J. Space Weather Space Clim.
Volume 3, 2013
EU-FP7 funded space weather projects
Article Number A23
Number of page(s) 13
Published online 26 June 2013
  • Berube, D., M.B. Moldwin, and J.M. Weygand, An automated method for the detection of field line resonance frequencies using ground magnetometer techniques, J. Geophys. Res., 108, 1348, 2003. [CrossRef] [Google Scholar]
  • Baker, D.N., S. Kanekal, X. Li, S.P. Monk, J. Goldstein, and J.L. Burch, An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003, Nature, 432, 879–880, 2004. [Google Scholar]
  • Berube, D., M.B. Moldwin, and M. Ahn, Computing magnetospheric mass density from field line resonances in a realistic magnetic field geometry, J. Geophys. Res., 111, A08206, 2006. [CrossRef] [Google Scholar]
  • Bust, G.S., and G. Crowley, Tracking of polar cap ionospheric patches using data assimilation, J. Geophys. Res., 112, A05307, 2007. [CrossRef] [Google Scholar]
  • Bust, G., T. Garner, and T.L. Gaussiran, Ionospheric data assimilation three dimensional (IDA3D): a global, multi-sensor, electron density specification algorithm, J. Geophys. Res., 109, A11313, 2004. [CrossRef] [Google Scholar]
  • Chi, P.J., C.T. Russell, S. Musman, W.K. Peterson, G. Le, V. Angelopoulos, G.D. Reeves, M.B. Moldwin, and F.K. Chun, Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at L = 2, Geophys. Res. Lett., 27, 633–636, 2000. [CrossRef] [Google Scholar]
  • Clilverd, M.A., C.J. Rodger, N.R. Thomson, J.B. Brundel, T. Ulich, J. Lichtenberger, N. Cobbett, A.B. Collier, F.W. Menk, A. Seppälä, P.T. Verronen, and E. Turunen, Remote sensing space weather events: Antarctic-Arctic radiation-belt (dynamic) deposition-VLF Atmospheric Research Konsortium network, Space Weather, 7, S04001, 2009. [CrossRef] [Google Scholar]
  • Collier, A.B., S. Bremner, J. Lichtenberger, J.R. Downs, C.J. Rodger, P. Steinbach, and G. McDowell, Global lightning distribution and whistlers observed at Dunedin, New Zealand, Ann. Geophys., 28, 499–513, 2010. [CrossRef] [Google Scholar]
  • Darrouzet, F., J. De Keyser, and V. Pierrard, The Earth’s plasmasphere: a CLUSTER and IMAGE perspective, Springer, New York,, 2009. [Google Scholar]
  • Dent, Z.C., I.R. Mann, J. Goldstein, F.W. Menk, and L.G. Ozeke, Plasmaspheric depletion, refilling, and plasmapause dynamics: a coordinated ground-based and IMAGE satellite study, J. Geophys. Res., 111, A03205, 2006. [CrossRef] [Google Scholar]
  • Evensen, G., The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn., 53 (4), 343–367, 2003. [Google Scholar]
  • Fok, M.C., J.U. Kozyra, A.F. Nagy, and T.E. Cravens, Lifetime of ring current particles due to coulomb collisions in the plasmasphere, J. Geophys. Res., 96 (A5), 7861–7867, 1991. [CrossRef] [Google Scholar]
  • Fok, M.C., R.A. Wolf, R.W. Spiro, and T.E. Moore, Comprehensive computational model of Earth’s ring current, J. Geophys. Res., 106 (A5), 8417–8424, 2001. [CrossRef] [Google Scholar]
  • Friedel, R.H.W., G.D. Reeves, and T. Obara, Relativistic electron dynamics in the inner magneto sphere – a review, J. Atmos. Terr. Phys., 64, 265–282, 2002. [Google Scholar]
