J. Space Weather Space Clim.
Volume 3, 2013
EU-FP7 funded space weather projects
Article Number A20
Number of page(s) 14
Published online 16 May 2013
  • Abel, B., and R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes, J. Geophys. Res. 103 (A2), 2385–2396, DOI: DOI: 10.1029/97JA02919, 1998. [CrossRef]
  • Albert, J.M., N.P. Meredith, and R.B. Horne, Three-dimensional diffusion simulation of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 114, A09214, DOI: 10.1029/2009JA014336, 2009. [CrossRef]
  • Amariutei, O.A., and N.Yu. Ganushkina, On the prediction of the auroral westward electrojet index, Ann. Geophys., 30, 841–847, 2012. [CrossRef]
  • Aran, A., B. Sanahuja, and D. Lario, Fluxes and fluences of SEP events derived from SOLPENCO, Ann. Geophys., 23, 3047–3053, 2005. [NASA ADS] [CrossRef]
  • Aran, A., B. Sanahuja, and D. Lario, SOLPENCO: A solar particle engineering code, Adv. Space Res., 37, 1240–1246, 2006. [NASA ADS] [CrossRef]
  • Aran, A., Synthesis of proton flux profiles of SEP events associated with interplanetary shocks. The tool SOLPENCO. PhD Thesis, University of Barcelona,, 2007.
  • Aran, A., D. Lario, B. Sanahuja, R.G. Marsden, M. Dryer, C.D. Fry, and S.M.P. McKenna-Lawlor, Modeling and forecasting solar energetic particle events at Mars: the event on 6 March 1989 A&A, 469, 1123–1134, 2007. [NASA ADS] [CrossRef] [EDP Sciences]
  • Aran, A., C. Jacobs, B. Sanahuja, D. Lario, S. Poedts, R. Rodríguez-Gasèn, and R.G. Marsden, A shock-and-particle model for the prediction of gradual proton events up to ~200 MeV, A&A, submitted, 2012.
  • Åsnes, A., M.G.G.T. Taylor, A.L. Borg, B. Lavraud, R.W.H. Friedel, C.P. Escoubet, H. Laakso, P. Daly, and A.N. Fazakerley, Multispacecraft observation of electron beam in reconnection region, J. Geophys. Res., 113, A07S30, DOI: 10.1029/2007JA012770, 2008. [CrossRef]
  • Baker, D.N., S.G. Kanekal, R.B. Horne, N.P. Meredith, and S.A. Glauert. Low-altitude measurements of 2–6 MeV electron trapping lifetimes at 1.5 ≤ L ≤ 2.5, Geophys. Res. Lett., 34, L20110, DOI: 10.1029/2007GL031007, 2007. [CrossRef]
  • Battarbee, M., T. Laitinen, and R. Vainio, Heavy-ion acceleration and self-generated waves in coronal shocks, A&A, 535, A34, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Belian, R.D., G.R. Gisler, T. Cayton, and R. Christensen, High-Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989, J. Geophys. Res., 97, 16897, 1992. [CrossRef]
  • Bell, A.R., The acceleration of cosmic rays in shock fronts. I, Mon. Not. R. Astron. Soc., 182, 147–156, 1978.
  • Beutier, T., and D. Boscher, A three-dimensional analysis of the electron radiation belt by the Salammbô code, J. Geophys. Res., 100, 14853, 1995. [CrossRef]
  • Borovsky, J.E., M.F. Thomsen, and R.C. Elphic, The driving of the plasma sheet by the solar wind, J. Geophys. Res., 103, 17617–17639, 1998. [CrossRef]
  • Bortnik, J., and R.M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons, J. Atmos. Sol. Terr. Phys, 69, 378–386, DOI: 10.1016/j.jastp.2006.05.030, 2007. [CrossRef]
  • Boscher, D., S. Bourdarie, P. O’Brien, and T. Guild, ONERA-DESP library V4.2, Toulouse-France, 2004–2008.
