J. Space Weather Space Clim.
Volume 4, 2014
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A30
Number of page(s) 11
Published online 17 October 2014
  • Barra, V., V. Delouille, and J.-F. Hochedez, Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering, Adv. Space Res., 42, 917–925, DOI: 10.1016/j.asr.2007.10.021, 2008. [Google Scholar]
  • BenMoussa, A., S. Gissot, U. Schühle, G. Del Zanna, F. Auchère, et al., On-orbit degradation of solar instruments, Sol. Phys., 288, 389–434, DOI: 10.1007/s11207-013-0290-z, 2013. [Google Scholar]
  • Bezdek, J., Pattern recognition with fuzzy objective function algorithms, Plenum Press, New-York, 1981. [Google Scholar]
  • Bochsler, P., H. Kucharek, E. Möbius, M. Bzowski, J.M. Sokół, L. Didkovsky, and S. Wieman, Solar photoionization rates for interstellar neutrals in the inner heliosphere: H, He, O, and Ne, Astrophys. J. Suppl. Ser., 210, 12, DOI: 10.1088/0067-0049/210/1/12, 2014. [Google Scholar]
  • Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J.-F. Hochedez, and M. Snow, Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, DOI: 10.1051/0004-6361/201015903, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Cessateur, G., J. Lilensten, T. Dudok de Wit, A. BenMoussa, and M. Kretzschmar, New observation strategies for the solar UV spectral irradiance, J. Space Weather Space Clim., 2, A16, DOI: 10.1051/swsc/2012016, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Clette, F., J.-F. Hochedez, J.S. Newmark, J.D. Moses, F. Auchère, J.-M. Defise, and J.-P. Delaboudinière, The radiometric calibration of the extreme ultraviolet imaging telescope, ISSI Scientific Reports Series, 2, 121, 2002. [Google Scholar]
  • Delaboudinière, J.-P., G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, et al., EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission, Sol. Phys., 162, 291–312, DOI: 10.1007/BF00733432, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Dere, K.P., E. Landi, H.E. Mason, B.C. Monsignori Fossi, and P.R. Young, CHIANTI – an atomic database for emission lines, Astron. Astrophys. Suppl. Ser., 125, 149–173, DOI: 10.1051/aas:1997368, 1997. [CrossRef] [EDP Sciences] [Google Scholar]
  • Didkovsky, L.V., D.L. Judge, A.R. Jones, S. Wieman, and B.T. Tsurutani, Correction of SOHO CELIAS/SEM EUV measurements saturated by extreme solar flare events, Astron. Nachr., 328, 36–40, DOI: 10.1002/asna.200610667, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Didkovsky, L.V., D.L. Judge, S.R. Wieman, and D. McMullin. Minima of solar cycles 22/23 and 23/24 as seen in SOHO/CELIAS/SEM absolute solar EUV flux. In: S.R., Cranmer, J.T. Hoeksema, and J.L. Kohl, Editors,Astronomical Society of the Pacific Conference Series, 428, 73, 2010. [Google Scholar]
  • Dominique, M., J.-F. Hochedez, W. Schmutz, I.E. Dammasch, A.I. Shapiro, M. Kretzschmar, A.N. Zhukov, D. Gillotay, Y. Stockman, and A. BenMoussa, The LYRA instrument onboard PROBA2: description and in-flight performance, Sol. Phys., 286, 21–42, DOI: 10.1007/s11207-013-0252-5, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Dudok de Wit, T., and S. Bruinsma, Determination of the most pertinent EUV proxy for use in thermosphere modeling, Geophys. Res. Lett., 38, L19102, DOI: 10.1029/2011GL049028, 2011. [CrossRef] [Google Scholar]
