J. Space Weather Space Clim.
Volume 3, 2013
EU-FP7 funded space weather projects
Article Number A20
Number of page(s) 14
Published online 16 May 2013
  • Abel, B., and R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes, J. Geophys. Res. 103 (A2), 2385–2396, DOI: DOI: 10.1029/97JA02919, 1998. [CrossRef] [Google Scholar]
  • Albert, J.M., N.P. Meredith, and R.B. Horne, Three-dimensional diffusion simulation of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 114, A09214, DOI: 10.1029/2009JA014336, 2009. [CrossRef] [Google Scholar]
  • Amariutei, O.A., and N.Yu. Ganushkina, On the prediction of the auroral westward electrojet index, Ann. Geophys., 30, 841–847, 2012. [CrossRef] [Google Scholar]
  • Aran, A., B. Sanahuja, and D. Lario, Fluxes and fluences of SEP events derived from SOLPENCO, Ann. Geophys., 23, 3047–3053, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Aran, A., B. Sanahuja, and D. Lario, SOLPENCO: A solar particle engineering code, Adv. Space Res., 37, 1240–1246, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Aran, A., Synthesis of proton flux profiles of SEP events associated with interplanetary shocks. The tool SOLPENCO. PhD Thesis, University of Barcelona,, 2007. [Google Scholar]
  • Aran, A., D. Lario, B. Sanahuja, R.G. Marsden, M. Dryer, C.D. Fry, and S.M.P. McKenna-Lawlor, Modeling and forecasting solar energetic particle events at Mars: the event on 6 March 1989 A&A, 469, 1123–1134, 2007. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Aran, A., C. Jacobs, B. Sanahuja, D. Lario, S. Poedts, R. Rodríguez-Gasèn, and R.G. Marsden, A shock-and-particle model for the prediction of gradual proton events up to ~200 MeV, A&A, submitted, 2012. [Google Scholar]
  • Åsnes, A., M.G.G.T. Taylor, A.L. Borg, B. Lavraud, R.W.H. Friedel, C.P. Escoubet, H. Laakso, P. Daly, and A.N. Fazakerley, Multispacecraft observation of electron beam in reconnection region, J. Geophys. Res., 113, A07S30, DOI: 10.1029/2007JA012770, 2008. [CrossRef] [Google Scholar]
  • Baker, D.N., S.G. Kanekal, R.B. Horne, N.P. Meredith, and S.A. Glauert. Low-altitude measurements of 2–6 MeV electron trapping lifetimes at 1.5 ≤ L ≤ 2.5, Geophys. Res. Lett., 34, L20110, DOI: 10.1029/2007GL031007, 2007. [CrossRef] [Google Scholar]
  • Battarbee, M., T. Laitinen, and R. Vainio, Heavy-ion acceleration and self-generated waves in coronal shocks, A&A, 535, A34, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Belian, R.D., G.R. Gisler, T. Cayton, and R. Christensen, High-Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989, J. Geophys. Res., 97, 16897, 1992. [CrossRef] [Google Scholar]
  • Bell, A.R., The acceleration of cosmic rays in shock fronts. I, Mon. Not. R. Astron. Soc., 182, 147–156, 1978. [Google Scholar]
  • Beutier, T., and D. Boscher, A three-dimensional analysis of the electron radiation belt by the Salammbô code, J. Geophys. Res., 100, 14853, 1995. [Google Scholar]
  • Borovsky, J.E., M.F. Thomsen, and R.C. Elphic, The driving of the plasma sheet by the solar wind, J. Geophys. Res., 103, 17617–17639, 1998. [CrossRef] [Google Scholar]
  • Bortnik, J., and R.M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons, J. Atmos. Sol. Terr. Phys, 69, 378–386, DOI: 10.1016/j.jastp.2006.05.030, 2007. [CrossRef] [Google Scholar]
  • Boscher, D., S. Bourdarie, P. O’Brien, and T. Guild, ONERA-DESP library V4.2, Toulouse-France, 2004–2008. [Google Scholar]
  • Boyle, C., P. Reiff, and M. Hairston, Empirical polar cap potentials, J. Geophys. Res., 102 (A1), 111–125, 1997. [Google Scholar]