  • Boyle, C., P. Reiff, and M. Hairston, Empirical polar cap potentials, J. Geophys. Res., 102 (A1), 111–125, 1997. [CrossRef]
  • Brautigam, D.H., and J.M. Albert, Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105 (A1), 291–309, DOI: 10.1029/1999JA900344, 2000. [CrossRef]
  • Burin des Roziers, E., X. Li, D.N. Baker, T.A. Fritz, R. Friedel, T.G. Onsager, and I. Dandouras, Energetic plasma sheet electrons and their relationship with the solar wind: A cluster and geotail study, J. Geophys. Res., 114, A02220, DOI: 10.1029/2008JA013696, 2009. [CrossRef]
  • Carpenter, D.L., and R.R. Anderson, An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097–1108, DOI: 10.1029/91JA01548, 1992. [CrossRef]
  • Chen, M.W., and M. Schulz, Simulations of storm time diffuse aurora with plasmasheet electrons in strong pitch angle diffusion, J. Geophys. Res., 106 (A2), 1873–1886, DOI: 10.1029/2000JA000161, 2001. [CrossRef]
  • Christon, S.P., D.J. Williams, D.G. Mitchell, L.A. Frank, and C.Y. Huang, Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions, J. Geophys. Res., 94 (A10), 13409–13424, DOI: 10.1029/JA094iA10p13409, 1989. [NASA ADS] [CrossRef]
  • Christon, S.P., D.J. Williams, D.G. Mitchell, C.Y. Huang, and L.A. Frank, Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions, J. Geophys. Res., 96, 1–22, 1991. [NASA ADS] [CrossRef]
  • Elkington, S.R., M.K. Hudson, and A.A. Chan, Acceleration of relativistic electrons via drift resonant interactions with toroidal-mode Pc-5 ULF oscillations, Geophys. Res. Lett., 26, 3273–3276, 1999. [CrossRef]
  • Falthammar, C.-G., Effects of time dependent electric fields on geomagnetically trapped radiation, J. Geophys. Res., 70, 2503–2516, 1965. [CrossRef]
  • Fok, M.-C., R.B. Horne, N.P. Meredith, and S.A. Glauert, Radiation Belt Environment Model: Application to space weather nowcasting, J. Geophys. Res., 113, A03S08, DOI: 10.1029/2007JA012558, 2008. [CrossRef]
  • Ganushkina, N.Yu., T.I. Pulkkinen, and T. Fritz, Role of substorm-associated impulsive electric fields in the ring current development during storms, Ann. Geophys., 23, 579–591, 2005. [CrossRef]
  • Ganushkina, N., T.I. Pulkkinen, M. Liemohn, and A. Milillo, Evolution of the proton ring current energy distribution during April 21–25, 2001 storm, J. Geophys. Res., 111, A11S08, DOI: 10.1029/2006JA011609, 2006. [CrossRef]
  • Ganushkina, N.Yu., M.W. Liemohn, and T.I. Pulkkinen, Storm-time ring current: model-dependent results, Ann. Geophys., 30, 177–202, 2012a. [CrossRef]
  • Ganushkina, N.Yu., O.A. Amariutei, Y.Y. Shprits, and M.W. Liemohn, Transport of the plasma sheet electrons to the geostationary distances, J. Geophys. Res., under revision, 2012b.
  • Glauert, S.A., and R.B. Horne, Calculation of pitch angle and energy diffusion coefficients with the PADIE code, J. Geophys. Res., 110, A04206, 2005. [CrossRef]
  • Glauert, S.A., R.B. Horne, and N.P. Meredith, Three dimensional radiation belt simulations using the BAS Radiation Belt Model with statistical wave models, J. Geophys. Res., in preparation, 2012.
