Open Access
Issue
J. Space Weather Space Clim.
Volume 4, 2014
Article Number A07
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2014004
Published online 20 February 2014
  • Altadill, D., J.M. Torta, and E. Blanch, Proposal of new models of the bottom-side B0 and B1 parameters for IRI, Adv. Space Res., 43, 1825–1834, DOI: 10.1016/j.asr.2008.08.014, 2009. [CrossRef] [Google Scholar]
  • Angling, M.J., J. Shaw, A.K. Shukla, and P.S. Cannon, Development of an HF selection tool based on the Electron Density Assimilative Model near-real-time ionosphere, Radio Sci., 44, RS0A13, DOI: 10.1029/2008RS004022, 2009. [CrossRef] [Google Scholar]
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and D. Bilitza, Ionospheric variability for quiet and perturbed conditions, Adv. Space Res., 34 (9), 1914–1921, DOI: 10.1016/j.asr.2004.08.007, 2004. [CrossRef] [Google Scholar]
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, M.V. Codrescu, and D. Bilitza, Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity, Radio Sci., 40, RS5009, 1–15, DOI:10.1029/2004RS003179, 2005. [CrossRef] [Google Scholar]
  • Baker, K.B., and S. Wing, A new magnetic coordinate system for conjugate studies at high latitudes, J. Geophys. Res., 94 (A7), 9139–9143, DOI: 10.1029/JA094iA07p09139, 1989. [CrossRef] [Google Scholar]
  • Bhavnani, K.H., and C.A. Hein, An improved algorithm for computing altitude dependent corrected geomagnetic coordinates, Scientific Report PL-TR-94-2310, Phillips Laboratory: 29 Randolph Road, Hanscom AFB, MA 01731-3010, USA, 1994. [Google Scholar]
  • Bilitza, D., Implementation of the new electron temperature model in IRI, Adv. Space Res., 5 (10), 117–122, DOI: 10.1016/0273-1177(85)90193-0, 1985. [CrossRef] [Google Scholar]
  • Bilitza, D., International reference ionosphere: recent developments, Radio Sci., 21, 343–346, DOI: 10.1029/RS021i003p00343, 1986. [CrossRef] [Google Scholar]
  • Bilitza, D. and International Reference Ionosphere National Space Science Data Center, Report 90-22, Greenbelt, Maryland, USA, 1990. [Google Scholar]
  • Bilitza, D., Including auroral boundaries in the IRI model, Adv. Space Res., 16 (1), 13–16, DOI: 10.1016/0273-1177(95)00093-T, 1995. [CrossRef] [Google Scholar]
  • Bilitza, D., International Reference ionosphere – Status 1995/96, Adv. Space Res., 20 (9), 1751–1754, 1997. [CrossRef] [Google Scholar]
  • Bilitza, D., International Reference Ionosphere 2000, Radio Sci., 36, 261–275, DOI: 10.1029/2000RS002432, 2001. [CrossRef] [Google Scholar]
  • Bilitza, D., and B.W. Reinisch, International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42 (4), 599–609, DOI: 10.1016/j.asr.2007.07.048, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Bilitza, D., L.H. Brace, and R.F. Theis, Modelling of ionospheric temperature profiles, Adv. Space Res., 5 (7), 53–58, 1985. [CrossRef] [Google Scholar]
  • Bilitza, D., S. Bhardwaj, and C. Koblinsky, Improved IRI predictions for the GEOSAT time period, Adv. Space. Res., 20 (9), 1755–1760, 1997. [CrossRef] [Google Scholar]
  • Bilitza, D., S. Radicella, B. Reinisch, J. Adeniyi, M. Mosert, S. Zhang, and O. Obrou, New B0 and B1 models for IRI, Adv. Space. Res., 25 (1), 89–95, 2000. [CrossRef] [Google Scholar]
  • Bilitza, D., O. Obrou, J. Adeniyi, and O. Oladipo, Variability of foF2 in the equatorial ionosphere, Adv. Space Res., 34 (9), 1901–1906, DOI: 10.1016/j.asr.2004.08.004, 2004. [CrossRef] [Google Scholar]
