Open Access
J. Space Weather Space Clim.
Volume 4, 2014
Article Number A28
Number of page(s) 10
Published online 09 October 2014
  • Aguado, J., C. Cid, E. Saiz, and Y. Cerrato, Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms, J. Geophys. Res. [Space Phys.], 115, A07220, 2010. [CrossRef] [Google Scholar]
  • Asai, A., K. Shibata, H. Hara, and N.V. Nitta, Characteristics of anemone active regions appearing in coronal holes observed with the Yohkoh soft X-ray telescope, ApJ, 673, 1188–1193, 2008. [CrossRef] [Google Scholar]
  • Asai, A., K. Shibata, T.T. Ishii, M. Oka, R. Kataoka, K. Fujiki, and N. Gopalswamy, Evolution of the anemone AR NOAA 10798 and the related geo-effective flares and CMEs, J. Geophys. Res. [Space Phys.], 114, A00A21, 2009. [Google Scholar]
  • Aulanier, G., The physical mechanisms that initiate and drive solar eruptions, IAU Symposium, 300, 184–196, 2014. [Google Scholar]
  • Baker, D.N., X. Li, A. Pulkkinen, C.M. Ngwira, M.L. Mays, A.B. Galvin, and K.D.C. Simunac, A major solar eruptive event in July 2012: defining extreme space weather scenarios, Space Weather, 11, 585–591, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Carrington, R.C., Description of a singular appearance seen in the Sun on September 1, 1859, MNRAS, 20, 13–15, 1859. [Google Scholar]
  • Cerrato, Y., E. Saiz, C. Cid, W.D. Gonzalez, and J. Palacios, Solar and interplanetary triggers of the largest Dst variations of the solar cycle 23, J. Atmos. Sol. Terr. Phys., 80, 111–123, 2012. [CrossRef] [Google Scholar]
  • Cid, C., H. Cremades, A. Aran, C. Mandrini, B. Sanahuja, et al., Can a halo CME from the limb be geoeffective? J. Geophys. Res. [Space Phys.], 117, A11102, 2012. [Google Scholar]
  • Cid, C., J. Palacios, E. Saiz, Y. Cerrato, J. Aguado, and A. Guerrero, Modeling the recovery phase of extreme geomagnetic storms, J. Geophys. Res. [Space Phys.], 118, 4352–4359, 2013. [CrossRef] [Google Scholar]
  • Cid, C., E. Saiz, and Y. Cerrato, Comment on “Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ = –250 nT) during solar cycle 23” by E. Echer et al., Geophys. Res. Lett., 35, L21107, 2008. [CrossRef] [Google Scholar]
  • del Zanna, G., B. Schmieder, H. Mason, A. Berlicki, and S. Bradshaw, The gradual phase of the X17 Flare on October 28, 2003, Sol. Phys., 239, 173–191, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Démoulin, P., C.H. Mandrini, L. van Driel-Gesztelyi, B.J. Thompson, S. Plunkett, Z. Kovári, G. Aulanier, and A. Young, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978, A&A, 382, 650–665, 2002. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Deng, Y., J. Wang, Y. Yan, and J. Zhang, Evolution of magnetic nonpotentiality in NOAA AR 9077, Sol. Phys., 204, 11–26, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Dessler, A.J., and E.N. Parker, Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64 (12), 2239–2252, DOI: 10.1029/JZ064i012p02239, 1959. [CrossRef] [Google Scholar]
  • Dun, J., H. Kurokawa, T.T. Ishii, Y. Liu, and H. Zhang, Evolution of magnetic nonpotentiality in NOAA AR 10486, ApJ, 657, 577–591, 2007. [CrossRef] [Google Scholar]
  • Echer, E., W.D. Gonzalez, and B.T. Tsurutani, Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ −250 nT) during solar cycle 23, Geophys. Res. Lett., 35, L06S03, 2008. [CrossRef] [Google Scholar]
  • Gaunt, C., and G. Coetzee, Transformer failures in regions incorrectly considered to have low gic-risk, in: Power Tech, 2007 IEEE Lausanne, pp. 807–812, 2007. [Google Scholar]
  • Gonzalez, W.D., E. Echer, A.L. Clúa de Gonzalez, B.T. Tsurutani, and G.S. Lakhina, Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms, J. Atmos. Sol. Terr. Phys., 73, 1447–1453, 2011. [CrossRef] [Google Scholar]
  • Gonzalez, W.D., E. Echer, A.L. Clua-Gonzalez, and B.T. Tsurutani, Interplanetary origin of intense geomagnetic storms (Dst ≤–100 nT) during solar cycle 23, Geophys. Res. Lett., 34, L06101, 2007. [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas, What is a geomagnetic storm? J. Geophys. Res., 99, 5771–5792, 1994. [Google Scholar]
  • Gopalswamy, N., P. Mäkelä, H. Xie, S. Akiyama, and S. Yashiro, CME interactions with coronal holes and their interplanetary consequences, J. Geophys. Res. [Space Phys.], 114, A00A22, 2009. [Google Scholar]
