Issue |
J. Space Weather Space Clim.
Volume 4, 2014
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
|
|
---|---|---|
Article Number | A35 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/swsc/2014033 | |
Published online | 20 November 2014 |
- Barthélemy, M., L. Lamy, H. Menager, M. Schulik, D. Bernard, H. Abgrall, E. Roueff, G. Cessateur, R. Prange, and J. Lilensten. Dayglow and auroral emissions of Uranus in H2 FUV bands, Icarus, 239, 160–167, 2014, DOI: 10.1016/j.icarus.2014.05.035. [CrossRef] [Google Scholar]
- Barthélemy, M., J. Lilensten, and C. Parkinson. H2 vibrational temperatures in the upper atmosphere of Jupiter, A&A, 437, 329–331, 2005, DOI: 10.1051/0004-6361:20040257. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- BenMoussa, A., S. Gissot, U. Schühle, G. Del Zanna, F. Auchère, et al. On-orbit degradation of solar instruments, Solar Phys., 288, 389–434, 2013, DOI: 10.1007/s11207-013-0290-z. [CrossRef] [Google Scholar]
- Bertaux, J.-L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, and O. Korablev. Discovery of an aurora on Mars, Nature, 435, 790–794, 2005, DOI: 10.1038/nature03603. [CrossRef] [Google Scholar]
- Cessateur, G., Reconstruction du spectre UV solaire en vue de la caractérisation des environnements plantaires. Ph.D. thesis, Université d’Orléans (in French), 2011. [Google Scholar]
- Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J. Hochedez, and M. Snow. Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, 2011, DOI: 10.1051/0004-6361/201015903. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cessateur, G., J. Lilensten, M. Barthélémy, T. Dudok de Wit, C. Simon Wedlund, G. Gronoff, H. Ménager, and M. Kretzschmar. Photoabsorption in Ganymede’s atmosphere. Icarus, 218, 308–319, 2012a, DOI: 10.1016/j.icarus.2011.11.025. [CrossRef] [Google Scholar]
- Cessateur, G., J. Lilensten, T. Dudok de Wit, A. BenMoussa, and M. Kretzschmar. New observation strategies for the solar UV spectral irradiance. J. Space Weather Space Clim., 2, A16, 2012b, DOI: 10.1051/swsc/2012016. [CrossRef] [EDP Sciences] [Google Scholar]
- Chaufray, J.Y., F. Leblanc, E. Quémerais, and J.L. Bertaux. Martian oxygen density at the exobase deduced from O I 130.4-nm observations by Spectroscopy for the investigation of the characteristics of the atmosphere of Mars on Mars Express. J. Geophys. Res. (Planets), 114, E02006, 2009, DOI: 10.1029/2008JE003130. [NASA ADS] [CrossRef] [Google Scholar]
- Crane, P.C., L.E. Floyd, J.W. Cook, L.C. Herring, E.H. Avrett, and D.K. Prinz. The center-to-limb behavior of solar active regions at ultraviolet wavelengths. A&A, 419, 735–746, 2004, DOI: 10.1051/0004-6361:20040012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Curdt, W., and H. Tian. Hydrogen Lyman Emission through the Solar Cycle. In: S.R., Cranmer, J.T. Hoeksema, and J.L. Kohl, Editors, SOHO-23: understanding a peculiar solar minimum, vol. 428 of Astronomical Society of the Pacific Conference Series, 81, 2010. [Google Scholar]
- Curdt, W., H. Tian, L. Teriaca, U. Schühle, and P. Lemaire. The Ly-α profile and center-to-limb variation of the quiet Sun. A&A, 492, L9–L12, 2008, DOI: 10.1051/0004-6361:200810868. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [Google Scholar]
- Dominique, M., J.-F. Hochedez, W. Schmutz, I.E. Dammasch, A.I. Shapiro, M. Kretzschmar, A.N. Zhukov, D. Gillotay, Y. Stockman, and A. BenMoussa. The LYRA instrument onboard PROBA2: description and in-flight performance. Solar Phys., 286, 21–42, 2013, DOI: 10.1007/s11207-013-0252-5. [Google Scholar]
- Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, 10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef] [Google Scholar]
- Feldman, P.D., E.B. Burgh, S.T. Durrance, and A.F. Davidsen. Far-ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins Ultraviolet Telescope on Astro-2. Astrophys. J., 538, 395–400, 2000, DOI: 10.1086/309125. [Google Scholar]
- Floyd, L., J. Newmark, J. Cook, L. Herring, and D. McMullin. Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Sol. Terr. Phys., 67, 3–15, 2005, DOI: 10.1016/j.jastp.2004.07.013. [NASA ADS] [CrossRef] [Google Scholar]
- France, K., C.S. Froning, J.L. Linsky, A. Roberge, J.T. Stocke, et al. The ultraviolet radiation environment around M dwarf exoplanet host stars. Astrophys. J., 763, 149, 2013, DOI: 10.1088/0004-637X/763/2/149. [CrossRef] [Google Scholar]
