Issue
J. Space Weather Space Clim.
Volume 4, 2014
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A35
Number of page(s) 8
DOI https://doi.org/10.1051/swsc/2014033
Published online 20 November 2014
  • Barthélemy, M., L. Lamy, H. Menager, M. Schulik, D. Bernard, H. Abgrall, E. Roueff, G. Cessateur, R. Prange, and J. Lilensten. Dayglow and auroral emissions of Uranus in H2 FUV bands, Icarus, 239, 160–167, 2014, DOI: 10.1016/j.icarus.2014.05.035. [CrossRef]
  • Barthélemy, M., J. Lilensten, and C. Parkinson. H2 vibrational temperatures in the upper atmosphere of Jupiter, A&A, 437, 329–331, 2005, DOI: 10.1051/0004-6361:20040257. [NASA ADS] [CrossRef] [EDP Sciences]
  • BenMoussa, A., S. Gissot, U. Schühle, G. Del Zanna, F. Auchère, et al. On-orbit degradation of solar instruments, Solar Phys., 288, 389–434, 2013, DOI: 10.1007/s11207-013-0290-z. [NASA ADS] [CrossRef]
  • Bertaux, J.-L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, and O. Korablev. Discovery of an aurora on Mars, Nature, 435, 790–794, 2005, DOI: 10.1038/nature03603. [CrossRef]
  • Cessateur, G., Reconstruction du spectre UV solaire en vue de la caractérisation des environnements plantaires. Ph.D. thesis, Université d’Orléans (in French), 2011.
  • Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J. Hochedez, and M. Snow. Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, 2011, DOI: 10.1051/0004-6361/201015903. [NASA ADS] [CrossRef] [EDP Sciences]
  • Cessateur, G., J. Lilensten, M. Barthélémy, T. Dudok de Wit, C. Simon Wedlund, G. Gronoff, H. Ménager, and M. Kretzschmar. Photoabsorption in Ganymede’s atmosphere. Icarus, 218, 308–319, 2012a, DOI: 10.1016/j.icarus.2011.11.025. [CrossRef]
  • Cessateur, G., J. Lilensten, T. Dudok de Wit, A. BenMoussa, and M. Kretzschmar. New observation strategies for the solar UV spectral irradiance. J. Space Weather Space Clim., 2, A16, 2012b, DOI: 10.1051/swsc/2012016. [CrossRef] [EDP Sciences]
  • Chaufray, J.Y., F. Leblanc, E. Quémerais, and J.L. Bertaux. Martian oxygen density at the exobase deduced from O I 130.4-nm observations by Spectroscopy for the investigation of the characteristics of the atmosphere of Mars on Mars Express. J. Geophys. Res. (Planets), 114, E02006, 2009, DOI: 10.1029/2008JE003130. [CrossRef]
  • Crane, P.C., L.E. Floyd, J.W. Cook, L.C. Herring, E.H. Avrett, and D.K. Prinz. The center-to-limb behavior of solar active regions at ultraviolet wavelengths. A&A, 419, 735–746, 2004, DOI: 10.1051/0004-6361:20040012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Curdt, W., and H. Tian. Hydrogen Lyman Emission through the Solar Cycle. In: S.R., Cranmer, J.T. Hoeksema, and J.L. Kohl, Editors, SOHO-23: understanding a peculiar solar minimum, vol. 428 of Astronomical Society of the Pacific Conference Series, 81, 2010.
