Open Access
J. Space Weather Space Clim.
Volume 4, 2014
Article Number A20
Number of page(s) 16
Published online 04 June 2014
  • Adams, J.H., Cosmic ray effects on microelectronics, part 4, Technical Report Report 5901, Naval Research Laboratory, 1986. [Google Scholar]
  • Badhwar, G.D., and P.M. O’Neill, Galactic cosmic radiation model and its applications, Adv. Space Res., 17 (2), 7–17, 1996. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Carrington, R.C., Description of a singular appearance seen on the Sun on September 1, 1859, Monthly Notices Royal Astronomical Society, 20, 13–15, 1860. [Google Scholar]
  • Chavy-Macdonald, M.-A., A. Menicucci, G. Santin, H. Evans, P.T.A. Jiggens, P. Nieminen, and S. Hovland, High-accuracy simulations of the ISS radiation environment and applications to interplanetary manned missions, IEEE Trans. Nucl. Sci., 60 (4), 2427–2434, 2013. [CrossRef] [Google Scholar]
  • Clauer, R.C., and G. Siscoe, The great historical geomagnetic storm of 1859: a modern look, Adv. Space Res., 38, 117–118, 2006. [CrossRef] [Google Scholar]
  • Cliver, E.W., and W.F. Dietrich, The 1859 space weather event revisited: limits of extreme activity, Journal of Space Weather and Space Climate, 3 (A31), 121–124, 2013. [Google Scholar]
  • Cucinotta, F.A., M.-H.Y. Kim, and L.J. Chappell, NASA/TP-2013–217375: Space radiation cancer risk projections and uncertainties 2012. In: Technical report, National Aeronautics and Space Administration, 2013. [Google Scholar]
  • Dietze, G., D.T. Bartlett, D.A. Cool, F.A. Cucinotta, X. Jia, I.R. McAulay, M. Pelliccioni, V. Petrov, G. Reitz, and T. Sato, Annals of the ICRP: Assessment of radiation exposure of astronauts in space, The International Commission on Radiological Protection, 42 (4), 1–339, 2013. [Google Scholar]
  • Dorman, L.I., L.I. Pustilnik, A. Sternlieb, I.G. Zukerman, A.V. Belov, E.A. Eroshenko, V.G. Yanke, H. Mavromichalaki, C. Sarlanis, G. Souvatzoglou, S. Tatsis, N. Iucci, G. Villoresi, Y. Fedorov, B.A. Shakhov, and M. Murat, Monitoring and forecasting of great solar proton events using the neutron monitor network in real time, IEEE Transactions on Plasma Science, 32 (4), 1478–1488, 2004. [Google Scholar]
  • Durante, M., and F.A. Cucinotta, Physical basis of radiation protection in space travel, Rev. Mod. Phys., 83 (4), 1245–1281, 2011. [Google Scholar]
  • Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and Russell A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections, J. Geophys. Res., 109 (A12105), 1–18, 2004. [Google Scholar]
  • ISO 15390, Space Environment (natural and artificial) – Galactic Cosmic Ray model, 2004 [Google Scholar]
  • Jiggens, P.T.A., and S.B. Gabriel, Time distributions of solar energetic particle events: Are SEPEs really random? J. Geophys. Res., 114 (A10), A10105, 2009. [Google Scholar]
  • Jiggens, P.T.A., S.B. Gabriel, D. Heynderickx, N. Crosby, A. Glover, and A. Hilgers, ESA SEPEM project: peak flux and fluence model, IEEE Trans. Nucl. Sci., 59 (4), 1066–1077, 2012. [Google Scholar]
  • Jun, I., M.A. Xapsos, S.R. Messenger, E.A. Burke, R.J. Walkter, and T. Jordan, Nonionizing energy loss (NIEL) for device applications, IEEE Trans. Nucl. Sci., 50 (6), 1924–1928, 2003. [CrossRef] [Google Scholar]
  • Kahler, S.W., The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra, J. Geophys. Res., 106, 20947–20955, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler, S.W., Energetic particle acceleration by coronal mass ejections, Adv. Space Res., 32 (12), 2587–2596, 2003. [CrossRef] [Google Scholar]