  • Bilitza, D., V. Truhlik, P. Richards, T. Abe, and L. Triskova, solar cycle variation of mid-latitude electron density and temperature: Satellite measurements and model calculations, Adv. Space Res., 39 (5), 779–789, DOI: 10.1016/j.asr.2006.11.022, 2007. [CrossRef] [Google Scholar]
  • Blanch, E., D. Arrazola, D. Altadill, D. Buresova, and M. Mosert, Improvement of IRI B0, B1 and D1 at mid-latitudes using MARP, Adv. Space Res., 39 (5), 701–710, DOI: 10.1016/j.asr.2006.08.007, 2007. [CrossRef] [Google Scholar]
  • Brace, L.H., and R.F. Theis, Global empirical models of ionospheric electron temperature in the upper F-region and plasmasphere based on in situ measurements from atmosphere explorer C, ISIS 1 and ISIS 2 satellites, J. Atmos. Terr. Phys., 43, 1317–1343, 1981. [CrossRef] [Google Scholar]
  • Chen, H., L. Liu, W. Wan, B. Ning, and J. Lei, A comparative study of the bottom side profile parameters over Wuhan with IRI-2001 for 1999–2004, Earth Planets Space, 58, 601–605, 2006. [Google Scholar]
  • CIRA, COSPAR International Reference Atmosphere, Amsterdam, The Netherlands: North-Holland Publications, 1961. [Google Scholar]
  • Daniell Jr., R.E., Modeling of optical signatures of electron spectra in the ionospheric heating experiments. In : Proceedings of the Seventh International Ionospheric Effects Symposium, Arlington, Virginia, USA, SRI International, 6B/5/1, 1993. [Google Scholar]
  • Danilov, A.D., and A.P. Yaichnikov, A new model of the ion composition at 75 to 1000 km for IRI, Adv. Space Res., 5 (7), 75–79, 107–108, 1985. [CrossRef] [Google Scholar]
  • Danilov, A.D., and N.V. Smirnova, Improving the 75 to 300 km ion composition model of the IRI, Adv. Space Res., 15 (2), 171–177, 1995. [CrossRef] [Google Scholar]
  • ECSS, European Cooperation for Space Standardization, System Engineering: Space Environment, ECSS-E-ST-10-04C, Noordwijk, The Netherlands, 2008. [Google Scholar]
  • Feldstein, Y.I., and G.V. Starkov, Dynamics of auroral belt and polar geomagnetic disturbances, Planet. Space Sci., 15, 209, 1967. [CrossRef] [Google Scholar]
  • Finlay, C.C., S. Maus, C.D. Beggan, T.N. Bondar, and A. Chambodut, et al., International Geomagnetic Reference Field: the eleventh generation, Geophys. J. Int., 183, 1216–1230, DOI: 10.1111/j.1365-246X.2010.04804.x, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Fridman, S.V., L.J. Nickisch, M. Aiello, and M. Hausman, Real-time reconstruction of the three dimensional ionosphere using data from a network of GPS receivers, Radio Sci., 41, RS5S12, DOI: 10.1029/2005RS003341, 2006. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T.J., and D.S. Evans, Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data, J. Geophys. Res., 92, 7606–7618, 1987. [CrossRef] [Google Scholar]
  • Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza, Assimilation of GIRO data into a real-time IRI, Radio Sci., 47, RS0L07, DOI: 10.1029/2011RS004952, 2012. [CrossRef] [Google Scholar]
  • Gulyaeva, T., Progress in ionospheric informatics based on electron density profile analysis of ionograms, Adv. Space Res., 7 (6), 39–48, 1987. [CrossRef] [Google Scholar]
  • Gulyaeva, T., and D. Bilitza, Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In : New developments in the standard model, R.J., Larsen, Editor, Nova Science Publishers, Hauppauge, NY, USA, 2011. [Google Scholar]
  • Gustafsson, G., N.E. Papitashvili, and V.O. Papitashvili, A revised corrected geomagnetic coordinate system for epochs 1985 and 1990, J. Atmos. Terr. Phys., 54, 1609–1631, 1992. [CrossRef] [Google Scholar]
