Issue |
J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
|
|
---|---|---|
Article Number | A22 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2015024 | |
Published online | 10 July 2015 |
- Antiochos, S.K., C.R. DeVore, and J.A. Klimchuk. A model for solar coronal mass ejections. Astrophys. J., 510, 485–493, 1999, DOI: 10.1086/30656. [NASA ADS] [CrossRef] [Google Scholar]
- Athay, R.G., and R.M.E. Illing. Analysis of the prominence associated with the coronal mass ejection of August 18. J. Geophys. Res., 91, 10961–10973, 1980, DOI: 10.1029/JA091iA10p10961. [Google Scholar]
- Attrill, G.D.R., A.J. Engell, M.J. Wills-Davey, P. Grigis, and P. Testa. Hinode/XRT and STEREO observations of a diffuse coronal “wave”-coronal mass ejection-dimming event. Astrophys. J., 704, 1296, 2009, DOI: 10.1088/0004-637X/704/2/1296. [NASA ADS] [CrossRef] [Google Scholar]
- Bao, X., H. Zhang, and J. Lin. Four coronal mass ejections and their associated surface activity observed on 26 October 2003. In: K.P. Dere, J. Wang, and Y. Yan, Editors, Proc. IAU Symp., Coronal and Stellar Mass Ejections, St. Petersburg, Russia, 223–224, 2005, DOI: 10.1017/S174392130500058X. [Google Scholar]
- Bewsher, D., D.S. Brown, C.J. Eyles, B.J. Kellett, G.J. White, and B. Swinyard. Determination of the photometric calibration and large-scale flatfield of the STEREO heliospheric imagers: I. HI-1. Sol. Phys., 264, 433–460, 2010, DOI: 10.1007/s11207-010-9582-8. [NASA ADS] [CrossRef] [Google Scholar]
- Billings, D.E. A Guide to the Solar Corona, Academic Press, New York, 1966. [Google Scholar]
- Bothmer, V., and R. Schwenn. The structure and origin of magnetic clouds in the solar wind. Ann. Geophys., 16, 1, 1998, DOI: 10.1007/s00585-997-0001-x. [Google Scholar]
- Boursier, Y., P. Lamy, and A. Llebaria. Three-dimensional kinematics of coronal mass ejections from STEREO/SECCHI-COR2 observations in 2007–2008. Sol. Phys., 256, 131–147, 2009a, DOI: 10.1007/s11207-009-9358-1. [CrossRef] [Google Scholar]
- Boursier, Y., P. Lamy, A. Llebaria, F. Goudail, and S. Robelus. The ARTEMIS catalog of LASCO coronal mass ejections. Sol. Phys., 257, 125–147, 2009b, DOI: 10.1007/s11207-009-9370-5. [Google Scholar]
- Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys., 162, 357–402, 1995, DOI: 10.1007/BF00733434. [NASA ADS] [CrossRef] [Google Scholar]
- Burlaga, L., E. Sittler, F. Mariani, and R. Schwenn. Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res., 86, 6673–6684, 1981, DOI: 10.1029/JA086iA08p06673. [Google Scholar]
- Byrne, J.P., S.A. Maloney, R.T.J. McAteer, J.M. Refojo, and P.T. Gallagher. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nature Comm., 1, 74, 2010, DOI: 10.1038/ncomms1077. [Google Scholar]
- Byrne, J.P., H. Morgan, S.R. Shadia, and P.T. Gallagher. Automatic detection and tracking of coronal mass ejections, II. Multiscale filtering of coronagraph images. Astrophys. J., 752, 145, 2012, DOI: 10.1088/0004-637X/752/2/145. [Google Scholar]
- Cane, H.V., S.W. Kahler, and N.R. Sheeley Jr. Interplanetary shocks preceded by solar filament eruptions. J. Geophys. Res., 91, 13321–13329, 1986, DOI: 10.1029/JA091iA12p13321. [Google Scholar]
- Chen, P.F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys., 8, 1, 2011, DOI: 10.12942/lrsp-2011-1. [Google Scholar]
- Chen, P.F., M.D. Ding, and C. Fang. Synthesis of CME-associated Moreton and EIT wave features from MHD simulations. Space Sci. Rev., 121, 201–211, 2005, DOI: 10.1007/s11214-006-3911-0. [Google Scholar]