  • Heras, A.M., B. Sanahuja, D. Lario, Z.K. Smith, T. Detman, and M. Dryer, Three low-energy particle events: Modeling the influence of the parent interplanetary shock, Astrophys. J., 445, 497–508, 1995. [NASA ADS] [CrossRef]
  • Horne, R.B., and R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25, 3011–3014, 1998. [CrossRef]
  • Horne, R.B., R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, and R.R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, DOI: 10.1029/2004JA010811, 2005a. [CrossRef]
  • Horne, R.B., R.M. Thorne, Y.Y. Shprits, N.P. Meredith, S.A. Glauert, et al., Wave acceleration of electrons in the Van Allen radiation belts, Nature, 437, 227–230, DOI: 10.1038/nature03939, 2005b. [CrossRef]
  • Horne, R.B., S.A. Glauert, N.P. Meredith, D. Boscher, V. Maget, D. Heynderickx, and D. Pitchford, Space Weather effects on satellites and forecasting the Earth's electron radiation belts with SPACECAST, J. Space Weather, submitted, DOI: 10.1002/swe.20023, 2013.
  • Jacobs, C., and S. Poedts, A polytropic model for the solar wind, Adv. Space Res., 48, 1958–1966, 2011. [NASA ADS] [CrossRef]
  • Lam, M.M., R.B. Horne, N.P. Meredith, and S.A. Glauert, Modeling the effects of radial diffusion and plasmaspheric hiss on outer radiation belt electrons, Geophys. Res. Lett., 34, L20112, DOI: 10.1029/2007GL031598, 2007. [CrossRef]
  • Lario, D., B. Sanahuja, and A.M. Heras, Energetic particle events: Efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators, Astrophys. J., 509, 415–434, 1998. [NASA ADS] [CrossRef]
  • Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks, J. Geophys. Res., 88, 6109–6119, 1983. [NASA ADS] [CrossRef]
  • Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock, Astrophys. J. Suppl. Ser., 158, 38–67, 2005. [NASA ADS] [CrossRef]
  • Lejosne, S., D. Boscher, V. Maget, and G. Rolland, Bounce-averaged approach to radial diffusion modeling: From a new derivation of the instantaneous rate of change of the third adiabatic invariant to the characterization of the radial diffusion process, J. Geophys. Res., 117, A08231, DOI: 10.1029/2012JA018011, 2012. [CrossRef]
  • Li, G., G.P. Zank, M.I. Desai, G.M. Mason, and W.K.M. Rice, Particle acceleration and transport at CME-driven shocks: A case study, In: Particle acceleration in astrophysical plasmas: geospace and beyond, Geophysical Monograph, 156. Ed. by D., Gallagher, et al., American Geophysical Union, Washington DC, 2005. [CrossRef]
  • Li, W., R.M. Thorne, V. Angelopoulos, J. Bortnik, C.M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, and W. Magnes, Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res. Lett., 36, L09104, DOI: 10.1029/2009GL037595, 2009. [CrossRef]
  • Li, W., R.M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulos, L. Chen, J.P. McFadden, and J.W. Bonnell, Global distributions of suprathermal electrons for access into the plasmasphere, J. Geophys. Res., 115, A00J10, DOI: 10.1029/2010JA015687, 2010. [CrossRef]
  • Li, W., J. Bortnik, R.M. Thorne, and V. Angelopoulos, Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations, J. Geophys. Res., 116, A12205, DOI: 10.1029/2011JA017035, 2011. [CrossRef]
  • Lorentzen, K.R., J.B. Blake, U.S. Inan, and J. Bortnik, Observations of relativistic electron microbursts in association with VLF chorus, J. Geophys. Res., 106, 6017–6027, DOI: 10.1029/2000JA003018, 2001. [CrossRef]
  • Luhmann, J.G., S.A. Ledvina, D. Odstrcil, M.J. Owens, X.-P. Zhao, Y. Liu, and P. Riley, Cone model-based SEP event calculations for applications to multipoint observations, Adv. Space Res., 46, 1–21, 2010. [CrossRef]