  • Brautigam, D.H., and J.M. Albert, Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105 (A1), 291–309, DOI: 10.1029/1999JA900344, 2000. [Google Scholar]
  • Burin des Roziers, E., X. Li, D.N. Baker, T.A. Fritz, R. Friedel, T.G. Onsager, and I. Dandouras, Energetic plasma sheet electrons and their relationship with the solar wind: A cluster and geotail study, J. Geophys. Res., 114, A02220, DOI: 10.1029/2008JA013696, 2009. [CrossRef] [Google Scholar]
  • Carpenter, D.L., and R.R. Anderson, An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097–1108, DOI: 10.1029/91JA01548, 1992. [Google Scholar]
  • Chen, M.W., and M. Schulz, Simulations of storm time diffuse aurora with plasmasheet electrons in strong pitch angle diffusion, J. Geophys. Res., 106 (A2), 1873–1886, DOI: 10.1029/2000JA000161, 2001. [CrossRef] [Google Scholar]
  • Christon, S.P., D.J. Williams, D.G. Mitchell, L.A. Frank, and C.Y. Huang, Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions, J. Geophys. Res., 94 (A10), 13409–13424, DOI: 10.1029/JA094iA10p13409, 1989. [NASA ADS] [CrossRef] [Google Scholar]
  • Christon, S.P., D.J. Williams, D.G. Mitchell, C.Y. Huang, and L.A. Frank, Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions, J. Geophys. Res., 96, 1–22, 1991. [NASA ADS] [CrossRef] [Google Scholar]
  • Elkington, S.R., M.K. Hudson, and A.A. Chan, Acceleration of relativistic electrons via drift resonant interactions with toroidal-mode Pc-5 ULF oscillations, Geophys. Res. Lett., 26, 3273–3276, 1999. [CrossRef] [Google Scholar]
  • Falthammar, C.-G., Effects of time dependent electric fields on geomagnetically trapped radiation, J. Geophys. Res., 70, 2503–2516, 1965. [CrossRef] [Google Scholar]
  • Fok, M.-C., R.B. Horne, N.P. Meredith, and S.A. Glauert, Radiation Belt Environment Model: Application to space weather nowcasting, J. Geophys. Res., 113, A03S08, DOI: 10.1029/2007JA012558, 2008. [CrossRef] [Google Scholar]
  • Ganushkina, N.Yu., T.I. Pulkkinen, and T. Fritz, Role of substorm-associated impulsive electric fields in the ring current development during storms, Ann. Geophys., 23, 579–591, 2005. [Google Scholar]
  • Ganushkina, N., T.I. Pulkkinen, M. Liemohn, and A. Milillo, Evolution of the proton ring current energy distribution during April 21–25, 2001 storm, J. Geophys. Res., 111, A11S08, DOI: 10.1029/2006JA011609, 2006. [CrossRef] [Google Scholar]
  • Ganushkina, N.Yu., M.W. Liemohn, and T.I. Pulkkinen, Storm-time ring current: model-dependent results, Ann. Geophys., 30, 177–202, 2012a. [Google Scholar]
  • Ganushkina, N.Yu., O.A. Amariutei, Y.Y. Shprits, and M.W. Liemohn, Transport of the plasma sheet electrons to the geostationary distances, J. Geophys. Res., under revision, 2012b. [Google Scholar]
  • Glauert, S.A., and R.B. Horne, Calculation of pitch angle and energy diffusion coefficients with the PADIE code, J. Geophys. Res., 110, A04206, 2005. [Google Scholar]
  • Glauert, S.A., R.B. Horne, and N.P. Meredith, Three dimensional radiation belt simulations using the BAS Radiation Belt Model with statistical wave models, J. Geophys. Res., in preparation, 2012. [Google Scholar]
  • Heras, A.M., B. Sanahuja, D. Lario, Z.K. Smith, T. Detman, and M. Dryer, Three low-energy particle events: Modeling the influence of the parent interplanetary shock, Astrophys. J., 445, 497–508, 1995. [Google Scholar]
  • Horne, R.B., and R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25, 3011–3014, 1998. [CrossRef] [Google Scholar]
  • Horne, R.B., R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, and R.R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, DOI: 10.1029/2004JA010811, 2005a. [CrossRef] [Google Scholar]
