Issue
J. Space Weather Space Clim.
Volume 4, 2014
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A06
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2014003
Published online 17 February 2014
  • Amblard, P., S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, and F. Auchère, The EUV Sun as the superposition of elementary Suns, A&A, 487, L13–L16, 2008. [NASA ADS] [CrossRef] [EDP Sciences]
  • Bowman, B.R., W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, and W.J. Burke, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, AIAA/AAS, 1–19, number AIAA 2008-6438, 2008.
  • Bruinsma, S., D. Tamagnan, and R. Biancale, Atmospheric densities derived from CHAMP/STAR accelerometer observations, Planet. Space Sci., 52, 297–312, 2004. [CrossRef]
  • Bruinsma, S., G. Thuillier, and F. Barlier, The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties, J. Atmos. Sol. Terr. Phys., 65, 1053–1070, 2003. [CrossRef]
  • Bruinsma, S.L., N. Sánchez-Ortiz, E. Olmedo, and N. Guijarro, Evaluation of the DTM-2009 thermosphere model for benchmarking purposes, J. Space Weather Space Clim., 2, A04, 2012. [CrossRef] [EDP Sciences]
  • Comon, P., and C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Blind Deconvolution, Academic Press, Oxford, 2010.
  • Donnelly, R.F., and L.C. Puga, Thirteen-day periodicity and the center-to-limb dependence of UV, EUV, and X-ray emission of solar activity, Sol. Phys., 130, 369–390, 1990. [NASA ADS] [CrossRef]
  • Drinkwater, M.R., R. Floberghagen, R. Haagmans, D. Muzi, and A. Popescu, GOCE: ESA’s first Earth explorer core mission, Space Sci. Rev., 108, 419–432, 2003. [CrossRef]
  • Dudok de Wit, T., A method for filling gaps in solar irradiance and solar proxy data, A&A, 533, A29, 2011. [CrossRef] [EDP Sciences]
  • Dudok de Wit, T., and S. Bruinsma, Determination of the most pertinent EUV proxy for use in thermosphere modeling, Geophys. Res. Lett., 38 (19), L19102, 2011. [CrossRef]
  • Dudok de Wit, T., S. Moussaoui, C. Guennou, F. Auchère, G. Cessateur, M. Kretzschmar, L.A. Vieira, and F.F. Goryaev, Coronal temperature maps from solar EUV images: A blind source separation approach, Sol. Phys., 283, 31–47, 2012. [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 13 (8), 3945–3977, 2013. [NASA ADS] [CrossRef]
  • Floyd, L., W.K. Tobiska, and R.P. Cebula, Solar UV irradiance, its variation, and its relevance to the Earth, Adv. Space Res., 29, 1427–1440, 2002. [CrossRef]
  • Kundu, M.R., Solar Radio Astronomy, New York, Interscience Publication, 1965.
  • Kuruoglu, E., Bayesian source separation for cosmology, Signal Processing Mag., 27, 43–54, 2010. [CrossRef]
  • Lee, D.D., and H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401, 788–791, 1999. [NASA ADS] [CrossRef] [PubMed]
  • Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère, Review on the solar spectral variability in the EUV for space weather purposes, Ann. Geophys., 26, 269–279, 2008. [NASA ADS] [CrossRef]
  • Mann, M.E., and J.M. Lee, Robust estimation of background noise and signal detection in climatic time series, Clim. Change, 33 (3), 409–445, 1996. [CrossRef]
  • Marqué, C., B. Bourgoignie, J.-L. Dufond, A. Ergen, and J. Magdalenic, Solar radio observations in Belgium. In EGU General Assembly Conference Abstracts, vol. 15, EGU General Assembly Conference Abstracts, p. 7027, 2013.