- Colaninno, R.C., and A. Vourlidas. First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys. J., 698, 852–858, 2009, DOI: 10.1088/0004-637X/698/1/852. [Google Scholar]
- Crooker, N.U. Solar and heliospheric geoeffective disturbances. J. Atmos. Sol. Terr. Phys., 62, 1071–1085, 2000, DOI: 10.1016/S1364-6826(00)00098-5. [NASA ADS] [CrossRef] [Google Scholar]
- Crooker, N.U., J.T. Gosling, E.J. Smith, and C.T. Russell. A bubblelike coronal mass ejection flux rope in the solar wind. AGU Geophys. Monograph, 58, 365–371, 1990. [Google Scholar]
- Davis, C.J., J.A. Davies, M. Lockwood, A.P. Rouillard, C.J. Eyles, and R.A. Harrison. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett., 36, L08102, 2009, DOI: 10.1029/2009GL038021. [Google Scholar]
- DeForest, C.E., and T.A. Howard. Feasibility of heliospheric imaging from near Earth. Astrophys. J., 804, 126, 2015, DOI: 10.1088/0004-637X/804/2/126. [CrossRef] [Google Scholar]
- DeForest, C.E., T.A. Howard, and S.J. Tappin. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2. Astrophys. J., 738, 103, 2011, DOI: 10.1088/0004-637X/738/1/103. [Google Scholar]
- DeForest, C.E., T.A. Howard, and D.J. McComas. Disconnecting open solar magnetic flux. Astrophys. J., 745, 36, 2012, DOI: 10.1088/0004-637X/745/1/36. [Google Scholar]
- DeForest, C.E., T.A. Howard, and D.J. McComas. Tracking coronal features from the low corona to Earth: a quantitative analysis of the 2008 December 12 coronal mass ejection. Astrophys. J., 769, 43, 2013a, DOI: 10.1088/0004-637X/769/1/43. [CrossRef] [Google Scholar]
- DeForest, C.E., T.A. Howard, and S.J. Tappin. The Thomson surface: II. Polarization. Astrophys. J., 765, 44, 2013b, DOI: 10.1088/0004-637X/765/1/44. [CrossRef] [Google Scholar]
- de Koning, C.A., and V.J. Pizzo. Polarimetric localization: a new tool for calculating the CME speed and direction of propagation in near-real time. Space Weather, 9, S03001, 2011, DOI: 10.1029/2010SW000595. [Google Scholar]
- de Koning, C.A., V.J. Pizzo, and D.A. Biesecker. Geometric localization of CMEs in 3D space using STEREO beacon data: first results. Sol. Phys., 256, 167–181, 2009, DOI: 10.1007/s11207-009-9344-7. [Google Scholar]
- DeMastus, H.L., W.J. Wagner, and R.D. Robinson. Coronal disturbances, I: fast transient events observed in the green coronal emission line during the last solar cycle. Sol. Phys., 31, 449–459, 1973, DOI: 10.1007/BF00152820. [CrossRef] [Google Scholar]
- Dryer, M. Interplanetary shock waves generated by solar flares. Space Sci. Rev., 15, 403–468, 1974, DOI: 10.1007/BF00178215. [Google Scholar]
- Fan, Y., and S.E. Gibson. The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J., 589, L105–L108, 2003, DOI: 10.1086/375834. [Google Scholar]
- Fan, Y., and S.E. Gibson. Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J., 609, 1123–1133, 2004, DOI: 10.1086/421238. [NASA ADS] [CrossRef] [Google Scholar]
- Farrugia, C.J., H. Matsui, H. Kuchaerek, R.B. Torbert, C.W. Smith, et al. Interplanetary coronal mass ejection and ambient interplanetary field correlations during the Sun-Earth connection events of October–November 2003. J. Geophys. Res., 110, A09S13, 2005, DOI: 10.1029/2004JA010968. [Google Scholar]
- Feng, L., B. Inhester, Y. Wei, W.Q. Gan, T.L. Zhang, and M.Y. Wang. Morphological evolution of a three-dimensional coronal mass ejection cloud reconstructed from three viewpoints. Astrophys. J., 751, 18, 2012, DOI: 10.1088/0004-637X/751/1/18. [NASA ADS] [CrossRef] [Google Scholar]