  • Fuller-Rowell, T., E. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson, and A.R. Jacobson, US-TEC: a new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data, Radio Sci., 41, RS6003, 2006. [CrossRef] [Google Scholar]
  • Green, A.W., E.W. Worthington, L.N. Baransky, E.N. Fedorov, N.A. Kurneva, V.A. Pilipenko, D.N. Shvetzov, A.A. Bektemirov, and G.V. Philipov, Alfvén field line resonances at low latitudes (L = 1.5), J. Geophys. Res., 98, 15693–15699, 1993. [CrossRef] [Google Scholar]
  • Heilig, B., S. Lotz, J. Vero, P. Sutcliffe, K.P.J. Reda, and T. Raita, Empirically modelled pc3 activity based on solar wind parameters, Ann. Geophys., 28, 1703–1722, 2010. [CrossRef] [Google Scholar]
  • Jorgensen, A., D. Ober, J. Koller, and R.H.W. Friedel, Specification of the earth’s plasmasphere with data assimilation, Adv. Space Res., 47, 2152–2161, 2011. [CrossRef] [Google Scholar]
  • Koller, J., Y. Chen, G.D. Reeves, R.H. Friedel, T.E. Cayton, and J.A. Vrugt, Identifying the radiation belt source region by data assimilation, J. Geophys. Res., 112, A06244, 2007. [CrossRef] [Google Scholar]
  • Kondrashov, D., D.Y. Shprits, M. Ghil, and R. Thornet, A Kalman filter technique to estimate relativistic electron lifetimes in the outer radiation belt, J. Geophys. Res., 112, A10227, 2007. [CrossRef] [Google Scholar]
  • Lam, M.M., R.B. Horne, N.P. Meredith, S.A. Glauert, T. Moffat-Griffin, and J.C. Green, Origin of energetic electron precipitation >30 keV into the atmosphere, J. Geophys. Res., 115, A00F08, 2010. [CrossRef] [Google Scholar]
  • Lichtenberger, J., A new whistler inversion method, J. Geophys. Res., 114, A07222, 2009. [CrossRef] [Google Scholar]
  • Lichtenberger, J., C. Ferencz, L. Bodnár, D. Hamar, and P. Steinbach, Automatic whistler detector and analyzer system: automatic whistler detector, J. Geophys. Res., 113, A12201, 2008. [CrossRef] [Google Scholar]
  • Lichtenberger, J., C. Ferencz, D. Hamar, P. Steinbach, C.J. Rodger, M.A. Clilverd, and A.B. Collier, The automatic whistler detector and analyzer (AWDA) system: implementation of the analyzer algorithm, J. Geophys. Res., 115, A12214, 2010. [CrossRef] [Google Scholar]
  • Meredith, N.P., R.B. Horne, A. Sicard-Piet, D. Boscher, K.H. Yearby, W. Li, and R.M. Thorne, Global model of lower band and upper band chorus from multiple satellite observations, J. Geophys. Res., 117, A10225, 2012. [CrossRef] [Google Scholar]
  • Moldwin, M.B., L. Downward, H.K. Rassoul, R. Amin, and R.R. Anderson, A new model of the location of the plasmapause: CRRES results, J. Geophys. Res., 107, 1339–1348, 2002. [CrossRef] [Google Scholar]
  • Nakano, S., G. Ueno, Y. Ebihara, M.-C. Fok, S. Ohtani, P.C. Brandt, D.G. Mitchell, K. Keika, and T. Higuchi, A method for estimating the ring current structure and the electric potential distribution using energetic neutral atom data assimilation, J. Geophys. Res., 113, A05208, 2008. [CrossRef] [Google Scholar]
  • Obana, Y., F.W. Menk, M.D. Sciffer, and C.L. Waters, Quarter-wave modes of standing Alfvén waves detected by cross-phase analysis, J. Geophys. Res., 113, A08203, 2008. [CrossRef] [Google Scholar]
  • Obana, Y., F.W. Menk, and I. Yoshikawa, Plasma refilling rates for L = 2.3–3.8 flux tubes, J. Geophys. Res., 115, A03204, 2010. [CrossRef] [Google Scholar]