  • Curdt, W., H. Tian, L. Teriaca, U. Schühle, and P. Lemaire. The Ly-α profile and center-to-limb variation of the quiet Sun. A&A, 492, L9–L12, 2008, DOI: 10.1051/0004-6361:200810868. [NASA ADS] [CrossRef] [EDP Sciences]
  • Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [NASA ADS] [CrossRef]
  • Dominique, M., J.-F. Hochedez, W. Schmutz, I.E. Dammasch, A.I. Shapiro, M. Kretzschmar, A.N. Zhukov, D. Gillotay, Y. Stockman, and A. BenMoussa. The LYRA instrument onboard PROBA2: description and in-flight performance. Solar Phys., 286, 21–42, 2013, DOI: 10.1007/s11207-013-0252-5. [NASA ADS] [CrossRef]
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, 10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef]
  • Feldman, P.D., E.B. Burgh, S.T. Durrance, and A.F. Davidsen. Far-ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins Ultraviolet Telescope on Astro-2. Astrophys. J., 538, 395–400, 2000, DOI: 10.1086/309125. [NASA ADS] [CrossRef]
  • Floyd, L., J. Newmark, J. Cook, L. Herring, and D. McMullin. Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Sol. Terr. Phys., 67, 3–15, 2005, DOI: 10.1016/j.jastp.2004.07.013. [NASA ADS] [CrossRef]
  • France, K., C.S. Froning, J.L. Linsky, A. Roberge, J.T. Stocke, et al. The ultraviolet radiation environment around M dwarf exoplanet host stars. Astrophys. J., 763, 149, 2013, DOI: 10.1088/0004-637X/763/2/149. [NASA ADS] [CrossRef]
  • Galand, M., L. Moore, I. Mueller-Wodarg, M. Mendillo, and S. Miller. Response of Saturn’s auroral ionosphere to electron precipitation: electron density, electron temperature, and electrical conductivity. J. Geophys. Res. (Space Physics), 116, A09306, 2011, DOI: 10.1029/2010JA016412. [CrossRef]
  • Gómez de Castro, A.I., T. Appourchaux, M.A. Barstow, M. Barthelemy, F. Baudin, et al. Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory. Astrophys. Space Sci., 354 (1), 229, 2014, DOI: 10.1007/s10509-014-1942-7. [CrossRef]
  • Grodent, D., J.H. Waite Jr., and J.-C. Gerard. A self-consistent model of the Jovian auroral thermal structure. J. Geophys. Res., 106, 12933–12952, 2001, DOI: 10.1029/2000JA900129. [NASA ADS] [CrossRef]
  • Gronoff, G., J. Lilensten, L. Desorgher, and E. Flückiger. Ionization processes in the atmosphere of Titan. I. Ionization in the whole atmosphere. A&A, 506, 955–964, 2009a, DOI: 10.1051/0004-636/2009123711. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gronoff, G., J. Lilensten, and R. Modolo. Ionization processes in the atmosphere of Titan. II. Electron precipitation along magnetic field lines. A&A, 506, 965–970, 2009b, DOI: 10.1051/0004-6361/200912125. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gronoff, G., J. Lilensten, C. Simon, M. Barthélemy, F. Leblanc, and O. Dutuit. Modelling the Venusian airglow. A&A, 482, 1015–1029, 2008, DOI: 10.1051/0004-6361:20077503. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gronoff, G., C. Simon Wedlund, C.J. Mertens, M. Barthélemy, R.J. Lillis, and O. Witasse. Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. J. Geophys. Res. (Space Physics), 117, A05309, 2012, DOI: 10.1029/2011JA017308.