- Forsyth, R.J., V. Bothmer, C. Cid, N.U. Crooker, T.S. Horbury, et al. ICMEs in the inner heliosphere: origin, evolution and propagation effects. Report of working group G. Space Sci. Rev., 123, 383–416, 2006, DOI: 10.1007/s11214-006-9022-0. [NASA ADS] [CrossRef] [Google Scholar]
- Frazin, R.A., A.M. Vásquez, W.T. Thompson, R.J. Hewett, P. Lamy, A. Llebaria, A. Vourlidas, J. Burkepile. Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 coronagraphs. Sol. Phys., 280, 273–293, 2012, DOI: 10.1007/s11207-012-0028-3. [NASA ADS] [CrossRef] [Google Scholar]
- Fuller, J., S.E. Gibson, G. de Toma, and Y. Fan. Observing the unobservable? Modeling coronal cavity densities. Astrophys. J., 678, 515–530, 2008, DOI: 10.1086/533527. [CrossRef] [Google Scholar]
- Gopalswamy, N., S. Yashiro, Y. Liu, G. Michalek, A. Vourlidas, M.L. Kaiser, and R.A. Howard. Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions. J. Geophys. Res., 110, A09S15, 2005, DOI: 10.1029/2004JA010958. [Google Scholar]
- Gosling, J.T. The solar flare myth. J. Geophys. Res., 98, 18937–18949, 1993, DOI: 10.1029/93JA01896. [NASA ADS] [CrossRef] [Google Scholar]
- Gosling, J.T., E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. Mass ejections from the Sun – a view from SKYLAB. J. Geophys. Res., 79, 4581–4587, 1974, DOI: 10.1029/JA079i031p04581. [Google Scholar]
- Gosling, J.T., E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. Direct observations of a flare related coronal and solar wind disturbance. Sol. Phys., 40, 439–448, 1975, DOI: 10.1007/BF00162390. [CrossRef] [Google Scholar]
- Gosling, J.T., E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. The speeds of coronal mass ejections events. Sol. Phys., 48, 389–397, 1976, DOI: 10.1007/BF00152004. [NASA ADS] [CrossRef] [Google Scholar]
- Harrison, R.A. Solar coronal mass ejections and flares. Astron. Astrophys., 162, 283–291, 1986. [Google Scholar]
- Hildner, E., J.T. Gosling, R.M. MacQueen, R.H. Munro, A.I. Poland, and C.L. Ross. The large coronal transient of 10 June 1973, I: observational description. Sol. Phys., 42, 163–177, 1975, DOI: 10.1007/BF00153293. [CrossRef] [Google Scholar]
- Howard, R.A., M.J. Koomen, D.J. Michels, R. Tousey, C.R. Dewiler, et al. Synoptic observations of the solar corona during Carrington rotations 1580–1596 (11 October 1971–15 January 1973), World Data Center A for Solar-Terr. Phys, Report UAG 48A, 1976. [Google Scholar]
- Howard, R.A., D.J. Michels, N.R. Sheeley Jr., and M.J. Koomen. The observation of a coronal transient directed at Earth. Astrophys. J. Lett., 263, L101–L104, 1982, DOI: 10.1086/183932. [Google Scholar]
- Howard, R.A., N.R. Sheeley Jr., D.J. Michels, and M.J. Koomen, Coronal mass ejections – 1979–1981, J. Geophys. Res., 90, 8173–8191, 1985, DOI: 10.1029/JA090iA09p08173. [Google Scholar]
- Howard, T. Coronal mass ejections: An introduction, Astrophysics and Space Science Library, 376, Springer, New York, 2011a, DOI: 10.1007/978-1-4419-8789-1. [CrossRef] [Google Scholar]
- Howard, T. Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data. J. Atmos. Sol. Terr. Phys., 73, 1242–1253, 2011b, DOI: 10.1016/j.jastp.2010.08.009. [NASA ADS] [CrossRef] [Google Scholar]
- Howard, T. Space weather and coronal mass ejections, SpringerBriefs in Astronomy, XIII, ISBN: 978-1-4614-7975-8, 2014. [CrossRef] [Google Scholar]