- Galand, M., L. Moore, I. Mueller-Wodarg, M. Mendillo, and S. Miller. Response of Saturn’s auroral ionosphere to electron precipitation: electron density, electron temperature, and electrical conductivity. J. Geophys. Res. (Space Physics), 116, A09306, 2011, DOI: 10.1029/2010JA016412. [CrossRef] [Google Scholar]
- Gómez de Castro, A.I., T. Appourchaux, M.A. Barstow, M. Barthelemy, F. Baudin, et al. Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory. Astrophys. Space Sci., 354 (1), 229, 2014, DOI: 10.1007/s10509-014-1942-7. [CrossRef] [Google Scholar]
- Grodent, D., J.H. Waite Jr., and J.-C. Gerard. A self-consistent model of the Jovian auroral thermal structure. J. Geophys. Res., 106, 12933–12952, 2001, DOI: 10.1029/2000JA900129. [Google Scholar]
- Gronoff, G., J. Lilensten, L. Desorgher, and E. Flückiger. Ionization processes in the atmosphere of Titan. I. Ionization in the whole atmosphere. A&A, 506, 955–964, 2009a, DOI: 10.1051/0004-636/2009123711. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gronoff, G., J. Lilensten, and R. Modolo. Ionization processes in the atmosphere of Titan. II. Electron precipitation along magnetic field lines. A&A, 506, 965–970, 2009b, DOI: 10.1051/0004-6361/200912125. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gronoff, G., J. Lilensten, C. Simon, M. Barthélemy, F. Leblanc, and O. Dutuit. Modelling the Venusian airglow. A&A, 482, 1015–1029, 2008, DOI: 10.1051/0004-6361:20077503. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gronoff, G., C. Simon Wedlund, C.J. Mertens, M. Barthélemy, R.J. Lillis, and O. Witasse. Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. J. Geophys. Res. (Space Physics), 117, A05309, 2012, DOI: 10.1029/2011JA017308. [Google Scholar]
- Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder. An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696–699, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hinteregger, H.E. Representations of solar EUV fluxes for aeronomical applications. Adv. Space Res., 1, 39–52, 1981, DOI: 10.1016/0273-1177(81)90416-6. [Google Scholar]
- Lamy, L., R. Prangé, K.C. Hansen, J.T. Clarke, P. Zarka, et al. Earth-based detection of Uranus’ aurorae. Geophys. Res. Lett., 39, L07105, 2012, DOI: 10.1029/2012GL051312. [CrossRef] [Google Scholar]
- Lean, J.L., H.P. Warren, J.T. Mariska, and J. Bishop. A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather. J. Geophys. Res. (Space Phys.), 108, 1059, 2003, DOI: 10.1029/2001JA009238. [CrossRef] [Google Scholar]
- Lean, J.L., T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, and J.S. Evans. Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. (Space Phys.), 116, A01102, 2011, DOI: 10.1029/2010JA015901. [Google Scholar]
- Lecavelier Des Etangs, A., D. Ehrenreich, A. Vidal-Madjar, G.E. Ballester, J.-M. Désert, R. Ferlet, G. Hébrard, D.K. Sing, K.-O. Tchakoumegni, and S. Udry. Evaporation of the planet HD 189733b observed in H I Lyman-α. A&A, 514, A72, 2010, DOI: 10.1051/00046361/200913347. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Lemaire, P., C. Emerich, J.-C. Vial, W. Curdt, U. Schühle, and K. Wilhelm. Variation of the full Sun hydrogen Lyman profiles through solar cycle 23. Adv. Space Res., 35, 384–387, 2005, DOI: 10.1016/j.asr.2004.11.004. [NASA ADS] [CrossRef] [Google Scholar]
- Lilensten, J., and P.L. Blelly. The TEC and F2 parameters as tracers of the ionosphere and thermosphere. J. Atmos. Sol. Terr. Phys, 64, 775–793, 2002, DOI: 10.1016/S1364-6826(02)00079-2. [Google Scholar]
- Lilensten, J., T. Dudokdewit, M. Kretzschmar, P. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère. Review on the solar spectral variability in the EUV for space weather purposes. Ann. Geophys., 26, 269–279, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Lilensten, J., C. Simon, O. Witasse, O. Dutuit, R. Thissen, and C. Alcaraz. A fast computation of the diurnal secondary ion production in the ionosphere of Titan. Icarus, 174, 285–288, 2005a, DOI: 10.1016/j.icarus.2004.12.002. [NASA ADS] [CrossRef] [Google Scholar]
- Lilensten, J., O. Witasse, C. Simon, H. Soldi-Lose, O. Dutuit, R. Thissen, and C. Alcaraz. Prediction of a N2++ layer in the upper atmosphere of Titan. Geophys. Res. Lett., 32, L03, 203, 2005b, DOI: 10.1029/2004GL021432. [Google Scholar]
- Linsky, J.L., K. France, and T. Ayres. Computing intrinsic LYα fluxes of F5 V to M5 V Stars. Astrophys. J., 766, 69, 2013, DOI: 10.1088/0004-637X/766/2/69. [Google Scholar]