  • Hardy, D.A., M.S. Gussenhoven, R. Raistrick, and W.J. McNeil, Statistical and functional representation of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12275–12294, 1987. [CrossRef] [Google Scholar]
  • Hernandez-Pajares, M., J. Juan, J. Sanz, and D. Bilitza, Combining GPS measurements and IRI model values for Space Weather specification, Adv. Space Res., 29 (6), 949–958, 2002. [CrossRef] [Google Scholar]
  • Holzworth, R.H., and C.I. Meng, Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 337–380, 1975. [CrossRef] [Google Scholar]
  • Immel, T.J., E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, and L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, DOI: 10.1029/2006GL026161, 2006. [CrossRef] [Google Scholar]
  • Komjathy, A., R. Langley, and D. Bilitza, Ingesting GPS-Derived TEC Data into the international reference ionosphere for single frequency radar altimeter ionospheric delay corrections, Adv. Space Res., 22 (6), 793–802, 1998. [CrossRef] [Google Scholar]
  • Lee, C.-C., Equatorial B0 anomaly in September under extremely low solar activity, J. Geophys. Res., 116, A05325, DOI: 10.1029/2010JA016394, 2011. [Google Scholar]
  • Lee, C.-C., and B.W. Reinisch, Quiet-condition hmF2, NmF2, and B0 variations at Jicamarca and comparison with IRI-2001 during solar maximum, J. Atmos. Sol. Terr. Phys., 68, 2138–2146, DOI: 10.1016/j.jastp.2006.07.007, 2006. [CrossRef] [Google Scholar]
  • Lee, C.-C., B.W. Reinisch, S.-Y. Su, and W.S. Chen, Quiet-time variation of F2-layer parameters at Jicamarca and comparison with IRI-2001 during solar minimum, J. Atmos. Sol. Terr. Phys., 70, 184–192, DOI: 10.1016/j.jastp.2007.10.008, 2008. [CrossRef] [Google Scholar]
  • Lei, J., L. Liu, W. Wan, S.R. Zhang, and J.M. Holt, A statistical study of ionospheric profile parameters derived from Millstone Hill incoherent scatter radar measurements, Geophys. Res. Lett., 31, L14804, DOI: 10.1029/2004GL020578, 2004. [CrossRef] [Google Scholar]
  • Lühr, H., and C. Xiong, The IRI2007 model overestimates electron density during the 23/24 solar minimum, Geophys. Res. Lett., 37, L23101, DOI: 10.1029/2010GL045430, 2010. [Google Scholar]
  • Lühr, H., K. Häusler, and C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides, Geophys. Res. Lett., 34, L16102, DOI: 10.1029/2007GL030639, 2007. [Google Scholar]
  • McKinnell, L.A., M. Friedrich, and R.J. Steiner, A new approach to modeling the daytime lower ionosphere at auroral latitudes, Adv. Space Res., 34 (9), 1943–1948, DOI: 10.1016/j.asr.2004.05.005, 2004. [CrossRef] [Google Scholar]
  • McKinnell, L.A., and M. Friedrich, A neural network-based ionospheric model for the auroral zone, J. Atmos. Sol. Terr. Phys., 69, 1459–1470, DOI: 10.1016/j.jastp.2007.05.003, 2007. [CrossRef] [Google Scholar]
  • McNamara, L.F., J.M. Retterer, C.R. Baker, G.J. Bishop, D.L. Cooke, C.J. Roth, and J.A. Welsh, Longitudinal structure in the CHAMP electron densities and their implications for global ionospheric modeling, Radio Sci., 45, RS2001, DOI: 10.1029/2009RS004251, 2010. [CrossRef] [Google Scholar]
  • Mertens, C.J., Xiaojing. Xu, D. Bilitza, M.G. Mlynczak, and J.M. Russell III, Empirical STORM-E Model: I. Theoretical and observational basis, Adv. Space Res., 51 (4), 554–574, DOI: 10.1016/j.asr.2012.09.009, 2013a. [CrossRef] [Google Scholar]