  • Kim, M.-H.Y., K.A. George, and F.A. Cucinotta, Evaluation of skin cancer risk for lunar and mars missions, Adv. Space Res., 37, 1798–1803, 2006. [CrossRef] [Google Scholar]
  • King, J.H., Solar proton fluences for 1977–1983 space missions, J. Spacecraft Rockets, 11 (6), 401–408, 1974. [Google Scholar]
  • Lario, D., M.B. Kallenrode, R.B. Decker, E.C. Roelof, S.M. Krimigis, A. Angels, and S. Blai, Radial and longitudinal dependences of solar 4–13 Mev and 27–37 Mev proton peak intensities and fluences: helios and imp-8 observations, Astrophys. J., 653, 1531–1544, 2006. [Google Scholar]
  • Lei, F., P.R. Truscott, C.S. Dyer, B. Quaghebeur, D. Heynderickx, P. Nieminen, H. Evans, and E. Daly, MULASSIS: a Geant4-based multilayered shielding simulation tool, IEEE Trans. Nucl. Sci., 49 (6), 2788–2793, 2002. [Google Scholar]
  • McCracken, K.G., G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, and M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1 Identification in polar ice 1561–1950, J. Geophys. Res. – Space Phys., 106 (A10), 21585–21598, 2001. [Google Scholar]
  • Mewaldt, R.A., C.M.S. Cohen, A.W. Labrador, R.A. Leske, G.M. Mason, M.I. Desai, M.D. Looper, J.E. Mazur, R.S. Selesnick, and D.K. Haggerty, Proton, helium, and electron spectra during the large solar particle events of October–November 2003, J. Geophys. Res., 110, A09S18, 2005. [Google Scholar]
  • Neal, J.S., T.F. Nichols, and L.W. Townsend, Importance of predicting the dose temporal profile for large solar energetic particle events, Space Weather, 6 (1), S09004, 2008. [CrossRef] [Google Scholar]
  • Nymmik, R.A., The lag of galactic cosmic ray modulation: conformity to general regularities and influence on particle energy spectra, Adv. Space Res., 26 (11), 1875–1878, 1996. [CrossRef] [Google Scholar]
  • Nymmik, R.A., Improved environment radiation models, Adv. Space Res., 40, 313–320, 2007. [Google Scholar]
  • Nymmik, R.A., M.I. Panasyuk, and A.A. Suslov, Galactic cosmic ray flux simulation and prediction, Adv. Space Res., 17 (2), 19–30, 1996. [Google Scholar]
  • Oh, S.Y., J.W. Bieber, J. Clem, P. Evenson, R. Pyle, Y. Yi, and Y.-K. Kim, South pole neutron monitor forecasting of solar proton radiation intensity, Space Weather, 10, S05004, 2012. [CrossRef] [Google Scholar]
  • O’Neill, P.M., Badhwar-O’Neill galactic cosmic ray model update based on advanced composition explorer (ace) energy spectra from 1997 to present, Adv. Space Res., 37, 1727–1733, 2006. [Google Scholar]
  • O’Neill, P.M., Badhwar-O’Neill 2010 galactic cosmic ray flux model – revised, IEEE Trans. Nucl. Sci., 57, 3148–3153, 2010. [Google Scholar]
  • Petersen, E.L., The SEU figure of merit and proton upset rate calculations, IEEE Trans. Nucl. Sci., 45 (6), 2550–2562, 1998. [CrossRef] [Google Scholar]
  • Rosenqvist, L., and A. Hilgers, Sensitivity of a statistical solar proton fluence model to the size of the event data set, Geophys. Res. Lett., 30 (16), 1–4, 2003. [CrossRef] [Google Scholar]
  • Santin, G., V. Ivanchenko, E. Evans, P. Nieminen, and E. Daly, GRAS: a general-purpose 3-D modular simulation tool for space environment effects analysis, IEEE Trans. Nucl. Sci., 52 (6), 2294–2299, 2005. [CrossRef] [Google Scholar]
  • Seltzer, S.M., Updated calculations for routine space-shielding radiation dose estimates: SHIELDOSE-2, NIST Publication, NISTIR 5477, 1994. [Google Scholar]