  • McClintock, W.E., G.J. Rottman, and T.N. Woods, Solar-stellar irradiance comparison experiment II (Solstice II): Instrument concept and design, Sol. Phys., 230, 225–258, 2005. [NASA ADS] [CrossRef]
  • Moussaoui, S., D. Brie, A. Mohammad-Djafari, and C. Carteret, Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling, IEEE Trans. Signal Process., 54, 4133–4145, 2006. [CrossRef]
  • Nindos, A., M.R. Kundu, S.M. White, K. Shibasaki, and N. Gopalswamy, Soft X-ray and gyroresonance emission above sunspots, Astrophys. J. Suppl. Ser., 130, 485–499, 2000. [NASA ADS] [CrossRef]
  • Pap, J.M., P. Fox, C. Fröhlich, H.S. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprigg, and S.T. Wu, Solar variability and its effects on climate, vol. 141, Geophysical Monograph Series, Washington DC, American Geophysical Union, 2004. [CrossRef]
  • Pick, M., and N. Vilmer, Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun Earth connection, Astron. Astrophys. Rev., 16, 1–153, 2008. [NASA ADS] [CrossRef] [MathSciNet]
  • Schmahl, E.J., and M.R. Kundu, Microwave proxies for sunspot blocking and total irradiance, J. Geophys. Res. (Space Phys.), 100, 19851–19864, 1995. [CrossRef]
  • Schmahl, E.J., and M.R. Kundu, Synoptic radio observations. In Synoptic Solar Physics, vol. 140, Edited by K.S., Balasubramaniam, J. Harvey, and D. Rabin, Astronomical Society of the Pacific Conference Series, pp. 387–399, 1998.
  • Shibasaki, K., C.E. Alissandrakis, and S. Pohjolainen, Radio emission of the quiet Sun and active regions (invited review), Sol. Phys., 273, 309–337, 2011. [NASA ADS] [CrossRef]
  • Storz, M.F., B.R. Bowman, M.J.I. Branson, S.J. Casali, and W.K. Tobiska, High accuracy satellite drag model (HASDM), Adv. Space Res., 36, 2497–2505, 2005. [CrossRef]
  • Tanaka, H., J.P. Castelli, A.E. Covington, A. Krüger, T.L. Landecker, and A. Tlamicha, Absolute calibration of solar radio flux density in the microwave region, Sol. Phys., 29, 243–262, 1973. [CrossRef]
  • Tanaka, H., and S. Enome, The microwave structure of coronal condensations and its relation to proton flares, Sol. Phys., 40, 123–131, 1975. [CrossRef]
  • Tanaka, H., and T. Kakinuma, Observations of solar radio emission at microwave frequencies, Proc. Res. Inst. Atmospherics, Nagoya University, 5, 81–89, 1958.
  • Tapping, K., and J. Valdés, Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24? Sol. Phys., 272, 337–350, 2011. [NASA ADS] [CrossRef]
  • Tapping, K.F., The 10.7 cm solar radio flux (f10.7), Space Weather, 11 (7), 394–406, 2013. [NASA ADS] [CrossRef]
  • Tapping, K.F., and D.P. Charrois, Limits to the accuracy of the 10.7 CM flux, Sol. Phys., 150, 305–315, 1994. [NASA ADS] [CrossRef]
  • Tapping, K.F., and B. Detracey, The origin of the 10.7 CM flux, Sol. Phys., 127, 321–332, 1990. [NASA ADS] [CrossRef]
  • Viereck, R., L. Puga, D. McMullin, D. Judge, M. Weber, and W.K. Tobiska, The Mg II index: A proxy for solar EUV, Geophys. Res. Lett., 28, 1343–1346, 2001. [NASA ADS] [CrossRef]
  • White, S.M., Radio versus EUV/X-Ray observations of the solar atmosphere, Sol. Phys., 190, 309–330, 1999. [CrossRef]
  • Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska, Solar EUV Experiment (SEE): Mission overview and first results, J. Geophys. Res. (Space Phys.), 110, A01312, 2005. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.