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder. An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696–699, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed]
  • Hinteregger, H.E. Representations of solar EUV fluxes for aeronomical applications. Adv. Space Res., 1, 39–52, 1981, DOI: 10.1016/0273-1177(81)90416-6. [NASA ADS] [CrossRef] [PubMed]
  • Lamy, L., R. Prangé, K.C. Hansen, J.T. Clarke, P. Zarka, et al. Earth-based detection of Uranus’ aurorae. Geophys. Res. Lett., 39, L07105, 2012, DOI: 10.1029/2012GL051312. [CrossRef]
  • Lean, J.L., H.P. Warren, J.T. Mariska, and J. Bishop. A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather. J. Geophys. Res. (Space Phys.), 108, 1059, 2003, DOI: 10.1029/2001JA009238. [CrossRef]
  • Lean, J.L., T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, and J.S. Evans. Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. (Space Phys.), 116, A01102, 2011, DOI: 10.1029/2010JA015901. [CrossRef]
  • Lecavelier Des Etangs, A., D. Ehrenreich, A. Vidal-Madjar, G.E. Ballester, J.-M. Désert, R. Ferlet, G. Hébrard, D.K. Sing, K.-O. Tchakoumegni, and S. Udry. Evaporation of the planet HD 189733b observed in H I Lyman-α. A&A, 514, A72, 2010, DOI: 10.1051/00046361/200913347. [NASA ADS] [CrossRef] [EDP Sciences]
  • Lemaire, P., C. Emerich, J.-C. Vial, W. Curdt, U. Schühle, and K. Wilhelm. Variation of the full Sun hydrogen Lyman profiles through solar cycle 23. Adv. Space Res., 35, 384–387, 2005, DOI: 10.1016/j.asr.2004.11.004. [NASA ADS] [CrossRef]
  • Lilensten, J., and P.L. Blelly. The TEC and F2 parameters as tracers of the ionosphere and thermosphere. J. Atmos. Sol. Terr. Phys, 64, 775–793, 2002, DOI: 10.1016/S1364-6826(02)00079-2. [NASA ADS] [CrossRef]
  • Lilensten, J., T. Dudokdewit, M. Kretzschmar, P. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère. Review on the solar spectral variability in the EUV for space weather purposes. Ann. Geophys., 26, 269–279, 2008. [NASA ADS] [CrossRef]
  • Lilensten, J., C. Simon, O. Witasse, O. Dutuit, R. Thissen, and C. Alcaraz. A fast computation of the diurnal secondary ion production in the ionosphere of Titan. Icarus, 174, 285–288, 2005a, DOI: 10.1016/j.icarus.2004.12.002. [NASA ADS] [CrossRef]
  • Lilensten, J., O. Witasse, C. Simon, H. Soldi-Lose, O. Dutuit, R. Thissen, and C. Alcaraz. Prediction of a N2++ layer in the upper atmosphere of Titan. Geophys. Res. Lett., 32, L03, 203, 2005b, DOI: 10.1029/2004GL021432. [NASA ADS] [CrossRef]
  • Linsky, J.L., K. France, and T. Ayres. Computing intrinsic LYα fluxes of F5 V to M5 V Stars. Astrophys. J., 766, 69, 2013, DOI: 10.1088/0004-637X/766/2/69. [NASA ADS] [CrossRef]
  • Liu, W., and A. Dalgarno. The ultraviolet spectrum of the Jovian dayglow. Astrophys. J., 462, 502, 1996, DOI: 10.1086/177168. [NASA ADS] [CrossRef]
  • Marconi, M.L. Akinetic model of Ganymede’s atmosphere. Icarus, 190, 155–174, 2007, DOI: 10.1016/j.icarus.2007.02.016. [CrossRef]
  • Menager, H., M. Barthélemy, T. Koskinen, J. Lilensten, D. Ehrenreich, and C.D. Parkinson. Calculation of the H Lyman α emission of the hot Jupiters HD 209458b and HD 189733b. Icarus, 226, 1709–1718, 2013, DOI: 10.1016/j.icarus.2013.02.028. [NASA ADS] [CrossRef]
  • Menager, H., M. Barthélemy, and J. Lilensten. H Lyman α line in Jovian aurorae: electron transport and radiative transfer coupled modelling. A&A, 509, A56, 2010, DOI: 10.1051/0004-6361/200912952. [CrossRef] [EDP Sciences]
