Open Access
Issue
J. Space Weather Space Clim.
Volume 4, 2014
Article Number A20
Number of page(s) 16
DOI https://doi.org/10.1051/swsc/2014017
Published online 04 June 2014
  • Adams, J.H., Cosmic ray effects on microelectronics, part 4, Technical Report Report 5901, Naval Research Laboratory, 1986.
  • Badhwar, G.D., and P.M. O’Neill, Galactic cosmic radiation model and its applications, Adv. Space Res., 17 (2), 7–17, 1996. [NASA ADS] [CrossRef] [PubMed]
  • Carrington, R.C., Description of a singular appearance seen on the Sun on September 1, 1859, Monthly Notices Royal Astronomical Society, 20, 13–15, 1860.
  • Chavy-Macdonald, M.-A., A. Menicucci, G. Santin, H. Evans, P.T.A. Jiggens, P. Nieminen, and S. Hovland, High-accuracy simulations of the ISS radiation environment and applications to interplanetary manned missions, IEEE Trans. Nucl. Sci., 60 (4), 2427–2434, 2013. [CrossRef]
  • Clauer, R.C., and G. Siscoe, The great historical geomagnetic storm of 1859: a modern look, Adv. Space Res., 38, 117–118, 2006. [CrossRef]
  • Cliver, E.W., and W.F. Dietrich, The 1859 space weather event revisited: limits of extreme activity, Journal of Space Weather and Space Climate, 3 (A31), 121–124, 2013. [CrossRef] [EDP Sciences]
  • Cucinotta, F.A., M.-H.Y. Kim, and L.J. Chappell, NASA/TP-2013–217375: Space radiation cancer risk projections and uncertainties 2012. In: Technical report, National Aeronautics and Space Administration, 2013.
  • Dietze, G., D.T. Bartlett, D.A. Cool, F.A. Cucinotta, X. Jia, I.R. McAulay, M. Pelliccioni, V. Petrov, G. Reitz, and T. Sato, Annals of the ICRP: Assessment of radiation exposure of astronauts in space, The International Commission on Radiological Protection, 42 (4), 1–339, 2013.
  • Dorman, L.I., L.I. Pustilnik, A. Sternlieb, I.G. Zukerman, A.V. Belov, E.A. Eroshenko, V.G. Yanke, H. Mavromichalaki, C. Sarlanis, G. Souvatzoglou, S. Tatsis, N. Iucci, G. Villoresi, Y. Fedorov, B.A. Shakhov, and M. Murat, Monitoring and forecasting of great solar proton events using the neutron monitor network in real time, IEEE Transactions on Plasma Science, 32 (4), 1478–1488, 2004. [CrossRef]
  • Durante, M., and F.A. Cucinotta, Physical basis of radiation protection in space travel, Rev. Mod. Phys., 83 (4), 1245–1281, 2011. [CrossRef]
  • Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and Russell A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections, J. Geophys. Res., 109 (A12105), 1–18, 2004.