  • Mertens, C.J., X.J. Xu, D. Bilitza, M.G. Mlynczak, and J.M. RussellIII, Empirical STORM-E Model: II. Geomagnetic corrections to nighttime ionospheric e-region electron densities, Adv. Space Res., 51 (4), 575–598, DOI: 10.1016/j.asr.2012.09.014, 2013. [CrossRef] [Google Scholar]
  • Obrou, O.K., S.M. Radicella, and J.O. Adeniyi, The equatorial electrojet and the profile parameters B0 and B1 around midday, J. Atmos. Sol. Terr. Phys., 65, 299–304, DOI: 10.1016/S1364-6826(02)00336-X, 2003. [CrossRef] [Google Scholar]
  • Pezzopane, M., M. Pietrella, A. Pignatelli, B. Zolesi, and L.R. Cander, Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling, Radio Sci., 46, RS5009, DOI: 10.1029/2011RS004697, 2011. [CrossRef] [Google Scholar]
  • Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107 (A12), 1468, DOI: 10.1029/2002JA009430, 2002. [CrossRef] [Google Scholar]
  • Rawer, K., S. Ramakrishnan, and D. Bilitza, Preliminary reference profiles for electron and ion densities and temperatures proposed for the International Reference Ionosphere, Scientific Report W.B. 2, Institut für physikalische Weltraumforschung: Freiburg, Germany, 1975. [Google Scholar]
  • Rawer, K., D. Bilitza, and S. Ramakrishnan, International Reference Ionosphere 1978, Brussels, Belgium, International Union of Radio Science (URSI), 1978a. [Google Scholar]
  • Rawer, K., D. Bilitza, and S. Ramakrishnan, Goals and status of the international reference ionosphere, Rev. Geophys., 16, 177–181, 1978b. [CrossRef] [Google Scholar]
  • Rawer, K., V. Lincoln, and R. Conkright, Editors, International Reference Ionosphere – IRI 79, Report UAG-82, World Data Center A for Solar-Terrestrial Physics, Boulder, Colorado, USA, 1981. [Google Scholar]
  • Richards, P.G., Seasonal and solar cycle variations of the ionospheric peak electron density: comparison of measurement and models, J. Geophys. Res., 106, 12803–12819, DOI: 10.1029/2000JA000365, 2001. [CrossRef] [Google Scholar]
  • Richards, P.G., D. Bilitza, and D. Voglozin, Ion density calculator (IDC): A new efficient model of ionospheric ion densities, Radio Sci., 45, RS5007, DOI: 10.1029/2009RS004332, 2010. [CrossRef] [Google Scholar]
  • Scherliess, L., D.C. Thompson, and R.W. Schunk, Longitudinal variability of low-latitude total electron content: Tidal influences, J. Geophys. Res., 113, A01311, DOI:10.1029/2007JA012480, 2008. [Google Scholar]
  • Schmidt, M., D. Bilitza, C.K. Shum, and C. Zeilhofer, Regional 4-D modeling of the ionospheric electron density, Adv. Space Res., 42 (4), 782–790, DOI: 10.1016/j.asr.2007.02.050, 2008. [CrossRef] [Google Scholar]
  • Shim, J.S., M. Kuznetsova, L. Rastätter, M. Hesse, D. Bilitza, et al, CEDAR Electrodynamics Thermosphere Ionosphere 1 (ETI) challenge for systematic assessment of ionosphere/thermosphere Models 1: NmF2, hmF2, and vertical drift using ground based observations, Space Weather, 9, S12003, DOI:10.1029/2011SW000727, 2011. [CrossRef] [Google Scholar]
  • Shim, J.S., M. Kuznetsova, L. Rastätter, M. Hesse, D. Bilitza, et al., CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations, Space Weather, 10, S10004, DOI: 10.1029/2012SW000851, 2012. [CrossRef] [Google Scholar]
  • Sethi, N.K., R.S. Dabas, P. Bhawre, and S.K. Sarkar, Bottomside profile shape parameters during low solar activity and comparison with IRI-2007 model, J. Atmos. Sol. Terr. Phys., 71, 1935–1942, DOI:10.1016/j.jastp.2009.08.003, 2009. [CrossRef] [Google Scholar]
  • Spenner, K., and R. Plugge, Empirical model of global electron temperature distribution between 300 and 700 km based on data from AEROS-A, J. Geophys., 46, 43–56, 1979. [Google Scholar]