  • Shea, M.A., and D.F. Smart, A summary of solar proton events, Solar Phys., 127, 297–320, 1990. [Google Scholar]
  • Siscoe, G., N.U. Crooker, and C.R. Clauer, Dst of the Carrington storm of 1859, Adv. Space Res., 38, 173–179, 2006. [Google Scholar]
  • Smart, D.F., M.A. Shea, and K.G. McCracken, The Carrington event: possible solar proton intensitytime profile, Adv. Space Res., 38, 215–225, 2006. [Google Scholar]
  • Stapor, W.J., J.P. Meyers, J.B. Langworthy, and E.L. Petersen, Two parameter Bendel model calculations for predicting proton induced upset, IEEE Trans. Nucl. Sci., 37 (6), 1966–1973, 1990. [CrossRef] [Google Scholar]
  • Straube, U., T. Berger, G. Reitz, R. Facius, C. Fuglesang, T. Reiter, V. Damann, and M. Tognini, Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA medical operations, Acta Astronaut., 66 (7–8), 963–973, 2010. [CrossRef] [Google Scholar]
  • Technical Standard NASA-STD-3001, Nasa space flight human system standard volume 1: Crew health. Technical report, National Aeronautics and Space Administration, 2007. [Google Scholar]
  • Townsend, L.W., E.N. Zapp, D.L. Stephen Jr., and J.L. Hoff, Carrington flare of 1959 624 as a prototypical worst-case solar energetic particle event, IEEE Trans. Nucl. Sci., 50 (6), 2307–2309, 2003. [Google Scholar]
  • Tylka, A.J., and W.F. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, 31st International Cosmic Ray Conference, Łódź, 2009. [Google Scholar]
  • Tylka, A.J., J.H. Adams, P.R. Boberg, B. Brownstein, W.F. Dietrich, E.O. Flueckiger, E.L. Peterson, M.A. Shea, D.F. Smart, and E.C. Smith, Creme96: A revision of the cosmic ray effects on micro-electronics code, IEEE Trans. Nucl. Sci., 44 (6), 2150–2160, 1997. [Google Scholar]
  • Wilson, J.W., F.A. Cucinotta, J.L. Shinn, L.C. Simonsen, R.R. Dubey, W.R. Jordan, T.D. Jones, C.K. Chang, and M.Y. Kim, Shielding from solar particle event exposures in deep space, Radiat. Meas., 30 (3), 361–382, 1999. [Google Scholar]
  • Wilson, J.W., F.A. Cucinotta, and C.J. Zeitlin, Spacesuit radiation shield design methods, 36th International Conference on Environmental Systems (ICES), Norfolk, Virginia, US, 2006. [Google Scholar]
  • Wolff, E.W., M. Bigler, M.A. Curran, J.E. Dibb, M.M. Frey, M.R. Legrand, and J.R. McConnell, The Carrington event not observed in most ice core nitrate records, Geophys. Res. Lett., 39, L08503, 2012. [Google Scholar]
  • Wu, H., J.L. Huff, R. Casey, M.-H. Kim, and F.A. Cucinotta, Chapter 5: risk of acute radiation syndromes due to solar particle events. In: J.C., McPhee, and J.B. Charles (Eds.), Human Health and Performance Risks of Space Exploration Missions, US, NASA, Lyndon B. Johnson Space Center, pp. 171–190, 2009. [Google Scholar]
  • Xapsos, M.A., G.P. Summers, J.L. Barth, E.G. Stassinopoulos, and E.A. Burke, Probability model for worst case solar proton event fluences, IEEE Trans. Nucl. Sci., 46 (6), 1481–1485, 1999. [Google Scholar]
  • Xapsos, M.A., J.L. Barth, E.G. Stassinopoulos, S.R. Messenger, R.J. Walters, G.P. Summers, and E.A. Burke, Characterizing solar proton energy spectra for radiation effects applications, IEEE Trans. Nucl. Sci., 47 (6), 2218–2223, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Xapsos, M.A., C. Stauffer, T. Jordan, J.L. Barth, and R.A. Mewaldt, Model for cumulative solar heavy ion energy and linear energy transfer spectra, IEEE Trans. Nucl. Sci., 54 (6), 1985–1989, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.