  • ISO 15390, Space Environment (natural and artificial) – Galactic Cosmic Ray model, 2004
  • Jiggens, P.T.A., and S.B. Gabriel, Time distributions of solar energetic particle events: Are SEPEs really random? J. Geophys. Res., 114 (A10), A10105, 2009. [CrossRef]
  • Jiggens, P.T.A., S.B. Gabriel, D. Heynderickx, N. Crosby, A. Glover, and A. Hilgers, ESA SEPEM project: peak flux and fluence model, IEEE Trans. Nucl. Sci., 59 (4), 1066–1077, 2012. [CrossRef]
  • Jun, I., M.A. Xapsos, S.R. Messenger, E.A. Burke, R.J. Walkter, and T. Jordan, Nonionizing energy loss (NIEL) for device applications, IEEE Trans. Nucl. Sci., 50 (6), 1924–1928, 2003. [CrossRef]
  • Kahler, S.W., The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra, J. Geophys. Res., 106, 20947–20955, 2001. [NASA ADS] [CrossRef]
  • Kahler, S.W., Energetic particle acceleration by coronal mass ejections, Adv. Space Res., 32 (12), 2587–2596, 2003. [CrossRef]
  • Kim, M.-H.Y., K.A. George, and F.A. Cucinotta, Evaluation of skin cancer risk for lunar and mars missions, Adv. Space Res., 37, 1798–1803, 2006. [CrossRef]
  • King, J.H., Solar proton fluences for 1977–1983 space missions, J. Spacecraft Rockets, 11 (6), 401–408, 1974. [CrossRef]
  • Lario, D., M.B. Kallenrode, R.B. Decker, E.C. Roelof, S.M. Krimigis, A. Angels, and S. Blai, Radial and longitudinal dependences of solar 4–13 Mev and 27–37 Mev proton peak intensities and fluences: helios and imp-8 observations, Astrophys. J., 653, 1531–1544, 2006. [NASA ADS] [CrossRef]
  • Lei, F., P.R. Truscott, C.S. Dyer, B. Quaghebeur, D. Heynderickx, P. Nieminen, H. Evans, and E. Daly, MULASSIS: a Geant4-based multilayered shielding simulation tool, IEEE Trans. Nucl. Sci., 49 (6), 2788–2793, 2002. [CrossRef]
  • McCracken, K.G., G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, and M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1 Identification in polar ice 1561–1950, J. Geophys. Res. – Space Phys., 106 (A10), 21585–21598, 2001. [NASA ADS] [CrossRef]
  • Mewaldt, R.A., C.M.S. Cohen, A.W. Labrador, R.A. Leske, G.M. Mason, M.I. Desai, M.D. Looper, J.E. Mazur, R.S. Selesnick, and D.K. Haggerty, Proton, helium, and electron spectra during the large solar particle events of October–November 2003, J. Geophys. Res., 110, A09S18, 2005.
  • Neal, J.S., T.F. Nichols, and L.W. Townsend, Importance of predicting the dose temporal profile for large solar energetic particle events, Space Weather, 6 (1), S09004, 2008. [CrossRef]
  • Nymmik, R.A., The lag of galactic cosmic ray modulation: conformity to general regularities and influence on particle energy spectra, Adv. Space Res., 26 (11), 1875–1878, 1996. [CrossRef]
  • Nymmik, R.A., Improved environment radiation models, Adv. Space Res., 40, 313–320, 2007. [CrossRef]
  • Nymmik, R.A., M.I. Panasyuk, and A.A. Suslov, Galactic cosmic ray flux simulation and prediction, Adv. Space Res., 17 (2), 19–30, 1996. [CrossRef]
  • Oh, S.Y., J.W. Bieber, J. Clem, P. Evenson, R. Pyle, Y. Yi, and Y.-K. Kim, South pole neutron monitor forecasting of solar proton radiation intensity, Space Weather, 10, S05004, 2012. [CrossRef]
  • O’Neill, P.M., Badhwar-O’Neill galactic cosmic ray model update based on advanced composition explorer (ace) energy spectra from 1997 to present, Adv. Space Res., 37, 1727–1733, 2006. [NASA ADS] [CrossRef]
  • O’Neill, P.M., Badhwar-O’Neill 2010 galactic cosmic ray flux model – revised, IEEE Trans. Nucl. Sci., 57, 3148–3153, 2010.
  • Petersen, E.L., The SEU figure of merit and proton upset rate calculations, IEEE Trans. Nucl. Sci., 45 (6), 2550–2562, 1998. [CrossRef]
  • Rosenqvist, L., and A. Hilgers, Sensitivity of a statistical solar proton fluence model to the size of the event data set, Geophys. Res. Lett., 30 (16), 1–4, 2003. [CrossRef]
  • Santin, G., V. Ivanchenko, E. Evans, P. Nieminen, and E. Daly, GRAS: a general-purpose 3-D modular simulation tool for space environment effects analysis, IEEE Trans. Nucl. Sci., 52 (6), 2294–2299, 2005. [CrossRef]
  • Seltzer, S.M., Updated calculations for routine space-shielding radiation dose estimates: SHIELDOSE-2, NIST Publication, NISTIR 5477, 1994.