  • Horne, R.B., R.M. Thorne, Y.Y. Shprits, N.P. Meredith, S.A. Glauert, et al., Wave acceleration of electrons in the Van Allen radiation belts, Nature, 437, 227–230, DOI: 10.1038/nature03939, 2005b. [CrossRef] [Google Scholar]
  • Horne, R.B., S.A. Glauert, N.P. Meredith, D. Boscher, V. Maget, D. Heynderickx, and D. Pitchford, Space Weather effects on satellites and forecasting the Earth's electron radiation belts with SPACECAST, J. Space Weather, submitted, DOI: 10.1002/swe.20023, 2013. [Google Scholar]
  • Jacobs, C., and S. Poedts, A polytropic model for the solar wind, Adv. Space Res., 48, 1958–1966, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Lam, M.M., R.B. Horne, N.P. Meredith, and S.A. Glauert, Modeling the effects of radial diffusion and plasmaspheric hiss on outer radiation belt electrons, Geophys. Res. Lett., 34, L20112, DOI: 10.1029/2007GL031598, 2007. [CrossRef] [Google Scholar]
  • Lario, D., B. Sanahuja, and A.M. Heras, Energetic particle events: Efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators, Astrophys. J., 509, 415–434, 1998. [Google Scholar]
  • Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks, J. Geophys. Res., 88, 6109–6119, 1983. [NASA ADS] [CrossRef] [Google Scholar]
  • Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock, Astrophys. J. Suppl. Ser., 158, 38–67, 2005. [CrossRef] [Google Scholar]
  • Lejosne, S., D. Boscher, V. Maget, and G. Rolland, Bounce-averaged approach to radial diffusion modeling: From a new derivation of the instantaneous rate of change of the third adiabatic invariant to the characterization of the radial diffusion process, J. Geophys. Res., 117, A08231, DOI: 10.1029/2012JA018011, 2012. [CrossRef] [Google Scholar]
  • Li, G., G.P. Zank, M.I. Desai, G.M. Mason, and W.K.M. Rice, Particle acceleration and transport at CME-driven shocks: A case study, In: Particle acceleration in astrophysical plasmas: geospace and beyond, Geophysical Monograph, 156. Ed. by D., Gallagher, et al., American Geophysical Union, Washington DC, 2005. [Google Scholar]
  • Li, W., R.M. Thorne, V. Angelopoulos, J. Bortnik, C.M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, and W. Magnes, Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res. Lett., 36, L09104, DOI: 10.1029/2009GL037595, 2009. [CrossRef] [Google Scholar]
  • Li, W., R.M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulos, L. Chen, J.P. McFadden, and J.W. Bonnell, Global distributions of suprathermal electrons for access into the plasmasphere, J. Geophys. Res., 115, A00J10, DOI: 10.1029/2010JA015687, 2010. [CrossRef] [Google Scholar]
  • Li, W., J. Bortnik, R.M. Thorne, and V. Angelopoulos, Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations, J. Geophys. Res., 116, A12205, DOI: 10.1029/2011JA017035, 2011. [CrossRef] [Google Scholar]
  • Lorentzen, K.R., J.B. Blake, U.S. Inan, and J. Bortnik, Observations of relativistic electron microbursts in association with VLF chorus, J. Geophys. Res., 106, 6017–6027, DOI: 10.1029/2000JA003018, 2001. [Google Scholar]
  • Luhmann, J.G., S.A. Ledvina, D. Odstrcil, M.J. Owens, X.-P. Zhao, Y. Liu, and P. Riley, Cone model-based SEP event calculations for applications to multipoint observations, Adv. Space Res., 46, 1–21, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Lyons, L.R., and R.M. Thorne, Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78, 2142–2149, DOI: 10.1029/JA078i013p02142, 1973. [CrossRef] [Google Scholar]
