Issue
J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A22
Number of page(s) 15
DOI https://doi.org/10.1051/swsc/2015024
Published online 10 July 2015
  • Antiochos, S.K., C.R. DeVore, and J.A. Klimchuk. A model for solar coronal mass ejections. Astrophys. J., 510, 485–493, 1999, DOI: 10.1086/30656. [NASA ADS] [CrossRef]
  • Athay, R.G., and R.M.E. Illing. Analysis of the prominence associated with the coronal mass ejection of August 18. J. Geophys. Res., 91, 10961–10973, 1980, DOI: 10.1029/JA091iA10p10961. [NASA ADS] [CrossRef]
  • Attrill, G.D.R., A.J. Engell, M.J. Wills-Davey, P. Grigis, and P. Testa. Hinode/XRT and STEREO observations of a diffuse coronal “wave”-coronal mass ejection-dimming event. Astrophys. J., 704, 1296, 2009, DOI: 10.1088/0004-637X/704/2/1296. [NASA ADS] [CrossRef]
  • Bao, X., H. Zhang, and J. Lin. Four coronal mass ejections and their associated surface activity observed on 26 October 2003. In: K.P. Dere, J. Wang, and Y. Yan, Editors, Proc. IAU Symp., Coronal and Stellar Mass Ejections, St. Petersburg, Russia, 223–224, 2005, DOI: 10.1017/S174392130500058X.
  • Bewsher, D., D.S. Brown, C.J. Eyles, B.J. Kellett, G.J. White, and B. Swinyard. Determination of the photometric calibration and large-scale flatfield of the STEREO heliospheric imagers: I. HI-1. Sol. Phys., 264, 433–460, 2010, DOI: 10.1007/s11207-010-9582-8. [CrossRef]
  • Billings, D.E. A Guide to the Solar Corona, Academic Press, New York, 1966.
  • Bothmer, V., and R. Schwenn. The structure and origin of magnetic clouds in the solar wind. Ann. Geophys., 16, 1, 1998, DOI: 10.1007/s00585-997-0001-x. [NASA ADS] [CrossRef]
  • Boursier, Y., P. Lamy, and A. Llebaria. Three-dimensional kinematics of coronal mass ejections from STEREO/SECCHI-COR2 observations in 2007–2008. Sol. Phys., 256, 131–147, 2009a, DOI: 10.1007/s11207-009-9358-1. [CrossRef]
  • Boursier, Y., P. Lamy, A. Llebaria, F. Goudail, and S. Robelus. The ARTEMIS catalog of LASCO coronal mass ejections. Sol. Phys., 257, 125–147, 2009b, DOI: 10.1007/s11207-009-9370-5. [NASA ADS] [CrossRef]
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys., 162, 357–402, 1995, DOI: 10.1007/BF00733434. [NASA ADS] [CrossRef]
  • Burlaga, L., E. Sittler, F. Mariani, and R. Schwenn. Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res., 86, 6673–6684, 1981, DOI: 10.1029/JA086iA08p06673. [NASA ADS] [CrossRef]
  • Byrne, J.P., S.A. Maloney, R.T.J. McAteer, J.M. Refojo, and P.T. Gallagher. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nature Comm., 1, 74, 2010, DOI: 10.1038/ncomms1077. [NASA ADS] [CrossRef]
  • Byrne, J.P., H. Morgan, S.R. Shadia, and P.T. Gallagher. Automatic detection and tracking of coronal mass ejections, II. Multiscale filtering of coronagraph images. Astrophys. J., 752, 145, 2012, DOI: 10.1088/0004-637X/752/2/145. [NASA ADS] [CrossRef]
  • Cane, H.V., S.W. Kahler, and N.R. Sheeley Jr. Interplanetary shocks preceded by solar filament eruptions. J. Geophys. Res., 91, 13321–13329, 1986, DOI: 10.1029/JA091iA12p13321. [NASA ADS] [CrossRef]
  • Chen, P.F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys., 8, 1, 2011, DOI: 10.12942/lrsp-2011-1.