  • Shea, M.A., and D.F. Smart, A summary of solar proton events, Solar Phys., 127, 297–320, 1990. [CrossRef]
  • Siscoe, G., N.U. Crooker, and C.R. Clauer, Dst of the Carrington storm of 1859, Adv. Space Res., 38, 173–179, 2006. [CrossRef]
  • Smart, D.F., M.A. Shea, and K.G. McCracken, The Carrington event: possible solar proton intensitytime profile, Adv. Space Res., 38, 215–225, 2006. [CrossRef]
  • Stapor, W.J., J.P. Meyers, J.B. Langworthy, and E.L. Petersen, Two parameter Bendel model calculations for predicting proton induced upset, IEEE Trans. Nucl. Sci., 37 (6), 1966–1973, 1990. [CrossRef]
  • Straube, U., T. Berger, G. Reitz, R. Facius, C. Fuglesang, T. Reiter, V. Damann, and M. Tognini, Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA medical operations, Acta Astronaut., 66 (7–8), 963–973, 2010. [CrossRef]
  • Technical Standard NASA-STD-3001, Nasa space flight human system standard volume 1: Crew health. Technical report, National Aeronautics and Space Administration, 2007.
  • Townsend, L.W., E.N. Zapp, D.L. Stephen Jr., and J.L. Hoff, Carrington flare of 1959 624 as a prototypical worst-case solar energetic particle event, IEEE Trans. Nucl. Sci., 50 (6), 2307–2309, 2003. [CrossRef]
  • Tylka, A.J., and W.F. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, 31st International Cosmic Ray Conference, Łódź, 2009.
  • Tylka, A.J., J.H. Adams, P.R. Boberg, B. Brownstein, W.F. Dietrich, E.O. Flueckiger, E.L. Peterson, M.A. Shea, D.F. Smart, and E.C. Smith, Creme96: A revision of the cosmic ray effects on micro-electronics code, IEEE Trans. Nucl. Sci., 44 (6), 2150–2160, 1997. [NASA ADS] [CrossRef]
  • Wilson, J.W., F.A. Cucinotta, J.L. Shinn, L.C. Simonsen, R.R. Dubey, W.R. Jordan, T.D. Jones, C.K. Chang, and M.Y. Kim, Shielding from solar particle event exposures in deep space, Radiat. Meas., 30 (3), 361–382, 1999. [CrossRef]
  • Wilson, J.W., F.A. Cucinotta, and C.J. Zeitlin, Spacesuit radiation shield design methods, 36th International Conference on Environmental Systems (ICES), Norfolk, Virginia, US, 2006.
  • Wolff, E.W., M. Bigler, M.A. Curran, J.E. Dibb, M.M. Frey, M.R. Legrand, and J.R. McConnell, The Carrington event not observed in most ice core nitrate records, Geophys. Res. Lett., 39, L08503, 2012. [NASA ADS] [CrossRef]
  • Wu, H., J.L. Huff, R. Casey, M.-H. Kim, and F.A. Cucinotta, Chapter 5: risk of acute radiation syndromes due to solar particle events. In: J.C., McPhee, and J.B. Charles (Eds.), Human Health and Performance Risks of Space Exploration Missions, US, NASA, Lyndon B. Johnson Space Center, pp. 171–190, 2009.
  • Xapsos, M.A., G.P. Summers, J.L. Barth, E.G. Stassinopoulos, and E.A. Burke, Probability model for worst case solar proton event fluences, IEEE Trans. Nucl. Sci., 46 (6), 1481–1485, 1999. [NASA ADS] [CrossRef]
  • Xapsos, M.A., J.L. Barth, E.G. Stassinopoulos, S.R. Messenger, R.J. Walters, G.P. Summers, and E.A. Burke, Characterizing solar proton energy spectra for radiation effects applications, IEEE Trans. Nucl. Sci., 47 (6), 2218–2223, 2000. [CrossRef]
  • Xapsos, M.A., C. Stauffer, T. Jordan, J.L. Barth, and R.A. Mewaldt, Model for cumulative solar heavy ion energy and linear energy transfer spectra, IEEE Trans. Nucl. Sci., 54 (6), 1985–1989, 2007. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.