Issue
J. Space Weather Space Clim.
Volume 4, 2014
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A06
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2014003
Published online 17 February 2014
  • Amblard, P., S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, and F. Auchère, The EUV Sun as the superposition of elementary Suns, A&A, 487, L13–L16, 2008. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Bowman, B.R., W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, and W.J. Burke, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, AIAA/AAS, 1–19, number AIAA 2008-6438, 2008. [Google Scholar]
  • Bruinsma, S., D. Tamagnan, and R. Biancale, Atmospheric densities derived from CHAMP/STAR accelerometer observations, Planet. Space Sci., 52, 297–312, 2004. [CrossRef] [Google Scholar]
  • Bruinsma, S., G. Thuillier, and F. Barlier, The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties, J. Atmos. Sol. Terr. Phys., 65, 1053–1070, 2003. [CrossRef] [Google Scholar]
  • Bruinsma, S.L., N. Sánchez-Ortiz, E. Olmedo, and N. Guijarro, Evaluation of the DTM-2009 thermosphere model for benchmarking purposes, J. Space Weather Space Clim., 2, A04, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Comon, P., and C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Blind Deconvolution, Academic Press, Oxford, 2010. [Google Scholar]
  • Donnelly, R.F., and L.C. Puga, Thirteen-day periodicity and the center-to-limb dependence of UV, EUV, and X-ray emission of solar activity, Sol. Phys., 130, 369–390, 1990. [NASA ADS] [CrossRef] [Google Scholar]
  • Drinkwater, M.R., R. Floberghagen, R. Haagmans, D. Muzi, and A. Popescu, GOCE: ESA’s first Earth explorer core mission, Space Sci. Rev., 108, 419–432, 2003. [CrossRef] [Google Scholar]
  • Dudok de Wit, T., A method for filling gaps in solar irradiance and solar proxy data, A&A, 533, A29, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dudok de Wit, T., and S. Bruinsma, Determination of the most pertinent EUV proxy for use in thermosphere modeling, Geophys. Res. Lett., 38 (19), L19102, 2011. [CrossRef] [Google Scholar]
  • Dudok de Wit, T., S. Moussaoui, C. Guennou, F. Auchère, G. Cessateur, M. Kretzschmar, L.A. Vieira, and F.F. Goryaev, Coronal temperature maps from solar EUV images: A blind source separation approach, Sol. Phys., 283, 31–47, 2012. [CrossRef] [Google Scholar]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 13 (8), 3945–3977, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Floyd, L., W.K. Tobiska, and R.P. Cebula, Solar UV irradiance, its variation, and its relevance to the Earth, Adv. Space Res., 29, 1427–1440, 2002. [CrossRef] [Google Scholar]
  • Kundu, M.R., Solar Radio Astronomy, New York, Interscience Publication, 1965. [Google Scholar]
  • Kuruoglu, E., Bayesian source separation for cosmology, Signal Processing Mag., 27, 43–54, 2010. [CrossRef] [Google Scholar]
  • Lee, D.D., and H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401, 788–791, 1999. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère, Review on the solar spectral variability in the EUV for space weather purposes, Ann. Geophys., 26, 269–279, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Mann, M.E., and J.M. Lee, Robust estimation of background noise and signal detection in climatic time series, Clim. Change, 33 (3), 409–445, 1996. [CrossRef] [Google Scholar]
  • Marqué, C., B. Bourgoignie, J.-L. Dufond, A. Ergen, and J. Magdalenic, Solar radio observations in Belgium. In EGU General Assembly Conference Abstracts, vol. 15, EGU General Assembly Conference Abstracts, p. 7027, 2013. [Google Scholar]
  • McClintock, W.E., G.J. Rottman, and T.N. Woods, Solar-stellar irradiance comparison experiment II (Solstice II): Instrument concept and design, Sol. Phys., 230, 225–258, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Moussaoui, S., D. Brie, A. Mohammad-Djafari, and C. Carteret, Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling, IEEE Trans. Signal Process., 54, 4133–4145, 2006. [CrossRef] [Google Scholar]
  • Nindos, A., M.R. Kundu, S.M. White, K. Shibasaki, and N. Gopalswamy, Soft X-ray and gyroresonance emission above sunspots, Astrophys. J. Suppl. Ser., 130, 485–499, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Pap, J.M., P. Fox, C. Fröhlich, H.S. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprigg, and S.T. Wu, Solar variability and its effects on climate, vol. 141, Geophysical Monograph Series, Washington DC, American Geophysical Union, 2004. [CrossRef] [Google Scholar]
  • Pick, M., and N. Vilmer, Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun Earth connection, Astron. Astrophys. Rev., 16, 1–153, 2008. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Schmahl, E.J., and M.R. Kundu, Microwave proxies for sunspot blocking and total irradiance, J. Geophys. Res. (Space Phys.), 100, 19851–19864, 1995. [CrossRef] [Google Scholar]
  • Schmahl, E.J., and M.R. Kundu, Synoptic radio observations. In Synoptic Solar Physics, vol. 140, Edited by K.S., Balasubramaniam, J. Harvey, and D. Rabin, Astronomical Society of the Pacific Conference Series, pp. 387–399, 1998. [Google Scholar]
  • Shibasaki, K., C.E. Alissandrakis, and S. Pohjolainen, Radio emission of the quiet Sun and active regions (invited review), Sol. Phys., 273, 309–337, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Storz, M.F., B.R. Bowman, M.J.I. Branson, S.J. Casali, and W.K. Tobiska, High accuracy satellite drag model (HASDM), Adv. Space Res., 36, 2497–2505, 2005. [CrossRef] [Google Scholar]
  • Tanaka, H., J.P. Castelli, A.E. Covington, A. Krüger, T.L. Landecker, and A. Tlamicha, Absolute calibration of solar radio flux density in the microwave region, Sol. Phys., 29, 243–262, 1973. [CrossRef] [Google Scholar]
  • Tanaka, H., and S. Enome, The microwave structure of coronal condensations and its relation to proton flares, Sol. Phys., 40, 123–131, 1975. [CrossRef] [Google Scholar]
  • Tanaka, H., and T. Kakinuma, Observations of solar radio emission at microwave frequencies, Proc. Res. Inst. Atmospherics, Nagoya University, 5, 81–89, 1958. [Google Scholar]
  • Tapping, K., and J. Valdés, Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24? Sol. Phys., 272, 337–350, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Tapping, K.F., The 10.7 cm solar radio flux (f10.7), Space Weather, 11 (7), 394–406, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Tapping, K.F., and D.P. Charrois, Limits to the accuracy of the 10.7 CM flux, Sol. Phys., 150, 305–315, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Tapping, K.F., and B. Detracey, The origin of the 10.7 CM flux, Sol. Phys., 127, 321–332, 1990. [NASA ADS] [CrossRef] [Google Scholar]
  • Viereck, R., L. Puga, D. McMullin, D. Judge, M. Weber, and W.K. Tobiska, The Mg II index: A proxy for solar EUV, Geophys. Res. Lett., 28, 1343–1346, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • White, S.M., Radio versus EUV/X-Ray observations of the solar atmosphere, Sol. Phys., 190, 309–330, 1999. [CrossRef] [Google Scholar]
  • Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska, Solar EUV Experiment (SEE): Mission overview and first results, J. Geophys. Res. (Space Phys.), 110, A01312, 2005. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.