- Howard, T. Measuring an eruptive prominence at large distances from the Sun: I. Ionization and early evolution. Astrophys. J., 806, 175, 2015a, DOI: 10.1088/0004-637X/806/2/175. [CrossRef] [Google Scholar]
- Howard, T. Measuring an eruptive prominence at large distances from the Sun: II. Approaching 1 AU. Astrophys. J., 806, 176, 2015b, DOI: 10.1088/0004-637X/806/2/176. [Google Scholar]
- Howard, T.A., and C.E. DeForest. Inner heliospheric flux rope evolution via imaging of coronal mass ejections. Astrophys. J., 746, 64, 2012a, DOI: 10.1088/0004-637X/746/1/64. [Google Scholar]
- Howard, T.A., and C.E. DeForest. The Thomson surface: I. Reality and myth. Astrophys. J., 752, 130, 2012b, DOI: 10.1088/0004-637X/752/2/130. [CrossRef] [Google Scholar]
- Howard, T.A., and C.E. DeForest. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations. Astrophys. J., 796, 33, 2014, DOI: 10.1088/0004-637X/796/1/33. [Google Scholar]
- Howard, T.A., and S.J. Tappin. Three-dimensional reconstruction of two solar coronal mass ejections using the STEREO spacecraft. Sol. Phys., 252, 373–383, 2008, DOI: 10.1007/s11207-008-9262-0. [CrossRef] [Google Scholar]
- Howard, T.A., and S.J. Tappin. Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev., 147, 31–54, 2009, DOI: 10.1007/s11214-009-9542-5. [Google Scholar]
- Howard, T.A., C.E. DeForest, and A.A. Reinard. White light observations of solar wind transients and comparison with auxiliary datasets. Astrophys. J., 754, 102, 2012, DOI: 10.1088/0004-637X/754/2/102. [Google Scholar]
- Howard, T.A., S.J. Tappin, D. Odstrcil, and C.E. DeForest. The Thomson surface: III, Tracking features in 3-D. Astrophys. J., 765, 45, 2013a, DOI: 10.1088/0004-637X/765/1/45. [CrossRef] [Google Scholar]
- Howard, T.A., M.M. Bisi, A. Buffington, J.M. Clover, M.P. Cooke, et al. The Solar Mass Ejection Imager and its heliospheric imaging legacy. Space Sci. Rev., 180, 1–38, 2013b, DOI: 10.1007/s11214-013-9992-7. [NASA ADS] [CrossRef] [Google Scholar]
- Hundhausen, A.J., J.T. Burkepile, and O.C. St. Cyr. Speeds of coronal mass ejections: SMM observations from 1980 and 1984–1989. J. Geophys. Res., 99, 6543–6552, 1994, DOI: 10.1029/93JA03586. [NASA ADS] [CrossRef] [Google Scholar]
- Illing, R.M.E., and A.J. Hundhausen. Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res., 90, 275–282, 1985, DOI: 10.1029/JA090iA01p00275. [Google Scholar]
- Illing, R.M.E., and R.G. Athay. Physical conditions in eruptive prominences at several solar radii. Sol. Phys., 105, 173–190, 1986, DOI: 10.1007/BF00156385. [NASA ADS] [CrossRef] [Google Scholar]
- Klein, L.W., and L.F. Burlaga. Interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 87, 613–624, 1982, DOI: 10.1029/JA087iA02p00613. [Google Scholar]
- Koomen, M.J., C.R. Detwiler, G.E. Brueckner, H.W. Cooper, and R. Tousey. White light coronagraph in OSO-7. Appl. Opt., 14, 743–751, 1975, DOI: 10.1364/AO.14.000743. [CrossRef] [Google Scholar]
- Lamy, P., L. Damé, S. Vivès, and A. Zhukov. ASPIICS: a giant coronagraph for the ESA/PROBA-3 formation flying mission. Proc. SPIE, 7731, 773118, 2010, DOI: 10.1117/12.858247. [CrossRef] [Google Scholar]
- Lepping, R.P., L.F. Burlaga, and J.A. Jones. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 95, 11957–11965, 1990, DOI: 10.1029/JA095iA08p11957. [NASA ADS] [CrossRef] [Google Scholar]
- Liewer, P.C., E.M. de Jong, J.R. Hall, R.A. Howard, W.T. Thompson, J.L. Culhane, L. Bone, and L. van Driel-Gesztelyi. Stereoscopic analysis of the 19 May 2007 erupting filament. Sol. Phys., 256, 57–72, 2009, DOI: 10.1007/s11207-009-9363-4. [NASA ADS] [CrossRef] [Google Scholar]