- Liu, W., and A. Dalgarno. The ultraviolet spectrum of the Jovian dayglow. Astrophys. J., 462, 502, 1996, DOI: 10.1086/177168. [Google Scholar]
- Marconi, M.L. Akinetic model of Ganymede’s atmosphere. Icarus, 190, 155–174, 2007, DOI: 10.1016/j.icarus.2007.02.016. [NASA ADS] [CrossRef] [Google Scholar]
- Menager, H., M. Barthélemy, T. Koskinen, J. Lilensten, D. Ehrenreich, and C.D. Parkinson. Calculation of the H Lyman α emission of the hot Jupiters HD 209458b and HD 189733b. Icarus, 226, 1709–1718, 2013, DOI: 10.1016/j.icarus.2013.02.028. [NASA ADS] [CrossRef] [Google Scholar]
- Menager, H., M. Barthélemy, and J. Lilensten. H Lyman α line in Jovian aurorae: electron transport and radiative transfer coupled modelling. A&A, 509, A56, 2010, DOI: 10.1051/0004-6361/200912952. [CrossRef] [EDP Sciences] [Google Scholar]
- Mikhailov, A., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri. Retrieval of thermospheric parameters from routine ionospheric observations: assessment of methods performance at mid-latitudes daytime hours. J. Space Weather Space Clim., 2, A03, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
- Richards, P.G., J.A. Fennelly, and D.G. Torr. EUVAC: a solar EUV flux model for aeronomic calculations. J. Geophys. Res., 99, 8981–8992, 1994, DOI: 10.1029/94JA00518. [Google Scholar]
- Richards, P.G., T.N. Woods, and W.K. Peterson. HEUVAC: a new high resolution solar EUV proxy model. Advances in Space Research, 37, 315–322, 2006, DOI: 10.1016/j.asr.2005.06.031. [Google Scholar]
- Rottman, G. The SORCE mission. Solar Phys., 230, 7–25, 2005, DOI: 10.1007/s11207-005-8112-6. [Google Scholar]
- Sanz-Forcada, J., G. Micela, I. Ribas, A.M.T. Pollock, C. Eiroa, A. Velasco, E. Solano, and D. García-Álvarez. Estimation of the XUV radiation onto close planets and their evaporation. A&A, 532, A6, 2011, DOI: 10.1051/0004-6361/201116594. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Shematovich, V.I., D.V. Bisikalo, J.-C. Gérard, C. Cox, S.W. Bougher, and F. Leblanc. Monte Carlo model of electron transport forthe calculation of Mars dayglow emissions. J. Geophys. Res. (Planets), 113, E02011, 2008, DOI: 10.1029/2007JE002938. [CrossRef] [Google Scholar]
- Simon, C., O. Witasse, F. Leblanc, G. Gronoff, and J. Bertaux. Dayglow on Mars: Kinetic modelling with SPICAM UV limb data. Planet. Space Sci., 57, 1008–1021, 2009, DOI: 10.1016/j.pss.2008.08.012. [CrossRef] [Google Scholar]
- Tian, H., W. Curdt, E. Marsch, and U. Schühle. Hydrogen Lyman-α and Lyman-β spectral radiance profiles in the quiet Sun. A&A, 504, 239–248, 2009, DOI: 10.1051/0004-6361/200811445. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Tobiska, W.K., T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, and O.R. White. The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol. Terr. Phys., 62, 1233–1250, 2000, DOI: 10.1016/S1364-6826(00)00070-5. [Google Scholar]
- Vernazza, J.E., E.H. Avrett, and R. Loeser. Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser., 45, 635–725, 1981, DOI: 10.1086/190731. [Google Scholar]
- Vidal-Madjar, A., A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor. An extended upper atmosphere around the extrasolar planet HD209458b. Nature, 422, 143–146, 2003, DOI: 10.1038/nature01448. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Witasse, O., O. Dutuit, J. Lilensten, R. Thissen, and J. Zabka, et al. Prediction of a CO22+ layer in the atmosphere of Mars. Geophys. Res. Lett., 29 (8), 2002, 12–63, DOI: 10.1029/2002GL014781. [Google Scholar]
- Witasse, O., O. Dutuit, J. Lilensten, R. Thissen, and J. Zabka, et al. Correction to “Prediction of a CO22+ layer in the atmosphere of Mars”. Geophys. Res. Lett., 30 (7), 1360, 2003, DOI: 10.1029/2003GL017007. [Google Scholar]
- Woods, T.N., P.C. Chamberlin, W.K. Peterson, R.R. Meier, and P.G. Richards, et al. XUV Photometer System (XPS): improved solar irradiance algorithm using CHIANTI Spectral Models. Solar Phys., 250, 235–267, 2008, DOI: 10.1007/s11207-008-9196-6. [Google Scholar]
- Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res. (Space Phys.), 110, A01312, 2005, DOI: 10.1029/2004JA010765. [CrossRef] [Google Scholar]
- Yelle, R.V., J.C. Mcconnell, and D.F. Strobel. The far ultraviolet reflection spectrum of Uranus – Results from the Voyager encounter. Icarus, 77, 439–456, 1989, DOI: 10.1016/0019-1035(89)90098-5. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.