  • Dudok de Wit, T., S. Bruinsma, and K. Shibasaki, Synoptic radio observations as proxies for upper atmosphere modelling, J. Space Weather Space Clim., 4, A06, DOI: 10.1051/swsc/2014003, 2014. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fontenla, J.M., W. Curdt, M. Haberreiter, J. Harder, and H. Tian, Semiempirical models of the solar atmosphereIII. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation, Astrophys. J., 707, 482–502, DOI: 10.1088/0004-637X/707/1/482, 2009. [Google Scholar]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res. (Atmos.), 116, D20108, DOI: 10.1029/2011JD016032, 2011. [CrossRef] [Google Scholar]
  • Haberreiter, M., Solar EUV spectrum calculated for quiet sun conditions, Sol. Phys., 274, 473–479, DOI: 10.1007/s11207-011-9767-9, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Haberreiter, M.. Towards the reconstruction of the EUV irradiance for solar cycle 23. In: C.H., Mandrini, and D.F. Webb, Editors, IAU Symposium, 286, 97–100, DOI: 10.1017/S174392131200470X, 2012. [Google Scholar]
  • Haberreiter, M., W. Schmutz, and A.G. Kosovichev, Solving the discrepancy between the seismic and photospheric solar radius, Astrophys. J., 675, L53–L56, DOI: 10.1086/529492, 2008. [CrossRef] [Google Scholar]
  • Hinteregger, H.E., K. Fukui, and B.R. Gilson, Observational reference and model data on solar EUV, from measurements on AE-E, Geophys. Res. Lett., 8, 1147–1150, 1981. [Google Scholar]
  • Hochedez, J., W. Schmutz, Y. Stockman, U. Schühle, A. Benmoussa, et al., LYRA, a solar UV radiometer on Proba2, Adv. Space Res., 37, 303–312, DOI: 10.1016/j.asr.2005.10.041, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Hovestadt, D., M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, et al., CELIAS – Charge, Element and Isotope Analysis System for SOHO, Sol. Phys., 162, 441–481, DOI: 10.1007/BF00733436, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Judge, D.L., D.R. McMullin, H.S. Ogawa, D. Hovestadt, B. Klecker, et al., First solar EUV irradiances obtained from SOHO by the CELIAS/SEM, Sol. Phys., 177, 161–173, DOI: 10.1023/A:1004929011427, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Kretzschmar, M., I.E. Dammasch, M. Dominique, J. Zender, G. Cessateur, and E. D’Huys, Extreme ultraviolet solar irradiance during the rising phase of solar cycle 24 observed by PROBA2/LYRA, J. Space Weather Space Clim., 2, A14, DOI: 10.1051/swsc/2012014, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kretzschmar, M., J. Lilensten, and J. Aboudarham, Retrieving the solar EUV spectral irradiance from the observation of 6 lines, Advances in Space Research, 37, 341–346, DOI: 10.1016/j.asr.2005.02.029, 2006. [Google Scholar]
  • Krishnapuram, R., and J. Keller, A possibilistic approach to clustering, IEEE Trans. Fuzzy Systems, 1, 98–110, 1993. [Google Scholar]
  • Krishnapuram, R., and J. Keller, The possibilistic C-means algorithm: Insights and recommendations, IEEE Trans. Fuzzy Systems, 4, 385–393, 1996. [CrossRef] [Google Scholar]
  • Landi, E., G. Delzanna, P.R. Young, K.P. Dere, H.E. Mason, and M. Landini, CHIANTI-An atomic database for emission lines. VII. New data for X-rays and other improvements, Astrophys. J. Suppl. Ser., 162, 261–280, DOI: 10.1086/498148, 2006. [Google Scholar]
  • Laštovička, J., Are trends in total electron content (TEC) really positive, J. Geophys. Res. (Space Phys.), 118, 3831–3835, DOI: 10.1002/jgra.50261, 2013 [CrossRef] [Google Scholar]
  • Lean, J.L., J.T. Emmert, J.M. Picone, and R.R. Meier, Global and regional trends in ionospheric total electron content, J. Geophys. Res. (Space Phys.), 116, A00H04, DOI: 10.1029/2010JA016378, 2011a. [Google Scholar]
  • Lean, J.L., T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, and J.S. Evans, Solar extreme ultraviolet irradiance: Present, past, and future, J. Geophys. Res. (Space Phys.), 116, A01102, DOI: 10.1029/2010JA015901, 2011b. [Google Scholar]