- Liu, Y., A. Thernisien, J.G. Luhmann, A. Vourlidas, J.A. Davies, R.P. Lin, and S.D. Bale. Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J., 722, 1762–1777, 2010, DOI: 10.1088/0004-637X/722/2/1762. [Google Scholar]
- Low, B.C. The nature of the quiescent prominence cavity. Bull. Amer. Astron. Soc., 25, 1218, 1993. [Google Scholar]
- Lugaz, N., J.N. Hernandez-Charpak, I.I. Rousev, C.J. Davis, A. Vourlidas, and J.A. Davis. Determining the azimuthal properties of coronal mass ejections from Multi-spacecraft remove-sensing observations with STEREO SECCHI. Astrophys. J., 715, 493–499, 2010, DOI: 10.1088/0004-637X/715/1/493. [CrossRef] [Google Scholar]
- Lynch, B.J., S.K. Antiochos, C.R. DeVore, J.G. Luhmann, and T.H. Zurbuchen. Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J., 683, 1192–1206, 2008, DOI: 10.1086/589738. [NASA ADS] [CrossRef] [Google Scholar]
- MacQueen, R.M. Coronal transients: a summary. Philos. Trans. R. Soc. London, 297, 605–620, 1980. [CrossRef] [Google Scholar]
- MacQueen, R.M., J.A. Eddy, J.T. Gosling, E. Hildner, R.H. Munro, G.A. Newkirk Jr., A.I. Poland, and C.L. Ross. The outer solar corona as observed from Skylab: preliminary results. Astrophys. J., 187, L85, 1974, DOI: 10.1086/181402. [Google Scholar]
- MacQueen, R.M., A. Csoeke-Poeckh, E. Hildner, L. House, R. Reynolds, A. Stanger, H. Tepoel, and W. Wagner. The high altitude observatory coronagraph/polarimeter on the solar maximum mission. Sol. Phys., 65, 91–107, 1980, DOI: 10.1007/BF00156878. [NASA ADS] [CrossRef] [Google Scholar]
- Malandraki, O.E., D. Lario, L.J. Lanzerotti, E.T. Sarris, A. Geranios, and G. Tsiropoula. October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations. J. Geophys. Res., 110, A09S06, 2005, DOI: 10.1029/2004JA010926. [Google Scholar]
- Manchester IV, W.B., A. Vourlidas, G. Toth, N. Lugaz, I.I. Roussev, T.I. Gombosi, I. Sokolov, D. De Zeeuw, and M. Opher. Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: comparison with LASCO coronagraph observations. Astrophys. J., 684, 1448–1460, 2008, DOI: 10.1086/590231. [CrossRef] [Google Scholar]
- Martin, S.F., S.H.B. Livi, and J. Wang. The cancellation of magnetic flux. II – in a decaying active region. Australian J. Phys., 38, 929–959, 1985. [CrossRef] [Google Scholar]
- McIntosh, S.W., R.J. Leamon, A.R. Davey, and M.J. Wills-Davey. The posteruptive evolution of a coronal dimming. Astrophys. J., 660, 1653–1659, 2007, DOI: 10.1086/512665. [CrossRef] [Google Scholar]
- Michels, D.J., R.A. Howard, M.J. Koomen, and N.R. Sheeley Jr. Satellite observations of the outer corona near sunspot maximum. In: M.R., Kundu, and T.E. Gergely, Editors, Radio physics of the Sun, D. Reidel, Hingham, MA, 439, 1980. [CrossRef] [Google Scholar]
- Mierla, M., J. Davila, W. Thompson, B. Inhester, N. Srivastava, M. Kramar, O.C. St. Cyr, G. Stenborg, and R.A. Howard. A quick method for estimating the propagation direction of coronal mass ejection using STEREO-COR1 images. Sol. Phys., 252, 385–396, 2008, DOI: 10.1007/s11207-008-9267-8. [CrossRef] [Google Scholar]
- Mierla, M., B. Inhester, C. Marqué, L. Rodriguez, S. Gissot, A.N. Zhukov, D. Berghmans, and J. Davila. On 3D reconstruction of coronal mass ejections: I. Method description and application to SECCHI-COR data. Sol. Phys., 259, 123–141, 2009, DOI: 10.1007/s11207-009-9416-8. [NASA ADS] [CrossRef] [Google Scholar]