  • Chen, P.F., M.D. Ding, and C. Fang. Synthesis of CME-associated Moreton and EIT wave features from MHD simulations. Space Sci. Rev., 121, 201–211, 2005, DOI: 10.1007/s11214-006-3911-0. [NASA ADS] [CrossRef]
  • Colaninno, R.C., and A. Vourlidas. First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys. J., 698, 852–858, 2009, DOI: 10.1088/0004-637X/698/1/852. [NASA ADS] [CrossRef]
  • Crooker, N.U. Solar and heliospheric geoeffective disturbances. J. Atmos. Sol. Terr. Phys., 62, 1071–1085, 2000, DOI: 10.1016/S1364-6826(00)00098-5. [NASA ADS] [CrossRef]
  • Crooker, N.U., J.T. Gosling, E.J. Smith, and C.T. Russell. A bubblelike coronal mass ejection flux rope in the solar wind. AGU Geophys. Monograph, 58, 365–371, 1990.
  • Davis, C.J., J.A. Davies, M. Lockwood, A.P. Rouillard, C.J. Eyles, and R.A. Harrison. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett., 36, L08102, 2009, DOI: 10.1029/2009GL038021.
  • DeForest, C.E., and T.A. Howard. Feasibility of heliospheric imaging from near Earth. Astrophys. J., 804, 126, 2015, DOI: 10.1088/0004-637X/804/2/126. [CrossRef]
  • DeForest, C.E., T.A. Howard, and S.J. Tappin. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2. Astrophys. J., 738, 103, 2011, DOI: 10.1088/0004-637X/738/1/103. [CrossRef]
  • DeForest, C.E., T.A. Howard, and D.J. McComas. Disconnecting open solar magnetic flux. Astrophys. J., 745, 36, 2012, DOI: 10.1088/0004-637X/745/1/36. [CrossRef]
  • DeForest, C.E., T.A. Howard, and D.J. McComas. Tracking coronal features from the low corona to Earth: a quantitative analysis of the 2008 December 12 coronal mass ejection. Astrophys. J., 769, 43, 2013a, DOI: 10.1088/0004-637X/769/1/43. [CrossRef]
  • DeForest, C.E., T.A. Howard, and S.J. Tappin. The Thomson surface: II. Polarization. Astrophys. J., 765, 44, 2013b, DOI: 10.1088/0004-637X/765/1/44. [CrossRef]
  • de Koning, C.A., and V.J. Pizzo. Polarimetric localization: a new tool for calculating the CME speed and direction of propagation in near-real time. Space Weather, 9, S03001, 2011, DOI: 10.1029/2010SW000595. [CrossRef]
  • de Koning, C.A., V.J. Pizzo, and D.A. Biesecker. Geometric localization of CMEs in 3D space using STEREO beacon data: first results. Sol. Phys., 256, 167–181, 2009, DOI: 10.1007/s11207-009-9344-7. [CrossRef]
  • DeMastus, H.L., W.J. Wagner, and R.D. Robinson. Coronal disturbances, I: fast transient events observed in the green coronal emission line during the last solar cycle. Sol. Phys., 31, 449–459, 1973, DOI: 10.1007/BF00152820. [CrossRef]
  • Dryer, M. Interplanetary shock waves generated by solar flares. Space Sci. Rev., 15, 403–468, 1974, DOI: 10.1007/BF00178215. [CrossRef]
  • Fan, Y., and S.E. Gibson. The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J., 589, L105–L108, 2003, DOI: 10.1086/375834. [NASA ADS] [CrossRef]
  • Fan, Y., and S.E. Gibson. Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J., 609, 1123–1133, 2004, DOI: 10.1086/421238. [NASA ADS] [CrossRef]
  • Farrugia, C.J., H. Matsui, H. Kuchaerek, R.B. Torbert, C.W. Smith, et al. Interplanetary coronal mass ejection and ambient interplanetary field correlations during the Sun-Earth connection events of October–November 2003. J. Geophys. Res., 110, A09S13, 2005, DOI: 10.1029/2004JA010968.
