J. Space Weather Space Clim.
Volume 5, 2015
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A15
Number of page(s) 15
Published online 19 June 2015
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys., 530, A71, 2011, DOI: 10.1051/0004-6361/201016189. [Google Scholar]
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, T. Wenzler, D.J. Mortlock, and A.H. Jaffe. Reconstruction of total solar irradiance 1974–2009. Astron. Astrophys., 541, A27, 2012, DOI: 10.1051/0004-6361/201118702. [Google Scholar]
  • Brueckner, G.E., K.L. Edlow, L.E. Floyd, J.L. Lean, and M.E. Vanhoosier. The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res., 98, 10695, 1993, DOI: 10.1029/93JD00410. [NASA ADS] [CrossRef] [Google Scholar]
  • Chapman, G.A., A.M. Cookson, and J.J. Dobias. Solar variability and the relation of facular to sunspot areas during solar cycle 22. Astrophys. J., 482, 541–545, 1997, DOI: 10.1086/304138. [Google Scholar]
  • Colak, T., and R. Qahwaji. Automated McIntosh-based classification of sunspot groups using MDI images, Sol. Phys., 248, 277–296, 2008, DOI: 10.1007/s11207-007-9094-3. [Google Scholar]
  • Colak, T., and R. Qahwaji. Automated Solar Activity Prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef] [Google Scholar]
  • Coulter, R.L., J.R. Kuhn, and H. Lin. The Precision Solar Photometric Telescopes. Bulletin of the American Astronomical Society, 28, 912, 1996. [Google Scholar]
  • Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-Year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [Google Scholar]
  • Dudok de Wit, T., S. Bruinsma, and K. Shibasaki. Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim., 4 (27), A06, 2014, DOI: 10.1051/swsc/2014003. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ermolli, I., S. Criscuoli, H. Uitenbroek, F. Giorgi, M.P. Rast, and S.K. Solanki. Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys., 523, A55, 2010, DOI: 10.1051/0004-6361/201014762. [Google Scholar]
  • Ermolli, I., S. Criscuoli, and F. Giorgi. Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments. Contributions of the Astronomical Observatory Skalnate Pleso, 41, 73–84, 2011. [Google Scholar]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [Google Scholar]
  • Fehlmann, A., G. Kopp, W. Schmutz, R. Winkler, W. Finsterle, and N. Fox. Fourth world radiometric reference to SI radiometric scale comparison and implications for on-orbit measurements of the total solar irradiance. Metrologia, 49, 34, 2012, DOI: 10.1088/0026-1394/49/2/S34. [NASA ADS] [CrossRef] [Google Scholar]
  • Fontenla, J.M., W. Curdt, M. Haberreiter, J. Harder, and H. Tian. Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J., 707, 482–502, 2009, DOI: 10.1088/0004-637X/707/1/482. [Google Scholar]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. [Atmos.], 116, D20108, 2011, DOI: 10.1029/2011JD016032. [Google Scholar]
  • Fröhlich, C., B.N. Andersen, T. Appourchaux, G. Berthomieu, D.A. Crommelynck, et al. First results from VIRGO, the experiment for Helioseismology and Solar Irradiance Monitoring on SOHO, Sol. Phys., 170, 1–25, 1997, DOI: 10.1023/A:1004969622753. [NASA ADS] [CrossRef] [Google Scholar]
  • Haberreiter, M. Solar EUV spectrum calculated for quiet sun conditions. Sol. Phys., 274, 473–479, 2011, DOI: 10.1007/s11207-011-9767-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Haberreiter, M. Towards the reconstruction of the EUV irradiance for solar cycle 23. In: C.H. Mandrini and D.F. Webb, Editors, IAU Symposium, vol. 286, 97–100, 2012, DOI: 10.1017/S174392131200470X. [Google Scholar]