  • Ober, D.M., and J.L. Horwitz, Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events, J. Geophys. Res., 102, 14595–14602, 1997. [CrossRef] [Google Scholar]
  • Ozeke, L.G., and I.R. Mann, High and low ionospheric conductivity standing 478 guided Alfvén wave eigenfrequencies: a model for plasma density mapping, J. Geophys. Res., 115, A03204, 2005. [Google Scholar]
  • Park, C.G., Whistler observations of the interchange of ionization between the ionosphere and the protonosphere, J. Geophys. Res., 75, 4249–4260, 1970. [Google Scholar]
  • Park, C.G., Methods to determine electron concentrations in the magnetosphere from nose whistlers, Technical report 3454-1, Radioscience Laboratory, Stanford Electronics Laboratories, Stanford University, Stanford, California, 1972. [Google Scholar]
  • Rodger, C.J., M.A. Clilverd, N.R. Thomson, R.J. Gamble, A. Seppälä, E. Turunen, N.P. Meredith, M. Parrot, J.A. Sauvaud, and J.-J. Berthelier, Radiation belt electron precipitation into the atmosphere: recovery from a geomagnetic storm, J. Geophys. Res., 112, A11307, 2007. [CrossRef] [Google Scholar]
  • Rodger, C.J., M.A. Clilverd, A. Seppälä, N.R. Thomson, R.J. Gamble, M. Parrot, J.A. Sauvaud, and T. Ulich, Radiation belt electron precipitation into the atmosphere: recovery from a geomagnetic storm, J. Geophys. Res., 115, A11320, 2010. [CrossRef] [Google Scholar]
  • Reeves, G.D., Y. Chen, G.S. Cunningham, R.W.H. Friedel, M.G. Henderson, V.K. Jordanova, J. Koller, S.K. Morley, M.F. Thomsen, and S. Zaharia, Dynamic radiation environment assimilation model: DREAM, Space Weather, 10, S03006, 2012. [CrossRef] [Google Scholar]
  • Rodger, C.J., M.A. Clilverd, A.J. Kavanagh, C.E.J. Watt, P.T. Verronen, and T. Raita, Contrasting the responses of three different ground-based instruments to energetic electron precipitation, Radio Sci., 47 (2), RS2021, 2012. [CrossRef] [Google Scholar]
  • Sazhin, S.S., M. Hayakawa, and K. Bullough, Whistler diagnostics of magnetospheric parameters: a review, Ann. Geophys., 10, 293–308, 1992. [Google Scholar]
  • Singer, H.J., D.J. Southwood, R.J. Walker, and M.G. Kivelson, Alfvén wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res., 86, 4589–4596, 1981. [CrossRef] [Google Scholar]
  • Tsyganenko, N.A., A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure, J. Geophys. Res., 107 (A8), SMP 12-1–SMP12-5, 2002a. [Google Scholar]
  • Tsyganenko, N.A., A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations, J. Geophys. Res., 107 (A8), SMP 10-1–SMP 10-17, 2002b. [Google Scholar]
  • Vellante, M., and M. Förster, Inference of the magnetospheric plasma mass density from field line resonances: a test using a plasmasphere model, J. Geophys. Res., 111, A11204, 2006. [CrossRef] [Google Scholar]
  • Vellante, M., H. Lühr, T.L. Zhang, V. Wesztergom, U. Villante, M. DeLauretis, A. Piancatelli, M. Rother, K. Schwingenschuh, W. Koren, and W. Magnes, Ground/satellite signatures of field line resonance: a test of theoretical predictions, J. Geophys. Res., 109, A06210, 2004. [CrossRef] [Google Scholar]
  • Waters, C.L., F.W. Menk, and B.J. Fraser, The resonance structure of low latitude pc3 geomagnetic pulsations, Geophys. Res. Lett., 18, 2283–2296, 1991. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.