospheric Physics, Smithsonian Institution Press, 1983. [Google Scholar]
  • Venables, W.N., and D.M. Smith, An Introduction to R (On line Notes on R), http://cran.r-project.org/doc/manuals/R-intro.pdf, 2013. [Google Scholar]
  • Vestine, E.H., L. Laporte, I. Lange, and W.E. Scott, The geomagnetic field, its description and analysis, Carnegie Institution of Washington Publication, Washington DC, p. 580, 1947. [Google Scholar]
  • Viljanen, A., A. Pulkkinen, O. Amm, R. Pirjola, and T. Korja, Fast computation of the geoelectric field using method of elementary current system and planar earth models, Ann. Geophys., 22, 101–113, 2004. [CrossRef] [Google Scholar]
  • Walt, M., Introduction to Geomagnetically Trapped Radiation, Cambridge University Press, New York, NY, 1994. [CrossRef] [Google Scholar]
  • Williams, D.J., Ring Current Composition and Sources. In Dynamics of the Magnetosphere, Ed. S.-I., Akasofu (D. Reidel Publishing Company), p. 407, 1980. [Google Scholar]
  • Williams, D.J., Ring current composition and sources: an update, Planet. Space Sci., 29, 1195, 1981. [CrossRef] [Google Scholar]
  • Zois, I.P., A new invariant for σ-models, Commun. Math. Phys., 209, 757–783, 2009. [Google Scholar]
  • Zois, I.P., 18 Lectures on K-Theory, arxiv.org 1008.1346, 2010. [Google Scholar]
  • Zois, I.P., Solar activity and transformer failures in the Greek national electric grid I: Linear phenomena, talk given during the 8th European Space Weather Week-Session 3A, GIC Advances and Developing Mitigation Procedures, 28 Nov–2 Dec, Namur, Belgium, 2011. [Google Scholar]
  • Zois, I.P., The Effects of solar Activity onto Transformers in the Greek National Electric Grid (Part II: Non-linear phenomena), 9th European Space Weather Week, 5–9 Nov, Brussels, Belgium, Académie Royale de Belgique, http://www.stce.be/esww9/program/poster1.php, 2012. [Google Scholar]
  • Zois, I.P., Modeling the effects of solar activity on the Greek National Electric Grid, International Conference on Mathematical Modeling in Physical Sciences, 1–5 September, Prague, Czech Republic, http://www.icmsquare.net/index.php?option=com_sessions&view=program&Itemid=85, 2013a. [Google Scholar]
  • Zois, I.P., Solar Activity and Transformer Failures in Greece (3): New Results on non Linear Regression Analysis, Developing Societal Resilience Against Space Weather 10th European Space Weather Week, 18–22 Nov, Antwerp, Belgium, http://www.stce.be/esww10/sessions/02resilience.php, 2013b. [Google Scholar]
  • Zois, I.P., Solar Activity and Transformer Failures in the Greek National Electric Grid, [arXiv: 1307.1149], 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.