  • Haberreiter, M., N.A. Krivova, W. Schmutz, and T. Wenzler. Reconstruction of the solar UV irradiance back to 1974. Adv. Space Res., 35, 365–369, 2005, DOI: 10.1016/j.asr.2005.04.039. [NASA ADS] [CrossRef] [Google Scholar]
  • Haberreiter, M., W. Schmutz, and A.G. Kosovichev. Solving the discrepancy between the seismic and photospheric solar radius. Astrophys. J., 675, L53–L56, 2008, DOI: 10.1086/529492. [Google Scholar]
  • Haberreiter, M., V. Delouille, B. Mampaey, C. Verbeeck, G. Del Zanna, and S. Wieman. Reconstruction of the solar EUV irradiance from 1996 to 2010 based on SOHO/EIT images. J. Space Weather Space Clim., 4 (27), A30, 2014, DOI: 10.1051/swsc/2014027. [CrossRef] [EDP Sciences] [Google Scholar]
  • Harvey, K.L., and O.R. White. Magnetic and radiative variability of solar surface structures. I. Image decomposition and magnetic-intensity mapping. Astrophys. J., 515, 812–831, 1999, DOI: 10.1086/307035. [Google Scholar]
  • Hochedez, J., W. Schmutz, Y. Stockman, U. Schühle, A. Benmoussa, et al. LYRA, a solar UV radiometer on Proba2, Adv. Space Res., 37, 303–312, 2006, DOI: 10.1016/j.asr.2005.10.041. [NASA ADS] [CrossRef] [Google Scholar]
  • Jones, H.P., T.L. Duvall Jr., J.W. Harvey, C.T. Mahaffey, J.D. Schwitters, and J.E. Simmons. The NASA/NSO spectromagnetograph. Sol. Phys., 139, 211–232, 1992, DOI: 10.1007/BF00159149. [NASA ADS] [CrossRef] [Google Scholar]
  • Kopp, G., A. Fehlmann, W. Finsterle, D. Harber, K. Heuerman, and R. Willson. Total solar irradiance data record accuracy and consistency improvements. Metrologia, 49, 29, 2012, DOI: 10.1088/0026-1394/49/2/S29. [NASA ADS] [CrossRef] [Google Scholar]
  • Krivova, N.A., S.K. Solanki, M. Fligge, and Y.C. Unruh. Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? Astron. Astrophys., 399, L1–L4, 2003, DOI: 10.1051/0004-6361:20030029. [Google Scholar]
  • Kurucz, R.L. New Opacity Calculations. In: NATO ASIC Proc. 341: Stellar Atmospheres – Beyond Classical Models, 441, 1991. [CrossRef] [Google Scholar]
  • Lean, J.L., J. Cook, W. Marquette, and A. Johannesson. Magnetic sources of the solar irradiance cycle. Astrophys. J., 492, 390–401, 1998, DOI: 10.1086/305015. [Google Scholar]
  • Lean, J.L., T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, and J.S. Evans. Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. [Space Phys.], 116, A01102, 2011, DOI: 10.1029/2010JA015901. [CrossRef] [Google Scholar]
  • Liu, Y., J.T. Hoeksema, P.H. Scherrer, J. Schou, S. Couvidat, et al. Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson doppler imager, Sol. Phys., 279 (1), 295–316, 2012, DOI: 10.1007/s11207-012-9976-x. [Google Scholar]
  • Morrill, J.S., L. Floyd, and D. McMullin. The solar ultraviolet spectrum estimated using the Mg ii index and Ca II K disk activity. Sol. Phys., 269, 253–267, 2011, DOI: 10.1007/s11207-011-9708-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Ortiz, A., S.K. Solanki, V. Domingo, M. Fligge, and B. Sanahuja. On the intensity contrast of solar photo spheric faculae and network elements. Astron. Astrophys., 388, 1036–1047, 2002, DOI: 10.1051/0004-6361:20020500. [Google Scholar]
  • Preminger, D.G., G.A. Chapman, and A.M. Cookson. Activity-brightness Correlations for the Sun and Sun-like Stars. ApJ, 739, L45, 2011, DOI: 10.1088/2041-8205/739/2/L45. [Google Scholar]