  • Spiro, R.W., P.H. Reiff, and L.J. Maher, Jr., Precipitating electron energy flux and auroral zone conductances - an empirical model, J. Geophys. Res., 87, 8215–8227, 1982. [CrossRef] [Google Scholar]
  • Strickland, D.J., J. Bishop, J.S. Evans, T. Majeed, P.M. Shen, R.J. Cox, R. Link, and R.E. Huffman, Atmospheric ultraviolet radiance integrated code (AURIC): theory, software architecture, inputs, and selected results, J. Quant. Spectrosc. Radiat. Transfer, 62, 689, 1999. [CrossRef] [Google Scholar]
  • Szuszczewicz, E.P., P. Wilkinson, W. Swider, S. Pulinets, M.A. Abdu, et al., Measurements and empirical model comparisons of F-region characteristics and auroral boundaries during the solstitial SUNDIAL campaign of 1987, Ann. Geophys., 11, 601–613, 1993. [Google Scholar]
  • Triskova, L., V. Truhlik, and J. Smilauer, An empirical model of ion composition in the outer ionosphere, Adv. Space Res., 31 (3), 653–663, DOI: 10.1016/S0273-1177(03)00040-1, 2003. [CrossRef] [Google Scholar]
  • Truhlik, V., L. Triskova, J. Smilauer, and V. Afonin, Global empirical models of electron temperatures in the outer ionosphere for period of high solar activity based on data of three Intercosmos satellites, Adv. Space Res., 25 (1), 163–172, 2000. [CrossRef] [Google Scholar]
  • Truhlik, V., L. Triskova, and J. Smilauer, New advances in empirical modeling of ion composition in the outer ionosphere, Adv. Space Res., 33 (6), 844–849, DOI: 10.1016/j.asr.2003.06.006, 2004. [CrossRef] [Google Scholar]
  • Truhlik, V., D. Bilitza, and L. Triskova, Latitudinal variation of the topside electron temperature at different levels of solar activity, Adv. Space Res., 44 (6), 693–700, DOI: 10.1016/j.asr.2009.04.029, 2009. [CrossRef] [Google Scholar]
  • Truhlik, V., D. Bilitza, and L. Triskova, A new global empirical model of the electron temperature with inclusion of the solar activity variations for IRI, Earth Planets and Space, 64 (6), 531–543, 2012. [CrossRef] [Google Scholar]
  • Wallis, D.D., and E.E. Budzinski, Empirical models of height integrated conductivities, J. Geophys. Res., 86, 125–137, 1981. [CrossRef] [Google Scholar]
  • Yue, X., W.S. Schreiner, Y.-H. Kuo, D.C. Hunt, W. Wang, et al., Global 3-D ionospheric electron density reanalysis based on multi-source data assimilation, J. Geophys. Res., 117, A09325, DOI: 10.1029/2012JA017968, 2012. [Google Scholar]
  • Zhang, M.-L., W. Wan, L. Liu, and J.K. Shi, Variability of the behavior of the bottomside (B0, B1) parameters obtained from the ground-based ionograms at China’s low latitude station, Adv. Space Res., 42 (2), 695–702, DOI: 10.1016/j.asr.2007.07.022, 2008. [CrossRef] [Google Scholar]
  • Zhang, S.-R., J.M. Holt, A.P. van Eyken, M. McCready, C. Amory-Mazaudier, S. Fukao, and M. Sulzer, Ionospheric local model and climatology from long-term databases of multiple incoherent scatter radars, Geophys. Res. Lett., 32, L20102, DOI: 10.1029/2005GL023603, 2005. [CrossRef] [Google Scholar]
  • Zhang, Y., and L.J. Paxton, An empirical Kp-dependent global auroral model based on TIMED/GUVI data, J. Atmos. Sol. Terr. Phys., 70, 1231–1242, DOI: 10.1016/j.jastp.2008.03.008, 2008. [CrossRef] [Google Scholar]
  • Zhang, Y., L.J. Paxton, and D. Bilitza, Near real-time assimilation of auroral peak E-region density and equatorward boundary in IRI, Adv. Space Res., 46 (8), 1055–1063, DOI: 10.1016/j.asr.2010.06.029, 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.