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17–40, DOI: 10.1007/s11207-011-9776-8, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère, Review on the solar spectral variability in the EUV for space weather purposes, Ann. Geophys., 26, 269–279, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • McMullin, D.R., D.L. Judge, M. Hilchenbach, F. Ipavich, P. Bochsler, P. Wurz, A. Burgi, W.T. Thompson, and J.S. Newmark, In-flight comparisons of solar EUV irradiance measurements provided by the CELIAS/SEM on SOHO, ISSI Scientific Reports Series, 2, 135, 2002. [Google Scholar]
  • Ogawa, H.S., D.R. McMullin, D.L. Judge, and R.S. Korde, Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurement, Opt. Eng., 32, 3121–3125, DOI: 10.1117/12.149195, 1993. [CrossRef] [Google Scholar]
  • Qian, L., and S.C. Solomon, Thermospheric density: an overview of temporal and spatial variations, Space Sci. Res., 168, 147–173, DOI: 10.1007/s11214-011-9810-z, 2012. [Google Scholar]
  • Schmidtke, G., R. Brunner, D. Eberhard, B. Halford, U. Klocke, M. Knothe, W. Konz, W.-J. Riedel, and H. Wolf, SOL-ACES: Auto-calibrating EUV/UV spectrometers for measurements onboard the International Space Station, Adv. Space Res., 37, 273–282, DOI: 10.1016/j.asr.2005.01.112, 2006a. [NASA ADS] [CrossRef] [Google Scholar]
  • Schmidtke, G., C. Fröhlich, and G. Thuillier, ISS-SOLAR: Total (TSI) and spectral (SSI) irradiance measurements, Adv. Space Res., 37, 255–264, DOI: 10.1016/j.asr.2005.01.009, 2006b. [NASA ADS] [CrossRef] [Google Scholar]
  • Thuillier, G., J. Claudel, D. Djafer, M. Haberreiter, N. Mein, S.M.L. Melo, W. Schmutz, A. Shapiro, C.I. Short, and S. Sofia, The shape of the solar limb: Models and observations, Sol. Phys., 268, 125–149, DOI: 10.1007/s11207-010-9664-7, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Thuillier, G., G. Schmidtke, C. Erhardt, B. Nikutowski, A.I. Shapiro, et al., Solar spectral irradiance variability in November/December 2012: Comparison of observations by instruments on the international space station and models, Sol. Phys., DOI: 10.1007/s11207-014-0588-5, 2014. [Google Scholar]
  • Verbeeck, C., V. Delouille, B. Mampaey, and R. De Visscher, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images, A&A, 561, A29, DOI: 10.1051/0004-6361/201321243, 2014. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Warren, H.P., J.T. Mariska, and J. Lean, A new model of solar EUV irradiance variability: 1. Model formulation, J. Geophys. Res., 106, 15,745–15,758, DOI: 10.1029/2000JA000282, 2001. [Google Scholar]
  • Wieman, S.R., L.V. Didkovsky, and D.L. Judge, Resolving differences in absolute irradiance measurements between the SOHO/CELIAS/SEM and the SDO/EVE, Sol. Phys., 289, 2907–2925, DOI: 10.1007/s11207-014-0519-5, 2014. [NASA ADS] [CrossRef] [Google Scholar]
  • Wieman, S.R., D.L. Judge, and L.V. Didkovsky, Solar EUV Monitor (SEM) absolute irradiance measurements and how they are affected by choice of reference spectrum. Proc. SPIE, 8148, DOI: 10.1117/12.893163, 2011. [Google Scholar]
  • Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska, Solar EUV Experiment (SEE): mission overview and first results, J. Geophys. Res. (Space Phys.), 110, A01312, DOI: 10.1029/2004JA010765, 2005. [CrossRef] [Google Scholar]
  • Woods, T.N., F.G. Eparvier, R. Hock, A.R. Jones, D. Woodraska, et al., Extreme ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments, Sol. Phys., 275, 115–143, DOI: 10.1007/s11207-009-9487-6, 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.