  • Feng, L., B. Inhester, Y. Wei, W.Q. Gan, T.L. Zhang, and M.Y. Wang. Morphological evolution of a three-dimensional coronal mass ejection cloud reconstructed from three viewpoints. Astrophys. J., 751, 18, 2012, DOI: 10.1088/0004-637X/751/1/18. [NASA ADS] [CrossRef]
  • Forsyth, R.J., V. Bothmer, C. Cid, N.U. Crooker, T.S. Horbury, et al. ICMEs in the inner heliosphere: origin, evolution and propagation effects. Report of working group G. Space Sci. Rev., 123, 383–416, 2006, DOI: 10.1007/s11214-006-9022-0. [NASA ADS] [CrossRef]
  • Frazin, R.A., A.M. Vásquez, W.T. Thompson, R.J. Hewett, P. Lamy, A. Llebaria, A. Vourlidas, J. Burkepile. Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 coronagraphs. Sol. Phys., 280, 273–293, 2012, DOI: 10.1007/s11207-012-0028-3. [CrossRef]
  • Fuller, J., S.E. Gibson, G. de Toma, and Y. Fan. Observing the unobservable? Modeling coronal cavity densities. Astrophys. J., 678, 515–530, 2008, DOI: 10.1086/533527. [CrossRef]
  • Gopalswamy, N., S. Yashiro, Y. Liu, G. Michalek, A. Vourlidas, M.L. Kaiser, and R.A. Howard. Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions. J. Geophys. Res., 110, A09S15, 2005, DOI: 10.1029/2004JA010958.
  • Gosling, J.T. The solar flare myth. J. Geophys. Res., 98, 18937–18949, 1993, DOI: 10.1029/93JA01896. [NASA ADS] [CrossRef]
  • Gosling, J.T., E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. Mass ejections from the Sun – a view from SKYLAB. J. Geophys. Res., 79, 4581–4587, 1974, DOI: 10.1029/JA079i031p04581. [NASA ADS] [CrossRef]
  • Gosling, J.T., E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. Direct observations of a flare related coronal and solar wind disturbance. Sol. Phys., 40, 439–448, 1975, DOI: 10.1007/BF00162390. [CrossRef]
  • Gosling, J.T., E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. The speeds of coronal mass ejections events. Sol. Phys., 48, 389–397, 1976, DOI: 10.1007/BF00152004. [NASA ADS] [CrossRef]
  • Harrison, R.A. Solar coronal mass ejections and flares. Astron. Astrophys., 162, 283–291, 1986.
  • Hildner, E., J.T. Gosling, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. The large coronal transient of 10 June 1973, I: observational description. Sol. Phys., 42, 163–177, 1975, DOI: 10.1007/BF00153293. [CrossRef]
  • Howard, R.A., M.J. Koomen, D.J. Michels, R. Tousey, C.R. Dewiler, et al. Synoptic observations of the solar corona during Carrington rotations 1580–1596 (11 October 1971–15 January 1973), World Data Center A for Solar-Terr. Phys, Report UAG 48A, 1976.
  • Howard, R.A., D.J. Michels, N.R. Sheeley Jr., and M.J. Koomen. The observation of a coronal transient directed at Earth. Astrophys. J. Lett., 263, L101–L104, 1982, DOI: 10.1086/183932. [NASA ADS] [CrossRef]
  • Howard, R.A., N.R. Sheeley Jr., D.J. Michels, and M.J. Koomen, Coronal mass ejections – 1979–1981, J. Geophys. Res., 90, 8173–8191, 1985, DOI: 10.1029/JA090iA09p08173. [NASA ADS] [CrossRef]
  • Howard, T. Coronal mass ejections: An introduction, Astrophysics and Space Science Library, 376, Springer, New York, 2011a, DOI: 10.1007/978-1-4419-8789-1. [CrossRef]
  • Howard, T. Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data. J. Atmos. Sol. Terr. Phys., 73, 1242–1253, 2011b, DOI: 10.1016/j.jastp.2010.08.009. [NASA ADS] [CrossRef]
  • Howard, T. Space weather and coronal mass ejections, SpringerBriefs in Astronomy, XIII, ISBN: 978-1-4614-7975-8, 2014. [CrossRef]
  • Howard, T. Measuring an eruptive prominence at large distances from the Sun: I. Ionization and early evolution. Astrophys. J., 806, 175, 2015a, DOI: 10.1088/0004-637X/806/2/175. [CrossRef]
