J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A39
Number of page(s) 7
Published online 23 December 2015
  • Aboudarham, J., I. Scholl, N. Fuller, et al. Automatic detection and tracking of filaments for a solar feature database. Ann. Geophys., 26, 243–248, 2008. [Google Scholar]
  • Bernasconi, P.N., D.M. Rust, and D. Hakim. Advanced automated solar filament detection and characterization code: description, performance, and results. Sol. Phys., 228, 97–117, 2005. [Google Scholar]
  • De Pontieu, B., A.M. Title, J.R. Lemen, G.D. Kushner, D.J. Akin, et al. The Interface Region Imaging Spectrograph (IRIS). Sol. Phys., 289, 2733–2779, 2014. [NASA ADS] [CrossRef] [Google Scholar]
  • Freeland, S., R. Bentley, and P. Murdin. SolarSoft. Encyclopedia of Astronomy and Astrophysics, Bristol, IOP Publishing, 3390, 2000. [Google Scholar]
  • Foullon, C., and E. Verwichte. Automated detection of EUV prominences. Sol. Phys., 234, 135–150, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Gaetz, T.J., and E.E. Salpeter. Line radiation from a hot, optically thin plasma – Collision strengths and emissivities. Astrophys. J. Suppl. Ser., 52, 155–168, 1983. [Google Scholar]
  • Gao, J., H. Wang, and M. Zhou. Development of an automatic filament disappearance detection system. Sol. Phys., 205, 93–103, 2002. [NASA ADS] [CrossRef] [Google Scholar]
  • Gissot, S.F., and J.-F. Hochedez. Multiscale optical flow probing of dynamics in solar EUV images. Algorithm, calibration, and first results. A&A, 464, 1107–1118, 2007. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Gissot, S.F., J.-F. Hochedez, P. Chainais, and J.-P. Antoine. 3D Reconstruction from SECCHI-EUVI images using an optical-flow algorithm: method description and observation of an erupting filament. Sol. Phys., 252, 397–408, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N., M. Shimojo, W. Lu, S. Yashiro, K. Shibasaki, and R.A. Howard. Prominence eruptions and coronal mass ejection: a statistical study using microwave observations. Astrophys. J., 586, 562–578, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Gosling, J.T. The solar flare myth. J. Geophys. Res., 98, 18937–18950, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Hao, Q., C. Fang, and P.F. Chen. Developing an advanced automated method for solar filament recognition and its scientific application to a solar cycle of MLSO H# data. Sol. Phys., 286, 385–404, 2013. [CrossRef] [Google Scholar]
  • Hurlburt, N., and S. Jaffey. A spectral optical flow method for determining velocities from digital imagery. Earth Space Science Informatics, 8, 959–965, 2015. [CrossRef] [Google Scholar]
  • Hurlburt, N., M. Cheung, C. Schrijver, L. Chang, S. Freeland, et al. Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. Sol. Phys., 275, 67–78, 2012. [Google Scholar]
  • Joshi, A.D., N. Srivastava, and S.K. Mathew. Automated detection of filaments and their disappearance using full-disc Hα images. Sol. Phys., 262, 425–436, 2010. [CrossRef] [Google Scholar]
  • Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C. St. Cyr, M. Guhathakurta, and E. Christian. The STEREO Mission: an Introduction. Space Sci. Rev., 136, 5–16, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Kosugi, T., K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, et al. The Hinode (Solar-B) Mission: an overview. Sol. Phys., 243, 3–17, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Labrosse, N., S. Dalla, and S. Marshall. Automatic detection of limb prominences in 304 Å EUV images. Sol. Phys., 262, 449–460, 2010. [CrossRef] [Google Scholar]
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 17–40, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Munro, R.H., J.T. Gosling, E. Hildner, R.M. MacQueen, A.I. Poland, and C.L. Ross. The association of coronal mass ejection transients with other forms of solar activity. Sol. Phys., 61, 201–215, 1979. [Google Scholar]
  • Priest, E.R. Solar Magneto-hydrodynamics, D. Reidel Pub. Co, Dordrecht, Holland, Boston, 1982. [Google Scholar]
  • Qu, M., F.Y. Shih, J. Jing, and H. Wang. Automatic solar filament detection using image processing techniques. Sol. Phys., 228, 119–135, 2005. [Google Scholar]
  • Scholl, I.F., and S.R. Habbal. Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Sol. Phys., 248, 425–439, 2008. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schuh, M.A., J.M. Banda, P.N. Bernasconi, R.A. Angryk, and P.C.H. Martens. A comparative evaluation of automated solar filament detection. Sol. Phys., 289, 2503–2524, 2014. [CrossRef] [Google Scholar]
  • Shine, R.A., G.W. Simon, and N.E. Hurlburt. Supergranule and mesogranule evolution. Sol. Phys., 193, 313–331, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Tian, H., E.E. DeLuca, S.R. Cranmer, B. De Pontieu, H. Peter, et al. Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science, 346, A1255711, 2014. [CrossRef] [Google Scholar]
  • Title, A.M., and C.J. Schrijver. The Sun’s magnetic carpet. The Tenth Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 154, 345–357, 1998. [Google Scholar]
  • Wang, Y., H. Cao, J. Chen, T. Zhang, S. Yu, H. Zheng, C. Shen, J. Zhang, and S. Wang. Solar Limb Prominence Catcher and Tracker (SLIPCAT): an automated system and its preliminary statistical results. Astrophys. J., 717, 973–986, 2010. [Google Scholar]
  • Yan, X.-L., Z.-Q. Qu, and D.-F. Kong. Relationship between eruptions of active-region filaments and associated flares and coronal mass ejections. Monthly Notices of the Royal Astronomical Society, 414, 2803–2811, 2011. [CrossRef] [Google Scholar]
  • Yuan, Y., F.Y. Shih, J. Jing, H. Wang, and J. Chae. Automatic solar filament segmentation and characterization. Sol. Phys., 272, 101–117, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Zharkova, V.V., and V. Schetinin. Filament recognition in solar images with the neural network technique. Sol. Phys., 228, 137–148, 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.