  • Mann, I.R., T.P. O’Brien, and D. Milling, Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: solar cycle dependence, J. Atmos. Sol. Terr. Phys., 66, 187–198, 2004. [CrossRef] [Google Scholar]
  • Meredith, N.P., R.B. Horne, and R.R. Anderson, Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies, J. Geophys. Res., 106, 13165–13178, 2001. [Google Scholar]
  • Meredith, N.P., R.B. Horne, R.M. Thorne, and R.R. Anderson, Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt, Geophys. Res. Lett., 30 (16), 1871, DOI: 10.1029/2003GL017698, 2003. [CrossRef] [Google Scholar]
  • Meredith, N.P., R.B. Horne, R.M. Thorne, D. Summers, and R.R. Anderson, Substorm dependence of plasmaspheric hiss, J. Geophys. Res., 109, A06209, DOI: 10.1029/2004JA010387, 2004. [CrossRef] [Google Scholar]
  • Meredith, N.P., R.B. Horne, S.A. Glauert, R.M. Thorne, D. Summers, J.M. Albert, and R.R. Anderson, Energetic outer zone electron loss timescales during low geomagnetic activity, J. Geophys. Res., 111, A05212, DOI: 10.1029/2005JA011206, 2006. [CrossRef] [Google Scholar]
  • Meredith, N.P., R.B. Horne, S.A. Glauert, and R.R. Anderson, Slot region electron loss timescales due to plasmaspheric hiss and lightning generated whistlers, J. Geophys. Res., 112, A08214, DOI: 10.1029/2006JA012413, 2007. [CrossRef] [Google Scholar]
  • Meredith, N.P., R.B. Horne, S.A. Glauert, D.N. Baker, S.G. Kanekal, and J.M. Albert, Relativistic electron loss timescales in the slot region, J. Geophys. Res., 114, A03222, DOI: 10.1029/2008JA013889, 2009. [CrossRef] [Google Scholar]
  • Meredith, N.P., R.B. Horne, A. Sicard-Piet, D. Boscher, K.H. Yearby, W. Li, and R.M. Thorne, Global model of lower band and upper band chorus from multiple satellite observations, J. Geophys. Res., 117, A10225, DOI: 10.1029/2012JA017978, 2012. [CrossRef] [Google Scholar]
  • Nakamizo, A., T. Tanaka, Y. Kubo, S. Kamei, H. Shimazu, and H. Shinagawa, Development of the 3-D MHD model of the solar corona-solar wind combining system, J. Geophys. Res, 114, A07109, DOI: 10.1029/2008JA013844, 2009. [CrossRef] [Google Scholar]
  • NAP Report 2012, Committee on a Decadal Strategy for Solar and Space Physics (Heliophysics); Space Studies Board; Aeronautics and Space Engineering Board; Division of Earth and Physical Sciences; National Research Council, Solar and Space Physics: A Science for a Technological Society, The National Academies Press, Washington DC, USA, ISBN978-0-309-16248-3,, 2012. [Google Scholar]
  • Neergaard Parker, L., and G.P. Zank, Particle acceleration at quasi-parallel shock waves: theory and observations at 1 AU, Astrophys. J., 757, 97, 2012. [Google Scholar]
  • O’Brien, T.P., M.D. Looper, and J.B. Blake, Quantification of relativistic electron microburst losses during the GEM storms, Geophys. Res. Lett., 31, L04802, DOI: 10.1029/2003GL018621, 2004. [CrossRef] [Google Scholar]
  • Olson, W.P., and K. Pfitzer, Magnetospheric magnetic field modelling annual scientific report, AFOSR Contract No. F44620-75-c-0033, 1977. [Google Scholar]
  • Pomoell, J., and R. Vainio, Influence of solar wind heating formulations on the properties of shocks in the Corona, Astrophys. J., 745, 151, DOI: 10.1088/0004-637X/745/2/151, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Rodriguez, L., A.N. Zhukov, C. Cid, et al., Three frontside full halo coronal mass ejections with a nontypical geomagnetic response, Space Weather, 7, S06003, DOI: 10.1029/2008SW000453, 2009. [CrossRef] [Google Scholar]
  • Rodríguez-Gasén, R., A. Aran, B. Sanahuja, C. Jacobs, and S. Poedts, Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint, Adv. Space Res., 47, 2140–2151, 2011. [Google Scholar]