  • Howard, T. Measuring an eruptive prominence at large distances from the Sun: II. Approaching 1 AU. Astrophys. J., 806, 176, 2015b, DOI: 10.1088/0004-637X/806/2/176. [CrossRef]
  • Howard, T.A., and C.E. DeForest. Inner heliospheric flux rope evolution via imaging of coronal mass ejections. Astrophys. J., 746, 64, 2012a, DOI: 10.1088/0004-637X/746/1/64. [NASA ADS] [CrossRef]
  • Howard, T.A., and C.E. DeForest. The Thomson surface: I. Reality and myth. Astrophys. J., 752, 130, 2012b, DOI: 10.1088/0004-637X/752/2/130. [CrossRef]
  • Howard, T.A., and C.E. DeForest. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations. Astrophys. J., 796, 33, 2014, DOI: 10.1088/0004-637X/796/1/33. [CrossRef]
  • Howard, T.A., and S.J. Tappin. Three-dimensional reconstruction of two solar coronal mass ejections using the STEREO spacecraft. Sol. Phys., 252, 373–383, 2008, DOI: 10.1007/s11207-008-9262-0. [CrossRef]
  • Howard, T.A., and S.J. Tappin. Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev., 147, 31–54, 2009, DOI: 10.1007/s11214-009-9542-5. [CrossRef]
  • Howard, T.A., C.E. DeForest, and A.A. Reinard. White light observations of solar wind transients and comparison with auxiliary datasets. Astrophys. J., 754, 102, 2012, DOI: 10.1088/0004-637X/754/2/102. [CrossRef]
  • Howard, T.A., S.J. Tappin, D. Odstrcil, and C.E. DeForest. The Thomson surface: III, Tracking features in 3-D. Astrophys. J., 765, 45, 2013a, DOI: 10.1088/0004-637X/765/1/45. [CrossRef]
  • Howard, T.A., M.M. Bisi, A. Buffington, J.M. Clover, M.P. Cooke, et al. The Solar Mass Ejection Imager and its heliospheric imaging legacy. Space Sci. Rev., 180, 1–38, 2013b, DOI: 10.1007/s11214-013-9992-7. [CrossRef]
  • Hundhausen, A.J., J.T. Burkepile, and O.C. St. Cyr. Speeds of coronal mass ejections: SMM observations from 1980 and 1984–1989. J. Geophys. Res., 99, 6543–6552, 1994, DOI: 10.1029/93JA03586. [NASA ADS] [CrossRef]
  • Illing, R.M.E., and A.J. Hundhausen. Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res., 90, 275–282, 1985, DOI: 10.1029/JA090iA01p00275. [NASA ADS] [CrossRef]
  • Illing, R.M.E., and R.G. Athay. Physical conditions in eruptive prominences at several solar radii. Sol. Phys., 105, 173–190, 1986, DOI: 10.1007/BF00156385. [NASA ADS] [CrossRef]
  • Klein, L.W., and L.F. Burlaga. Interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 87, 613–624, 1982, DOI: 10.1029/JA087iA02p00613. [NASA ADS] [CrossRef]
  • Koomen, M.J., C.R. Detwiler, G.E. Brueckner, H.W. Cooper, and R. Tousey. White light coronagraph in OSO-7. Appl. Opt., 14, 743–751, 1975, DOI: 10.1364/AO.14.000743. [CrossRef]
  • Lamy, P., L. Damé, S. Vivès, and A. Zhukov. ASPIICS: a giant coronagraph for the ESA/PROBA-3 formation flying mission. Proc. SPIE, 7731, 773118, 2010, DOI: 10.1117/12.858247. [CrossRef]
  • Lepping, R.P., L.F. Burlaga, and J.A. Jones. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 95, 11957–11965, 1990, DOI: 10.1029/JA095iA08p11957. [NASA ADS] [CrossRef]
  • Liewer, P.C., E.M. de Jong, J.R. Hall, R.A. Howard, W.T. Thompson, J.L. Culhane, L. Bone, and L. van Driel-Gesztelyi. Stereoscopic analysis of the 19 May 2007 erupting filament. Sol. Phys., 256, 57–72, 2009, DOI: 10.1007/s11207-009-9363-4. [NASA ADS] [CrossRef]
  • Liu, Y., A. Thernisien, J.G. Luhmann, A. Vourlidas, J.A. Davies, R.P. Lin, and S.D. Bale. Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J., 722, 1762–1777, 2010, DOI: 10.1088/0004-637X/722/2/1762. [NASA ADS] [CrossRef]
  • Low, B.C. The nature of the quiescent prominence cavity. Bull. Amer. Astron. Soc., 25, 1218, 1993.
