Open Access
Issue
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A26
Number of page(s) 15
DOI https://doi.org/10.1051/swsc/2015027
Published online 12 August 2015
  • Aso, T., M. Ejiri, A. Urashima, H. Miyaoka, Å. Steen, U. Brändström, and B. Gustavsson. First results of auroral tomography from ALIS-Japan multi-station observations in March, 1995. Earth, Planets, and Space, 50, 81–86, 1998. [CrossRef] [Google Scholar]
  • Banks, P.M., and G. Kockarts. Aeronomy, Springer, 1973. [Google Scholar]
  • Barthélemy, M., J. Lilensten, F. Pitout, C. Simon Wedlund, R. Thissen, et al. Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments. Ann. Geophys., 29, 1101–1112, 2011. [Google Scholar]
  • Bilitza, D., S.A. Brown, M.Y. Wang, J.R. Souza, and P.A. Roddy. Measurements and IRI model predictions during the recent solar minimum. J. Atmos. Sol. Terr. Phys., 86, 99–106, 2012. [Google Scholar]
  • Bommier, V., S. Sahal-Brechot, J. Dubau, and M. Cornille. The theoretical impact polarization of the O I 6300 A red line of Earth Aurorae. Ann. Geophys., 29, 71–79, 2011. [Google Scholar]
  • Brändström, B.U.E PhD thesis, The auroral large imaging system: design, operation and scientific results, Institutet fr rymdfysik (IRF) Sci. Rep., 279, IRF, Kiruna, Sweden, 2003. [Google Scholar]
  • Brink, D.M., and G.R. Satchler. Angular Momentum, 3rd edn., Clarendon Press, Oxford, 1994. [Google Scholar]
  • Bruinsma, S.L., N. Sanchez-Ortiz, E. Olmedo, and N. Guijarro. Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. J. Space Weather Space Clim., 2, A04, 2012, DOI: 10.1051/swsc/2012005. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt., 34, 2765, 1959. [Google Scholar]
  • Charvin, P. Étude de la polarisation des raies interdites de la couronne solaire. Application au cas de la raie verte λ 5303. Annales d’Astrophysique, 28, 877, 1965. [Google Scholar]
  • Clarke, D. Stellar Polarimetry, Wiley, ISBN: 978-3-527-40895-5, 2010. [Google Scholar]
  • Culot, F., C. Lathuillère, and J. Lilensten. Influence of geomagnetic activity on the O I 630.0 and 557.7 nm dayglow. J. Geophys. Res. [Space Phys.], 110, 1304–13013, 2005. [CrossRef] [Google Scholar]
  • Goldstein, D. Polarized light, Marcel Dekker, New York, NY, 2003. [Google Scholar]
  • Gustavsson, B. Tomographic inversion for ALIS noise and resolution. J. Geophys. Res., 103, 26621–26632, 1998. [CrossRef] [Google Scholar]
  • Hardy, D.A., M.S. Gussenhoven, and E. Holeman. A statistical model of auroral electron precipitation. J. Geophys. Res., 90, 4229–4248, 1985. [Google Scholar]
  • Landi Degl’Innocenti, E. Polarization in spectral lines. III – Resonance polarization in the non-magnetic, collisionless regime. Sol. Phys., 91, 1–26, 1984. [Google Scholar]
  • Landi Degl’Innocenti, E., and M. Landolfi. Polarization in spectral lines, vol. 307 of Astrophysics and Space Science Library, Kluwer Academic Publishers, 2004. [Google Scholar]
  • Lehtinen, M.S., and A. Huuskonen. General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys., 58, 435–452, 1996. [CrossRef] [Google Scholar]
  • Lilensten, J., and L.R. Cander. Calibration of the TEC derived from GPS measurements and from ionospheric models using the EISCAT radar. J. Atmos. Sol. Terr. Phys., 65, 833–842, 2003. [Google Scholar]
  • Lilensten, J., J. Moen, M. Barthélemy, R. Thissen, C. Simon, D.A. Lorentzen, O. Dutuit, P.O. Amblard, and F. Sigernes. Polarization in aurorae: a new dimension for space environments studies. Geophys. Res. Lett., 35, 8804, 2008. [Google Scholar]
  • Lilensten, J., M. Barthélémy, P.O. Amblard, H. Lamy, C.S. Wedlund, et al. The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis. J. Space Weather Space Clim., 3, A01, 2013a, DOI: 10.1051/swsc/2012023. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lilensten, J., C. Simon Wedlund, M. Barthélémy, R. Thissen, D. Ehrenreich, G. Gronoff, and O. Witasse. Dications and thermal ions in planetary atmospheric escape. Icarus, 222, 169–187, 2013b. [Google Scholar]