  • Lyons, L.R., and R.M. Thorne, Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78, 2142–2149, DOI: 10.1029/JA078i013p02142, 1973. [CrossRef]
  • Mann, I.R., T.P. O’Brien, and D. Milling, Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: solar cycle dependence, J. Atmos. Sol. Terr. Phys., 66, 187–198, 2004. [CrossRef]
  • Meredith, N.P., R.B. Horne, and R.R. Anderson, Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies, J. Geophys. Res., 106, 13165–13178, 2001. [CrossRef]
  • Meredith, N.P., R.B. Horne, R.M. Thorne, and R.R. Anderson, Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt, Geophys. Res. Lett., 30 (16), 1871, DOI: 10.1029/2003GL017698, 2003. [CrossRef]
  • Meredith, N.P., R.B. Horne, R.M. Thorne, D. Summers, and R.R. Anderson, Substorm dependence of plasmaspheric hiss, J. Geophys. Res., 109, A06209, DOI: 10.1029/2004JA010387, 2004. [CrossRef]
  • Meredith, N.P., R.B. Horne, S.A. Glauert, R.M. Thorne, D. Summers, J.M. Albert, and R.R. Anderson, Energetic outer zone electron loss timescales during low geomagnetic activity, J. Geophys. Res., 111, A05212, DOI: 10.1029/2005JA011206, 2006. [CrossRef]
  • Meredith, N.P., R.B. Horne, S.A. Glauert, and R.R. Anderson, Slot region electron loss timescales due to plasmaspheric hiss and lightning generated whistlers, J. Geophys. Res., 112, A08214, DOI: 10.1029/2006JA012413, 2007. [CrossRef]
  • Meredith, N.P., R.B. Horne, S.A. Glauert, D.N. Baker, S.G. Kanekal, and J.M. Albert, Relativistic electron loss timescales in the slot region, J. Geophys. Res., 114, A03222, DOI: 10.1029/2008JA013889, 2009. [CrossRef]
  • Meredith, N.P., R.B. Horne, A. Sicard-Piet, D. Boscher, K.H. Yearby, W. Li, and R.M. Thorne, Global model of lower band and upper band chorus from multiple satellite observations, J. Geophys. Res., 117, A10225, DOI: 10.1029/2012JA017978, 2012. [CrossRef]
  • Nakamizo, A., T. Tanaka, Y. Kubo, S. Kamei, H. Shimazu, and H. Shinagawa, Development of the 3-D MHD model of the solar corona-solar wind combining system, J. Geophys. Res, 114, A07109, DOI: 10.1029/2008JA013844, 2009. [CrossRef]
  • NAP Report 2012, Committee on a Decadal Strategy for Solar and Space Physics (Heliophysics); Space Studies Board; Aeronautics and Space Engineering Board; Division of Earth and Physical Sciences; National Research Council, Solar and Space Physics: A Science for a Technological Society, The National Academies Press, Washington DC, USA, ISBN978-0-309-16248-3,, 2012.
  • Neergaard Parker, L., and G.P. Zank, Particle acceleration at quasi-parallel shock waves: theory and observations at 1 AU, Astrophys. J., 757, 97, 2012. [NASA ADS] [CrossRef]
  • O’Brien, T.P., M.D. Looper, and J.B. Blake, Quantification of relativistic electron microburst losses during the GEM storms, Geophys. Res. Lett., 31, L04802, DOI: 10.1029/2003GL018621, 2004. [CrossRef]
  • Olson, W.P., and K. Pfitzer, Magnetospheric magnetic field modelling annual scientific report, AFOSR Contract No. F44620-75-c-0033, 1977.
  • Pomoell, J., and R. Vainio, Influence of solar wind heating formulations on the properties of shocks in the Corona, Astrophys. J., 745, 151, DOI: 10.1088/0004-637X/745/2/151, 2012. [NASA ADS] [CrossRef]
  • Rodriguez, L., A.N. Zhukov, C. Cid, et al., Three frontside full halo coronal mass ejections with a nontypical geomagnetic response, Space Weather, 7, S06003, DOI: 10.1029/2008SW000453, 2009. [CrossRef]
  • Rodríguez-Gasén, R., A. Aran, B. Sanahuja, C. Jacobs, and S. Poedts, Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint, Adv. Space Res., 47, 2140–2151, 2011. [CrossRef]
  • Roederer, J.G., Dynamics of geomagnetically trapped radiation, Springer-Verlag, New York, 36, 1970.