  • Lugaz, N., J.N. Hernandez-Charpak, I.I. Rousev, C.J. Davis, A. Vourlidas, and J.A. Davis. Determining the azimuthal properties of coronal mass ejections from Multi-spacecraft remove-sensing observations with STEREO SECCHI. Astrophys. J., 715, 493–499, 2010, DOI: 10.1088/0004-637X/715/1/493. [CrossRef]
  • Lynch, B.J., S.K. Antiochos, C.R. DeVore, J.G. Luhmann, and T.H. Zurbuchen. Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J., 683, 1192–1206, 2008, DOI: 10.1086/589738. [NASA ADS] [CrossRef]
  • MacQueen, R.M. Coronal transients: a summary. Philos. Trans. R. Soc. London, 297, 605–620, 1980. [NASA ADS] [CrossRef]
  • MacQueen, R.M., J.A. Eddy, J.T. Gosling, E. Hildner, R.H. Munro, G.A. Newkirk Jr., A.I. Poland, and C.L. Ross. The outer solar corona as observed from Skylab: preliminary results. Astrophys. J., 187, L85, 1974, DOI: 10.1086/181402. [NASA ADS] [CrossRef]
  • MacQueen, R.M., A. Csoeke-Poeckh, E. Hildner, L. House, R. Reynolds, A. Stanger, H. Tepoel, and W. Wagner. The high altitude observatory coronagraph/polarimeter on the solar maximum mission. Sol. Phys., 65, 91–107, 1980, DOI: 10.1007/BF00156878. [NASA ADS] [CrossRef]
  • Malandraki, O.E., D. Lario, L.J. Lanzerotti, E.T. Sarris, A. Geranios, and G. Tsiropoula. October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations. J. Geophys. Res., 110, A09S06, 2005, DOI: 10.1029/2004JA010926.
  • Manchester IV, W.B., A. Vourlidas, G. Toth, N. Lugaz, I.I. Roussev, T.I. Gombosi, I. Sokolov, D. De Zeeuw, and M. Opher. Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: comparison with LASCO coronagraph observations. Astrophys. J., 684, 1448–1460, 2008, DOI: 10.1086/590231. [NASA ADS] [CrossRef]
  • Martin, S.F., S.H.B. Livi, and J. Wang. The cancellation of magnetic flux. II – in a decaying active region. Australian J. Phys., 38, 929–959, 1985. [NASA ADS] [CrossRef]
  • McIntosh, S.W., R.J. Leamon, A.R. Davey, and M.J. Wills-Davey. The posteruptive evolution of a coronal dimming. Astrophys. J., 660, 1653–1659, 2007, DOI: 10.1086/512665. [CrossRef]
  • Michels, D.J., R.A. Howard, M.J. Koomen, and N.R. Sheeley Jr. Satellite observations of the outer corona near sunspot maximum. In: M.R., Kundu, and T.E. Gergely, Editors, Radio physics of the Sun, D. Reidel, Hingham, MA, 439, 1980. [CrossRef]
  • Mierla, M., J. Davila, W. Thompson, B. Inhester, N. Srivastava, M. Kramar, O.C. St. Cyr, G. Stenborg, and R.A. Howard. A quick method for estimating the propagation direction of coronal mass ejection using STEREO-COR1 images. Sol. Phys., 252, 385–396, 2008, DOI: 10.1007/s11207-008-9267-8. [CrossRef]
  • Mierla, M., B. Inhester, C. Marqué, L. Rodriguez, S. Gissot, A.N. Zhukov, D. Berghmans, and J. Davila. On 3D reconstruction of coronal mass ejections: I. Method description and application to SECCHI-COR data. Sol. Phys., 259, 123–141, 2009, DOI: 10.1007/s11207-009-9416-8. [NASA ADS] [CrossRef]
  • Mierla, M., B. Inhester, A. Antunes, Y. Boursier, J.P. Byrne, et al. On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys., 28, 203–215, 2010, DOI: 10.5194/angeo-28-203-2010. [NASA ADS] [CrossRef]
  • Mierla, M., I. Chifu, B. Inhester, L. Rodriguez, and A. Zhuov. Low polarised emission from the core of coronal mass ejections. Astron. Astrophys., 530, L1, 2011, DOI: 10.1051/0004-6361/201016295. [NASA ADS] [CrossRef] [EDP Sciences]
  • Minnaert, M., On the continuous spectrum of the corona and its polarisation, Z. Astrophys., 1, 209–236, 1930.