  • Roederer, J.G., Dynamics of geomagnetically trapped radiation, Springer-Verlag, New York, 36, 1970. [Google Scholar]
  • Sandroos, A., and R. Vainio, Reacceleration of flare ions in coronal and interplanetary shock waves, Astrophys. J. Suppl. Ser., 181, 183–196, 2009. [CrossRef] [Google Scholar]
  • Satellite Industry Association, State of the Satellite Industry Report 2012,, 2012. [Google Scholar]
  • Schulz, M., and L.J. Lanzerotti, Particle diffusion in the radiation belts, Springer-Verlag, New York, 1974. [CrossRef] [Google Scholar]
  • Shprits, Y., D. Subbotin, B. Ni, R. Horne, D. Baker, and P. Cruce, Profound change of the near-Earth radiation environment caused by solar superstorms, Space Weather, 9, S08007, DOI: 10.1029/2011SW000662, 2011. [CrossRef] [Google Scholar]
  • Sokolov, I.V., I.I. Roussev, T.I. Gombosi, M.A. Lee, J. Kóta, T.G. Forbes, W.B. Manchester, and J.I. Sakai, A New Field Line Advection Model for solar particle acceleration, Astrophys. J. Lett., 616, L171–L174, 2004. [CrossRef] [Google Scholar]
  • Summers, D., B. Ni, and N.P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves, J. Geophys. Res., 112, A04207, DOI: 10.1029/2006JA011993, 2007. [CrossRef] [Google Scholar]
  • The Economist, High Frequency Trading, The Fast and the Furious, 25 February,, 2012. [Google Scholar]
  • Thorne, R.M., T.P. O’Brien, and Y.Y. Shprits, D. Summers, and R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms, J. Geophys. Res., 110, A09202, DOI: 10.1029/2004JA010882, 2005. [CrossRef] [Google Scholar]
  • Tsyganenko, N.A., Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 100, 5599–5612, 1995. [CrossRef] [Google Scholar]
  • Tsyganenko, N.A., and T. Mukai, Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 108 (A3), 1136, DOI: 10.1029/2002JA009707, 2003. [CrossRef] [Google Scholar]
  • Vainio, R., and R. Schlickeiser, Self-consistent Alfvén-wave transmission and test-particle acceleration at parallel shocks, A&A, 343, 303–311, 1999. [Google Scholar]
  • Vainio, R., and T. Laitinen, Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence, Astrophys. J., 658, 622–630, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Vainio, R., and T. Laitinen, Simulations of coronal shock acceleration in self-generated turbulence, J. Atmos. Sol. Terr. Phys., 70, 467–474, 2008. [Google Scholar]
  • Varotsou, A., D. Boscher, S. Bourdarie, R.B. Horne, S.A. Glauert, and N.P. Meredith, Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with Whistler-mode chorus waves, Geophys. Res. Lett., 32, L19106, DOI: 10.1029/2005GL023282, 2005. [CrossRef] [Google Scholar]
  • Varotsou, A., D. Boscher, S. Bourdarie, R.B. Horne, N.P. Meredith, S.A. Glauert, and R.H. Friedel, Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions, J. Geophys. Res., 113, A12212, DOI: 10.1029/2007JA01286, 2008. [CrossRef] [Google Scholar]
  • Vasyliunas, V.M., A Survey of Low-Energy Electrons in the Evening Sector of the Magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839–2852, DOI: 10.1029/JA073i009p02839, 1968. [NASA ADS] [CrossRef] [Google Scholar]
  • Verkhoglyadova, O.P., G. Li, G.P. Zank, Q. Hu, C.M.S. Cohen, R.A. Mewaldt, G.M. Mason, D.K. Haggerty, T.T. von Rosenvinge, and M.D. Looper, Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event, J. Geophys. Res., 115, A12103, DOI: 10.1029/2010JA015615, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Webb, D.F., and J.H. Allen, Spacecraft and ground anomalies related to the October-November 2003 solar activity, Space Weather, 2, DOI: 10.1029/2004SW000075, 2004. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.