Open Access
Issue |
J. Space Weather Space Clim.
Volume 4, 2014
|
|
---|---|---|
Article Number | A31 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2014028 | |
Published online | 21 October 2014 |
- Baker, D.N., A.N. Jaynes, X. Li, M.G. Henderson, S.G. Kanekal, et al., Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations, Geophys. Res. Lett., 41, 1351–1358, DOI: 10.1002/2013GL058942, 2014. [CrossRef] [Google Scholar]
- Belehaki, A., L. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project, Acta Geophys., 55 (3), 398–409, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Bergeot, N., C. Bruyninx, P. Defraigne, S. Pireaux, J. Legrand, E. Pottiaux, and Q. Baire, Impact of the Halloween 2003 Ionospheric Storm on Kinematic GPS Positioning in Europe, GPS Solutions, 15 (2), 171, DOI: 10.1007/s10291-010-0181-9, 2011. [CrossRef] [Google Scholar]
- Bergeot, N., I. Tsagouri, C. Bruyninx, J. Legrand, J.-M. Chevalier, P. Defraigne, Q. Baire, and E. Pottiaux, The influence of space weather on ionospheric total electron content during the 23rd solar cycle, J. Space Weather Space Clim., 3, A25, DOI: 10.1051/swsc/2013047, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
- Boyd, A.J., H.E. Spence, S.G. Claudepierre, J.F. Fennell, J.B. Blake, D.N. Baker, G.D. Reeves, and D.L. Turner, Quantifying the radiation belt seed population in the March 17, 2013 electron acceleration event, Geophys. Res. Lett., 41, 2275–2281, DOI: 10.1002/2014GL059626, 2014. [CrossRef] [Google Scholar]
- Bruyninx, C., H. Habrich, W. Söhne, A. Kenyeres, G. Stangl, and C. Völksen, Enhancement of the EUREF permanent network services and products, Geodesy for Planet Earth, IAG Symposia Series, 136, 27–35, DOI: 10.1007/978-3-642-20338-1_4, 2012. [Google Scholar]
- Coco, D.S., C. Coker, S.R. Dahlke, and J.R. Clynch, Variability of GPS satellite differential group delay biases, IEEE Trans. Aerosp. Electron. Syst., 27 (6), 931–938, 1991. [CrossRef] [Google Scholar]
- Crespon, F., E. Jeansou, J. Helbert, G. Moreaux, P. Lognonné, P.-E. Godet, and R. Garcia, SPECTRE (www.noveltis.fr/spectre): a web service for Ionospheric Products, Proceedings of 1st Colloquium Scientific and Fundamental Aspects of the Galileo Program, 2007. [Google Scholar]
- Feltens, J., Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre, Space Weather, 5, S12002, DOI: 10.1029/2006SW000294, 2007. [CrossRef] [Google Scholar]
- Foster, J.C., P.J. Erickson, D.N. Baker, S.G. Claudepierre, C.A. Kletzing, et al., Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations, Geophys. Res. Lett., 41, 20–25, DOI: 10.1002/2013GL058438, 2014. [CrossRef] [Google Scholar]
- Fujieda, M., D. Pieste, T. Gotoh, J. Becker, M. Aida, and A. Bauch, Carrier-phase two-way satellite frequency transfer over a very long baseline, Metrologia, 51, 253–262, DOI: 10.1088/0026-1394/51/3/253, 2014. [CrossRef] [Google Scholar]
- Fuller-Rowell, T., E. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson, and A.R. Jacobson, US-TEC: a new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data, Radio Sci., 41, RS6003, DOI: 10.1029/2005RS003393, 2006. [CrossRef] [Google Scholar]
- Hernández-Pajares, M., J.M. Juan, J. Sanz, R. Orús, A. Garcia-Rigo, J. Feltens, A. Komjathy, S.C. Schaer, and A. Krankowski, The IGS VTEC maps: a reliable source of ionospheric information since 1998, J. Geod., 83 (3–4), 263–275, DOI: 10.1007/s00190-008-0266-1, 2009. [Google Scholar]