  • Moore, R.L., A.C. Sterling, H.S. Hudson, and J.R. Lemen. Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J., 552, 833–848, 2001, DOI: 10.1086/320559. [NASA ADS] [CrossRef]
  • Moran, T.G., J.M. Davila, and W.T. Thompson. Three-dimensional polarimetric coronal mass ejection localization tested through triangulation. Astrophys. J., 712, 453–458, 2010, DOI: 10.1088/0004-637X/712/1/453. [NASA ADS] [CrossRef]
  • Morrill, J.S., C.M. Korendyke, G.E. Brueckner, F. Giovane, R.A. Howard, et al. Calibration of the SOHO/LASCO C3 white light coronagraph. Sol. Phys., 233, 331–372, 2006, DOI: 10.1007/s11207-006-2058-1. [NASA ADS] [CrossRef]
  • Möstl, C., and J.A. Davies. Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Sol. Phys., 285, 411–423, 2013, DOI: 10.1007/s11207-012-9978-8. [NASA ADS] [CrossRef]
  • Poland, A.I., and R.H. Munro. Interpretation of broad-band polarimetry of solar coronal transients – importance of H-alpha emission. Astrophys. J., 209, 927–934, 1976, DOI: 10.1086/154791. [NASA ADS] [CrossRef]
  • Poland, A.I., R.A. Howard, M.J. Koomen, D.J. Michels, and N.R. Sheeley Jr. Coronal transients near sunspot maximum. Sol. Phys., 69, 169–175, 1981, DOI: 10.1007/BF00151264. [NASA ADS] [CrossRef]
  • Panasenco, O., S. Martin, A.D. Joshi, and N. Srivastava. Rolling motion in erupting prominences observed by STEREO. J. Atmos. Sol. Terr. Phys., 73, 1129–1137, 2011, DOI: 10.1016/j.jastp.2010.09.010. [NASA ADS] [CrossRef]
  • Rachmeler, L.A., C.E. DeForest, and C.C. Kankelborg. Reconnectionless CME eruption: putting the Aly-Sturrock conjecture to rest. Astrophys. J., 693, 1431–1436, 2009, DOI: 10.1088/0004-637X/693/2/1431. [NASA ADS] [CrossRef]
  • Reinard, A.A., and D.A. Biesecker. The relationship between coronal dimming and coronal mass ejection properties. Astrophys. J., 705, 914, 2009, DOI: 10.1088/0004-637X/705/1/91. [CrossRef]
  • Robbrecht, E., and D. Berghmans. Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron Astrophys., 425, 1097–1106, 2004, DOI: 10.1051/0004-6361:20041302. [NASA ADS] [CrossRef] [EDP Sciences]
  • C., Russell, Editor, The STEREO mission. Space Sci. Rev., 136, 2008, 1–3. [CrossRef]
  • Rust, D.M., E. Hildner, M. Dryer, A.N. McClymont, S.M.P. McKenna-Lawlor, et al. Mass ejections, in Solar flares: A monograph from Skylab Solar Workshop II, Colorado Associated University Press, 273–339, 1980.