  • Gosling, J.T., The solar flare myth, J. Geophys. Res., 98 (A11), 18937–18949, DOI: 10.1029/93JA01896, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Hurford, G.J., S. Krucker, R.P. Lin, R.A. Schwartz, G.H. Share, and D.M. Smith, Gamma-ray imaging of the 2003 October/November solar flares, ApJ, 644, L93–L96, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Jing, J., V.B. Yurchyshyn, G. Yang, Y. Xu, and H. Wang, On the relation between filament eruptions, flares, and coronal mass ejections, ApJ, 614, 1054–1062, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler, S.W., S. Akiyama, and N. Gopalswamy, Deflections of fast coronal mass ejections and the properties of associated solar energetic particle events, ApJ, 754, 100, 2012. [CrossRef] [Google Scholar]
  • Kataoka, R., Probability of occurrence of extreme magnetic storms, Space Weather, 11, 214–218, 2013. [CrossRef] [Google Scholar]
  • Krall, J., V.B. Yurchyshyn, S. Slinker, R.M. Skoug, and J. Chen, Flux rope model of the 2003 October 28–30 coronal mass ejection and interplanetary coronal mass ejection, ApJ, 642, 541–553, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Kusano, K., Y. Bamba, T.T. Yamamoto, Y. Iida, S. Toriumi, and A. Asai, Magnetic field structures triggering solar flares and coronal mass ejections, ApJ, 760, 31, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Lakhina, G.S., S. Alex, B.T. Tsurutani, and W.D. Gonzalez, Research on historical records of geomagnetic storms. In: K., Dere, J. Wang, and Y. Yan, Editors, Coronal and Stellar Mass Ejections, vol. 226 of IAU Symposium, pp. 3–15, 2005. [Google Scholar]
  • Li, X., M. Temerin, B.T. Tsurutani, and S. Alex, Modeling of 1–2 September 1859 super magnetic storm, Adv. Space Res., 38, 273–279, 2006. [CrossRef] [Google Scholar]
  • Linker, J.A., Z. Mikić, P. Riley, R. Lionello, and D. Odstrcil, Models of coronal mass ejections: a review with a look to the future. In: M., Velli, R. Bruno, F. Malara, and B. Bucci, Editors, Solar Wind Ten, vol. 679 of American Institute of Physics Conference Series, pp. 703–710, 2003. [CrossRef] [Google Scholar]
  • Liu, C., J. Lee, N. Deng, D.E. Gary, and H. Wang, Large-scale activities associated with the 2003 October 29 X10 flare, ApJ, 642, 1205–1215, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu, Y., H. Kurokawa, C. Liu, D.H. Brooks, J. Dun, T.T. Ishii, and H. Zhang, The X10 flare on 29 October 2003: Was it triggered by magnetic reconnection between counter-helical fluxes? Sol. Phys., 240, 253–262, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu, Y.D., J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, et al., Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections, Nature Communications, 5, 3481, 2014. [Google Scholar]
  • Love, J.J., and J.L. Gannon, Movie-maps of low-latitude magnetic storm disturbance, Space Weather, 8, 06001, 2010. [Google Scholar]
  • Lugaz, N., C. Downs, K. Shibata, I.I. Roussev, A. Asai, and T.I. Gombosi, Numerical investigation of a coronal mass ejection from an anemone active region: reconnection and deflection of the 2005 August 22 eruption, ApJ, 738, 127, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Maurya, R.A., and A. Ambastha, Transient magnetic and doppler features related to the white-light flares in NOAA 10486, Sol. Phys., 258, 31–52, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Muhr, N., B. Vršnak, M. Temmer, A.M. Veronig, and J. Magdalenić, Analysis of a global Moreton wave observed on 2003 October 28, ApJ, 708, 1639–1649, 2010. [Google Scholar]
  • Ngwira, C.M., A. Pulkkinen, M.M. Kuznetsova, and A. Glocer, Modeling extreme carrington-type’ space weather events using three-dimensional global mhd simulations, J. Geophys. Res. [Space Phys.], 119 (6), 4456–4474, DOI: 10.1002/2013JA019661, 2014. [Google Scholar]
  • Ngwira, C.M., A. Pulkkinen, M. Leila Mays, M.M. Kuznetsova, A.B. Galvin, et al., Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather, 11, 671–679, 2013a. [CrossRef] [Google Scholar]
  • Ngwira, C.M., A. Pulkkinen, F.D. Wilder, and G. Crowley, Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications, Space Weather, 11, 121–131, 2013b. [CrossRef] [Google Scholar]
  • Nowożyński, K., T. Ernst, and J. Jankowski, Adaptive smoothing method for computer derivation of K-Indices, Geophys. J. Int., 104, 85–93, 1991. [CrossRef] [Google Scholar]