  • Sandroos, A., and R. Vainio, Reacceleration of flare ions in coronal and interplanetary shock waves, Astrophys. J. Suppl. Ser., 181, 183–196, 2009. [NASA ADS] [CrossRef]
  • Satellite Industry Association, State of the Satellite Industry Report 2012,, 2012.
  • Schulz, M., and L.J. Lanzerotti, Particle diffusion in the radiation belts, Springer-Verlag, New York, 1974. [CrossRef]
  • Shprits, Y., D. Subbotin, B. Ni, R. Horne, D. Baker, and P. Cruce, Profound change of the near-Earth radiation environment caused by solar superstorms, Space Weather, 9, S08007, DOI: 10.1029/2011SW000662, 2011. [CrossRef]
  • Sokolov, I.V., I.I. Roussev, T.I. Gombosi, M.A. Lee, J. Kóta, T.G. Forbes, W.B. Manchester, and J.I. Sakai, A New Field Line Advection Model for solar particle acceleration, Astrophys. J. Lett., 616, L171–L174, 2004. [NASA ADS] [CrossRef]
  • Summers, D., B. Ni, and N.P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves, J. Geophys. Res., 112, A04207, DOI: 10.1029/2006JA011993, 2007. [CrossRef]
  • The Economist, High Frequency Trading, The Fast and the Furious, 25 February,, 2012.
  • Thorne, R.M., T.P. O’Brien, and Y.Y. Shprits, D. Summers, and R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms, J. Geophys. Res., 110, A09202, DOI: 10.1029/2004JA010882, 2005. [CrossRef]
  • Tsyganenko, N.A., Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 100, 5599–5612, 1995. [CrossRef]
  • Tsyganenko, N.A., and T. Mukai, Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 108 (A3), 1136, DOI: 10.1029/2002JA009707, 2003. [CrossRef]
  • Vainio, R., and R. Schlickeiser, Self-consistent Alfvén-wave transmission and test-particle acceleration at parallel shocks, A&A, 343, 303–311, 1999.
  • Vainio, R., and T. Laitinen, Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence, Astrophys. J., 658, 622–630, 2007. [NASA ADS] [CrossRef]
  • Vainio, R., and T. Laitinen, Simulations of coronal shock acceleration in self-generated turbulence, J. Atmos. Sol. Terr. Phys., 70, 467–474, 2008. [NASA ADS] [CrossRef]
  • Varotsou, A., D. Boscher, S. Bourdarie, R.B. Horne, S.A. Glauert, and N.P. Meredith, Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with Whistler-mode chorus waves, Geophys. Res. Lett., 32, L19106, DOI: 10.1029/2005GL023282, 2005. [CrossRef]
  • Varotsou, A., D. Boscher, S. Bourdarie, R.B. Horne, N.P. Meredith, S.A. Glauert, and R.H. Friedel, Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions, J. Geophys. Res., 113, A12212, DOI: 10.1029/2007JA01286, 2008. [CrossRef]
  • Vasyliunas, V.M., A Survey of Low-Energy Electrons in the Evening Sector of the Magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839–2852, DOI: 10.1029/JA073i009p02839, 1968. [NASA ADS] [CrossRef]
  • Verkhoglyadova, O.P., G. Li, G.P. Zank, Q. Hu, C.M.S. Cohen, R.A. Mewaldt, G.M. Mason, D.K. Haggerty, T.T. von Rosenvinge, and M.D. Looper, Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event, J. Geophys. Res., 115, A12103, DOI: 10.1029/2010JA015615, 2010. [NASA ADS] [CrossRef]
  • Webb, D.F., and J.H. Allen, Spacecraft and ground anomalies related to the October-November 2003 solar activity, Space Weather, 2, DOI: 10.1029/2004SW000075, 2004. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.