- Hernández-Pajares, M., J.M. Juan, J. Sanz, and R. Orús, Second-order ionospheric term in GPS: implementation and impact on geodetic estimates, J. Geophys. Res., 112, B08417, DOI: 10.1029/2006JB004707, 2007. [Google Scholar]
- Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken, Total electron content models and their use in ionosphere monitoring, Radio Sci., 46, RS0D18, DOI: 10.1029/2010RS004620, 2011. [CrossRef] [Google Scholar]
- Mannucci, A.J., B.D. Wilson, D.N. Yuan, C.H. Ho, U.J. Lindqwister, and T.F. Runge, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33, 565–582, 1998. [NASA ADS] [CrossRef] [Google Scholar]
- Mannucci, A.J., B.T. Tsurutani, B.A. Iijima, A. Komjathy, A. Saito, W.D. Gonzalez, F.L. Guarnieri, J.U. Kozyra, and R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”, Geophys. Res. Lett., 32, L12S02, DOI: 10.1029/2004GL021467, 2005. [Google Scholar]
- Melbourne, W.G., The Case for Ranging in GPS Based Geodetic Systems. Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System, Clyde Goad, Editor. 373–386, 1985. [Google Scholar]
- Mukhtarov, P., D. Pancheva, B. Andonov, and L. Pashova, Global TEC maps based on GNSS data: 1. Empirical background TEC model, J. Geophys. Res.: Space Phys., 118, DOI: 10.1002/jgra.50413, 2013. [Google Scholar]
- Ray, J., New pseudorange bias convention, IGS Mail No. 2744, IGS Central Bureau Information System, 2000. [Google Scholar]
- Ray, J., Updated P1–C1 pseudorange bias corrections, IGS Mail No. 3160, IGS Central Bureau Information System, 2001. [Google Scholar]
- Sardón, E., A. Rius, and N. Zarraoa, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from GPS observations, Radio Sci., 29 (3), 577–586, 1994. [NASA ADS] [CrossRef] [Google Scholar]
- Sardón, E., and N. Zarraoa, Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Sci., 32, 1899–1910, 1997. [CrossRef] [Google Scholar]
- Sotomayor-Beltran, C., C. Sobey, J.W.T. Hessels, G. de Bruyn, A. Noutsos, et al., Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes, A&A, 552, A58, DOI: 10.1051/0004-6361/201220728, 2013. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schaer, S., W. Gurtner, and J. Feltens, IONEX: The IONosphere Map EXchange Format Version 1, Proceedings of the 1988 IGS Analysis Centers Workshop, ESOC, Darmstadt, Germany, February 9–11, 233–247, 1998. [Google Scholar]
- Tsagouri, I., A. Belehaki, N. Bergeot, C. Cid, V. Delouille, et al., Progress in space weather modeling in an operational environment, J. Space Weather Space Clim., 3, A17, DOI: 10.1051/swsc/2013037, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
- Weber, G., D. Dettmering, and H. Gebhard, Networked Transport of RTCM via Internet Protocol (NTRIP). A Window on the Future of Geodesy, Springer, Berlin, ISBN (Online) 978-3-540-27432-2. Proceedings of the International Association of Geodesy General Assembly, F. Sanso, Editor. 128, 60–64, 2005. [CrossRef] [Google Scholar]
- Wild, U., Ionosphere and geodetic satellite systems: permanent GPS tracking data for modelling and monitoring. Geodatischgeophysikalische Arbeiten in der Schweiz, vol. 48, Schweizerische Geodatische Kommission, Ph.D. thesis, 1994. [Google Scholar]
- Wübbena, G., Software developments for geodetic positioning with gps using TI 4100 code and carrier measurements. Proceedings First International Symposium on Precise Positioning with the Global Positioning System, Clyde Goad, Editor. US Department of Commerce, Rockville, Maryland, 403–412, 1985. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.