  • Scherrer, P.H., R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, et al.. The solar oscillations investigation – Michelson doppler imager. Sol. Phys., 162, 129–188, 1995, DOI: 10.1007/BF00733429. [Google Scholar]
  • Schmutz, W., A. Fehlmann, G. Hülsen, P. Meindl, R. Winkler, et al. The PREMOS/PICARD instrument calibration. Metrologia, 46, 202, 2009. DOI: 10.1088/0026-1394/46/4/S13. [Google Scholar]
  • Schmutz, W., A. Fehlmann, W. Finsterle, G. Kopp, and G. Thuillier. Total solar irradiance measurements with PREMOS/PICARD. In American Institute of Physics Conference Series, vol. 1531 of American Institute of Physics Conference Series, 624–627, 2013, DOI: 10.1063/1.4804847. [Google Scholar]
  • Schou, J., P.H. Scherrer, R.I. Bush, R. Wachter, S. Couvidat, et al. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys., 275, 229–259, 2012, DOI: 10.1007/s11207-011-9842-2. [Google Scholar]
  • Shapiro, A.I., W. Schmutz, M. Schoell, M. Haberreiter, and E. Rozanov. NLTE solar irradiance modeling with the COSI code. Astron. Astrophys., 517, A48, 2010, DOI: 10.1051/0004-6361/200913987. [Google Scholar]
  • Shapiro, A.I., W. Schmutz, E. Rozanov, M. Schoell, M. Haberreiter, A.V. Shapiro, and S. Nyeki. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys., 529, A67, 2011, DOI: 10.1051/0004-6361/201016173. [Google Scholar]
  • Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astro. Astrophys., 51, 311–351, 2013, DOI: 10.1146/annurev-astro-082812-141007. [Google Scholar]
  • Tang, F. Rotation rate of high-latitude sunspots. Sol. Phys., 69, 399–404, 1981, DOI: 10.1007/BF00150003. [CrossRef] [Google Scholar]
  • Thuillier, G., M. Deland, A. Shapiro, W. Schmutz, D. Bolsée, and S.M.L. Melo. The solar spectral irradiance as a function of the Mg II index for atmosphere and climate modelling, Sol. Phys., 277, 245–266, 2012, DOI: 10.1007/s11207-011-9912-5. [NASA ADS] [CrossRef] [Google Scholar]
  • Uitenbroek, H. The Effect of coherent scattering on radiative losses in the solar Ca II K line. Astrophys. J., 565, 1312–1322, 2002, DOI: 10.1086/324698. [Google Scholar]
  • Unruh, Y.C., N.A. Krivova, S.K. Solanki, J.W. Harder, and G. Kopp. Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys., 486, 311–323, 2008, DOI: 10.1051/0004-6361:20078421. [Google Scholar]
  • Verbeeck, C., V. Delouille, B. Mampaey, and R. De Visscher. The SPoCA-suite: software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys., 561, A29, 2014, DOI: 10.1051/0004-6361/201321243. [Google Scholar]
  • Worden, J.R., O.R. White, and T.N. Woods. Evolution of chromospheric structures derived from Ca II K spectroheliograms: implications for solar ultraviolet irradiance variability, Astrophys. J., 496, 998–1014, 1998, DOI: 10.1086/305392. [Google Scholar]
  • Worden, J.R., T.N. Woods, and K.W. Bowman. Far-ultraviolet intensities and center-to-limb variations of active regions and quiet Sun using UARS SOLSTICE irradiance measurements and ground-based spectroheliograms, Astrophys. J., 560, 1020–1034, 2001, DOI: 10.1086/323058. [Google Scholar]
  • Yeo, K.L., S.K. Solanki, and N.A. Krivova. Intensity contrast of solar network and faculae. Astron. Astrophys., 550, A95, 2013, DOI: 10.1051/0004-6361/201220682. [Google Scholar]
  • Yeo, K.L., N.A. Krivova, and S.K. Solanki. Solar cycle variation in solar irradiance. Space Sci. Rev., 186, 137–167, 2014a, DOI: 10.1007/s11214-014-0061-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys., 570, A85, 2014b, DOI: 10.1051/0004-6361/201423628. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.