  • Mikhailov, A., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri. Retrieval of thermospheric parameters from routine ionospheric observations: assessment of methods performance at mid-latitudes daytime hours. J. Space Weather Space Clim., 2, A03, 2012. [CrossRef] [EDP Sciences]
  • Richards, P.G., J.A. Fennelly, and D.G. Torr. EUVAC: a solar EUV flux model for aeronomic calculations. J. Geophys. Res., 99, 8981–8992, 1994, DOI: 10.1029/94JA00518. [NASA ADS] [CrossRef]
  • Richards, P.G., T.N. Woods, and W.K. Peterson. HEUVAC: a new high resolution solar EUV proxy model. Advances in Space Research, 37, 315–322, 2006, DOI: 10.1016/j.asr.2005.06.031. [NASA ADS] [CrossRef]
  • Rottman, G. The SORCE mission. Solar Phys., 230, 7–25, 2005, DOI: 10.1007/s11207-005-8112-6. [NASA ADS] [CrossRef]
  • Sanz-Forcada, J., G. Micela, I. Ribas, A.M.T. Pollock, C. Eiroa, A. Velasco, E. Solano, and D. García-Álvarez. Estimation of the XUV radiation onto close planets and their evaporation. A&A, 532, A6, 2011, DOI: 10.1051/0004-6361/201116594. [NASA ADS] [CrossRef] [EDP Sciences]
  • Shematovich, V.I., D.V. Bisikalo, J.-C. Gérard, C. Cox, S.W. Bougher, and F. Leblanc. Monte Carlo model of electron transport forthe calculation of Mars dayglow emissions. J. Geophys. Res. (Planets), 113, E02011, 2008, DOI: 10.1029/2007JE002938. [CrossRef]
  • Simon, C., O. Witasse, F. Leblanc, G. Gronoff, and J. Bertaux. Dayglow on Mars: Kinetic modelling with SPICAM UV limb data. Planet. Space Sci., 57, 1008–1021, 2009, DOI: 10.1016/j.pss.2008.08.012. [CrossRef]
  • Tian, H., W. Curdt, E. Marsch, and U. Schühle. Hydrogen Lyman-α and Lyman-β spectral radiance profiles in the quiet Sun. A&A, 504, 239–248, 2009, DOI: 10.1051/0004-6361/200811445. [NASA ADS] [CrossRef] [EDP Sciences]
  • Tobiska, W.K., T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, and O.R. White. The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol. Terr. Phys., 62, 1233–1250, 2000, DOI: 10.1016/S1364-6826(00)00070-5. [NASA ADS] [CrossRef]
  • Vernazza, J.E., E.H. Avrett, and R. Loeser. Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser., 45, 635–725, 1981, DOI: 10.1086/190731. [NASA ADS] [CrossRef]
  • Vidal-Madjar, A., A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor. An extended upper atmosphere around the extrasolar planet HD209458b. Nature, 422, 143–146, 2003, DOI: 10.1038/nature01448. [NASA ADS] [CrossRef] [PubMed]
  • Witasse, O., O. Dutuit, J. Lilensten, R. Thissen, and J. Zabka, et al. Prediction of a CO22+ layer in the atmosphere of Mars. Geophys. Res. Lett., 29 (8), 2002, 12–63, DOI: 10.1029/2002GL014781. [CrossRef]
  • Witasse, O., O. Dutuit, J. Lilensten, R. Thissen, and J. Zabka, et al. Correction to “Prediction of a CO22+ layer in the atmosphere of Mars”. Geophys. Res. Lett., 30 (7), 1360, 2003, DOI: 10.1029/2003GL017007. [CrossRef]
  • Woods, T.N., P.C. Chamberlin, W.K. Peterson, R.R. Meier, and P.G. Richards, et al. XUV Photometer System (XPS): improved solar irradiance algorithm using CHIANTI Spectral Models. Solar Phys., 250, 235–267, 2008, DOI: 10.1007/s11207-008-9196-6. [NASA ADS] [CrossRef]
  • Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res. (Space Phys.), 110, A01312, 2005, DOI: 10.1029/2004JA010765. [NASA ADS] [CrossRef]
  • Yelle, R.V., J.C. Mcconnell, and D.F. Strobel. The far ultraviolet reflection spectrum of Uranus – Results from the Voyager encounter. Icarus, 77, 439–456, 1989, DOI: 10.1016/0019-1035(89)90098-5. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.