  • Rodriguez, L., A.N. Zhukov, C. Cid, Y. Cerrato, E. Saiz, et al., Three frontside full halo coronal mass ejections with a nontypical geomagnetic response, Space Weather, 7, S06003, 2009. [CrossRef] [Google Scholar]
  • Russell, C.T., R.A. Mewaldt, J.G. Luhmann, G.M. Mason, T.T. von Rosenvinge, et al., The very unusual interplanetary coronal mass ejection of 2012 July 23: a blast wave mediated by solar energetic particles, ApJ, 770, 38, 2013. [Google Scholar]
  • Schmieder, B., C.H. Mandrini, P. Démoulin, E. Pariat, A. Berlicki, and E. Deluca, Magnetic reconfiguration before the X 17 solar flare of October 28 2003, Adv. Space Res., 37, 1313–1316, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Sckopke, N., A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71, 3125–3130, 1966. [CrossRef] [Google Scholar]
  • Siscoe, G.L., A quasi-self-consistent axially symmetric model for the growth of a ring current through earthward motion from a pre-storm configuration, Planet. Space Sci., 27, 285–295, 1979. [CrossRef] [Google Scholar]
  • Song, H.Q., Y. Chen, D.D. Ye, G.Q. Han, G.H. Du, G. Li, J. Zhang, and Q. Hu, A study of fast flareless coronal mass ejections, ApJ, 773, 129, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Srivastava, N., Predicting the occurrence of super-storms, Ann. Geophys., 23, 2989–2995, 2005. [CrossRef] [Google Scholar]
  • Su, Y.N., L. Golub, A.A. van Ballegooijen, and M. Gros, Analysis of magnetic shear in an X17 solar flare on October 28, 2003, Sol. Phys., 236, 325–349, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Svestka, Z., and E.W. Cliver, History and basic characteristics of eruptive flares. In: Z., Svestka, B.V. Jackson, and M.E. Machado, Editors, IAU Colloq. 133: Eruptive Solar Flares, vol. 399 of Lecture Notes in Physics, Berlin Springer Verlag, p.1, 1992. [CrossRef] [Google Scholar]
  • Thomson, A.W.P., C.T. Gaunt, P. Cilliers, J.A. Wild, B. Opperman, L.-A. McKinnell, P. Kotze, C.M. Ngwira, and S.I. Lotz, Present day challenges in understanding the geomagnetic hazard to national power grids, Adv. Space Res., 45, 1182–1190, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, G.S. Lakhina, and S. Alex, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res. [Space Phys.], 108, 1268, 2003. [Google Scholar]
  • Tyasto, M.I., N.G. Ptitsyna, I.S. Veselovsky, and O.S. Yakovchouk, Extremely strong geomagnetic storm of September 2–3, 1859, according to the archived data of observations at the Russian network, Geomag. Aeron., 49, 153–162, 2009. [Google Scholar]
  • van Ballegooijen, A.A., and P.C.H. Martens, Formation and eruption of solar prominences, ApJ, 343, 971–984, 1989. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang, Y.M., P.Z. Ye, and S. Wang, Multiple magnetic clouds: several examples during March–April 2001, J. Geophys. Res. [Space Phys], 108, 1370, 2003. [CrossRef] [Google Scholar]
  • Watermann, J., and H. Gleisner, Geomagnetic variations and their time derivatives during geomagnetic storms at different levels of intensity, Acta Geophys., 57, 197–208, 2009. [CrossRef] [Google Scholar]
  • Webb, D.F., and T.A. Howard, Coronal mass ejections: observations, Living Rev. Sol. Phys., 9, 3, 2012. [Google Scholar]
  • Xie, H., N. Gopalswamy, P.K. Manoharan, A. Lara, S. Yashiro, and S. Lepri, Long-lived geomagnetic storms and coronal mass ejections, J. Geophys. Res. [Space Phys.], 111, A01103, 2006. [Google Scholar]
  • Yermolaev, Y.I., I.G. Lodkina, N.S. Nikolaeva, and M.Y. Yermolaev, Occurrence rate of extreme magnetic storms, J. Geophys. Res. [Space Phys.], 118, 4760–4765, 2013. [CrossRef] [Google Scholar]
  • Yermolaev, Y.I., and M.Y. Yermolaev, Comment on “Interplanetary origin of intense geomagnetic storms (Dst ≤ –100 nT) during solar cycle 23” by W. D. Gonzalez et al., Geophys. Res. Lett., 35, L01101, 2008. [CrossRef] [Google Scholar]
  • Yizengaw, E., P. Doherty, and T. Fuller-Rowell, Is space weather different over Africa, and if so, why? An agu chapman conference report, Space Weather, 11 (7), 389–391, DOI: 10.1002/swe.20063, 2013. [CrossRef] [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, J. Geophys. Res. [Space Phys.], 112, A10102, 2007. [Google Scholar]
  • Zhukov, A.N., and F. Auchère, On the nature of EIT waves, EUV dimmings and their link to CMEs, A&A, 427, 705–716, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.