  • Lummerzheim, D., and J. Lilensten. Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann. Geophys., 12, 1039–1051, 1994. [CrossRef] [Google Scholar]
  • Lummerzheim, D., M.H. Rees, and H.R. Anderson. Angular dependent transport of auroral electrons in the upper atmosphere. Planet. Space Sci., 37, 109–129, 1989. [Google Scholar]
  • Lummerzheim, D., M. Galand, J. Semeter, M.J. Mendillo, M.H. Rees, and F.J. Rich. Emission of O I(630 nm) in proton aurora. J. Geophys. Res., 106, 141–148, 2001. [CrossRef] [Google Scholar]
  • Martinez Herrero, R., P.M. Mejias, and G. Piquero. Characterization of partially polarized light field. Springer Series on Optical Sciences, 147, 2009, DOI: 10.1007/978-3-642-01327-0. [CrossRef] [Google Scholar]
  • Moore, C.E., and J.W. Gallagher. Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions, CRC Press, Boca Raton, FL, 1993. [Google Scholar]
  • Opal, C., W. Peterson, and E. Beaty. Measurements of secondary-electron spectra produced by electron impact ionization of a number of simple gases. J. Chem. Phys., 55, 4100, 1971. [Google Scholar]
  • Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aikin. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. [Space Phys.], 107, 1468, 2002. [Google Scholar]
  • Porter, H.S., F. Varosi, and H.G. Mayr. Iterative solution of the multistream electron transport equation. I – Comparison with laboratory beam injection experiments. J. Geophys. Res., 92, 5933–5959, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in FORTRAN. The art of scientific computing, 2nd edn., University Press, Cambridge, 1992. [Google Scholar]
  • Rees, M.H. Physics and chemistry of the upper atmosphere, University Press, Cambridge, ISBN: 0521368480, 1989. [CrossRef] [Google Scholar]
  • Roble, R.G., E.C. Ridley, and R.E. Dickinson. On the global mean structure of the thermosphere. J. Geophys. Res., 92, 8745–8758, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Safargaleev, V.V., T.I. Sergienko, A.E. Kozlovsky, I. Sandahl, U. Brändström, and D.N. Shibaeva. Electric field enhancement in an auroral arc according to the simultaneous radar (EISCAT) and optical (ALIS) observations. Geomag. Aeron., 49, 353–367, 2009. [CrossRef] [Google Scholar]
  • Sahal-Bréchot, S. Role of collisions in the polarization degree of the forbidden emission lines of the Solar Corona. II – Depolarization by electron impact and calculation of the polarization degree of the Green line of Fe XIV. Astron. Astrophys., 36, 355–363, 1974. [Google Scholar]
  • Simon, C., J. Lilensten, J. Moen, J. Holmes, Y. Ogawa, K. Oksavik, and W. Denig. TRANS4: a new coupled electron/proton transport code comparison to observations above Svalbard using ESR, DMSP and optical measurements. Ann. Geophys., 25, 661–673, 2007. [Google Scholar]
  • Solomon, S.C., and V.J. Abreu. The 630 nm dayglow. J. Geophys. Res., 94, 6817–6824, 1989. [CrossRef] [Google Scholar]
  • Stenflo, J. Solar Magnetic Fields: Polarized Radiation Diagnostics, vol. 189, Kluwer Academic Pub.; Astrophysics and Space Science Library (ASSL), 1994. [CrossRef] [Google Scholar]
  • Swartz, W.E., and J.S. Nisbet. Revised calculations of the f region ambient electron heating by photoelectrons. J. Geophys. Res., 77, 6259–6277, 1972. [Google Scholar]
  • Vallance Jones, A. Historical review of great auroras. Can. J. Phys., 70, 479–487, 1992. [Google Scholar]
  • Wiscombe, W., and G. Gums. The backscattered fraction in two-stream approximations. Genesis, 2, 11, 1998. [Google Scholar]
  • Witasse, O., J. Lilensten, C. Lathuillere, and B. Pibaret. Meridional thermospheric neutral wind at high latitude over a full solar cycle. Ann. Geophys., 16, 1400–1409, 1998. [CrossRef] [Google Scholar]
  • Witasse, O., J. Lilensten, C. Lathuillère, and P.-L. Blelly. Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements. J. Geophys. Res., 104, 24639–24656, 1999. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.