  • Schmahl, E., and E. Hildner. Coronal mass ejections-kinematics of the 19 December 1973 event. Sol. Phys., 55, 473–490, 1977, DOI: 10.1007/BF00152588. [NASA ADS] [CrossRef]
  • Schuster, A. On the polarisation of the solar corona. M. Not. R. Astron. Soc., 40, 35–57, 1879. [CrossRef]
  • Sturrock, P.A. The role of eruption in solar flares. Sol. Phys., 121, 387–397, 1989, DOI: 10.1007/BF00161708. [NASA ADS] [CrossRef]
  • Sun, X., J.T. Hoeksema, Y. Liu, T. Wiegelmann, and K. Hayashi. Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J., 748, 77, 2012, DOI: 10.1088/0004-637X/748/2/77. [NASA ADS] [CrossRef]
  • Tappin, S.J., and T.A. Howard. Interplanetary coronal mass ejections observed in the heliosphere: 2. Model and data comparison. Space Sci. Rev., 147, 55–87, 2009, DOI: 10.1007/s11214-009-9550-5. [CrossRef]
  • Tappin, S.J., T.A. Howard, M.M. Hampson, R.N. Thompson, and C.E. Burns. On the autonomous detection of coronal mass ejections in heliospheric imager data. J. Geophys. Res., 117, A05103, 2012, DOI: 10.1029/2011JA017439.
  • Temmer, M., S. Preiss, and A.M. Veronig. CME project effects studied with STEREO/COR and SOHO/LASCO. Sol. Phys., 256, 183–199, 2009, DOI: 10.1007/s11207-009-9336-7. [CrossRef]
  • Thernisien, A.F.R., R.A. Howard, and A. Vourlidas. Modeling of flux rope coronal mass ejections. Astrophys. J., 652, 763–773, 2006, DOI: 10.1086/508254. [NASA ADS] [CrossRef]
  • Thompson, W.T., K. Wei, J.R. Burkepile, J.M. Davilla, and O.C. St. Cyr. Background subtraction for the SECCHI/COR1 telescope aboard STEREO. Sol. Phys., 262, 213–231, 2010, DOI: 10.1007/s11207-010-9513-8. [CrossRef]
  • Török, T., and B. Kliem. The evolution of twisting coronal magnetic flux ropes. Astron. Astrophys., 406, 1043–1059, 2003, DOI: 10.1051/0004-6361:20030692. [NASA ADS] [CrossRef] [EDP Sciences]
  • Török, T., and B. Kliem. Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J., 630, L97–L100, 2005, DOI: 10.1086/462412. [NASA ADS] [CrossRef]
  • Tousey, R. The solar corona. Space Research XIII, 2, 713–730, 1973.
  • Tripathi, D., V. Bothmer, and H. Cremades. The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions. Astron. Astrophys., 422, 337–349, 2004, DOI: 10.1051/0004-6361:20035815. [NASA ADS] [CrossRef] [EDP Sciences]
  • Webb, D.F. Erupting prominences and the geometry of coronal mass ejections. J. Geophys. Res., 93, 1749–1758, 1988, DOI: 10.1029/JA093iA03p01749. [NASA ADS] [CrossRef]
  • Webb, D.F., and T.A. Howard. Coronal mass ejections: observations. Living Rev. Sol. Phys., 9, 3, 2012, DOI: 10.12942/lrsp-2012-3.
  • Wood, B.E., and R.A. Howard. An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys. J., 702, 901–910, 2009, DOI: 10.1088/0004-637X/702/2/901. [NASA ADS] [CrossRef]
  • Xie, H., L. Ofman, and G. Lawrence. Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res., 109, A03109, 2004, DOI: 10.1029/2003JA010226.
  • Yao, S., E. Marsch, C.-Y. Tu, and R. Schwenn. Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere. J. Geophys. Res., 115, A05103, 2010, DOI: 10.1029/2009JA014914.
  • Zhang, J., and J. Wang. Filament eruptions and halo coronal mass ejections. Astrophys. J., 554, 474–487, 2001, DOI: 10.1086/321343. [NASA ADS] [CrossRef]
  • Zhang, M., and B.C. Low. Magnetic energy storage in the two hydromagnetic types of solar prominences. Astrophys. J., 600, 1043–1051, 2004, DOI: 10.1086/379891. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.