- Mierla, M., B. Inhester, A. Antunes, Y. Boursier, J.P. Byrne, et al. On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys., 28, 203–215, 2010, DOI: 10.5194/angeo-28-203-2010. [NASA ADS] [CrossRef] [Google Scholar]
- Mierla, M., I. Chifu, B. Inhester, L. Rodriguez, and A. Zhuov. Low polarised emission from the core of coronal mass ejections. Astron. Astrophys., 530, L1, 2011, DOI: 10.1051/0004-6361/201016295. [CrossRef] [EDP Sciences] [Google Scholar]
- Minnaert, M., On the continuous spectrum of the corona and its polarisation, Z. Astrophys., 1, 209–236, 1930. [Google Scholar]
- Moore, R.L., A.C. Sterling, H.S. Hudson, and J.R. Lemen. Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J., 552, 833–848, 2001, DOI: 10.1086/320559. [Google Scholar]
- Moran, T.G., J.M. Davila, and W.T. Thompson. Three-dimensional polarimetric coronal mass ejection localization tested through triangulation. Astrophys. J., 712, 453–458, 2010, DOI: 10.1088/0004-637X/712/1/453. [Google Scholar]
- Morrill, J.S., C.M. Korendyke, G.E. Brueckner, F. Giovane, R.A. Howard, et al. Calibration of the SOHO/LASCO C3 white light coronagraph. Sol. Phys., 233, 331–372, 2006, DOI: 10.1007/s11207-006-2058-1. [Google Scholar]
- Möstl, C., and J.A. Davies. Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Sol. Phys., 285, 411–423, 2013, DOI: 10.1007/s11207-012-9978-8. [NASA ADS] [CrossRef] [Google Scholar]
- Poland, A.I., and R.H. Munro. Interpretation of broad-band polarimetry of solar coronal transients – importance of H-alpha emission. Astrophys. J., 209, 927–934, 1976, DOI: 10.1086/154791. [NASA ADS] [CrossRef] [Google Scholar]
- Poland, A.I., R.A. Howard, M.J. Koomen, D.J. Michels, and N.R. Sheeley Jr. Coronal transients near sunspot maximum. Sol. Phys., 69, 169–175, 1981, DOI: 10.1007/BF00151264. [NASA ADS] [CrossRef] [Google Scholar]
- Panasenco, O., S. Martin, A.D. Joshi, and N. Srivastava. Rolling motion in erupting prominences observed by STEREO. J. Atmos. Sol. Terr. Phys., 73, 1129–1137, 2011, DOI: 10.1016/j.jastp.2010.09.010. [NASA ADS] [CrossRef] [Google Scholar]
- Rachmeler, L.A., C.E. DeForest, and C.C. Kankelborg. Reconnectionless CME eruption: putting the Aly-Sturrock conjecture to rest. Astrophys. J., 693, 1431–1436, 2009, DOI: 10.1088/0004-637X/693/2/1431. [NASA ADS] [CrossRef] [Google Scholar]
- Reinard, A.A., and D.A. Biesecker. The relationship between coronal dimming and coronal mass ejection properties. Astrophys. J., 705, 914, 2009, DOI: 10.1088/0004-637X/705/1/91. [Google Scholar]
- Robbrecht, E., and D. Berghmans. Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron Astrophys., 425, 1097–1106, 2004, DOI: 10.1051/0004-6361:20041302. [CrossRef] [EDP Sciences] [Google Scholar]
- C., Russell, Editor, The STEREO mission. Space Sci. Rev., 136, 2008, 1–3. [CrossRef] [Google Scholar]
- Rust, D.M., E. Hildner, M. Dryer, A.N. McClymont, S.M.P. McKenna-Lawlor, et al. Mass ejections, in Solar flares: A monograph from Skylab Solar Workshop II, Colorado Associated University Press, 273–339, 1980. [Google Scholar]
- Schmahl, E., and E. Hildner. Coronal mass ejections-kinematics of the 19 December 1973 event. Sol. Phys., 55, 473–490, 1977, DOI: 10.1007/BF00152588. [NASA ADS] [CrossRef] [Google Scholar]
- Schuster, A. On the polarisation of the solar corona. M. Not. R. Astron. Soc., 40, 35–57, 1879. [CrossRef] [Google Scholar]
- Sturrock, P.A. The role of eruption in solar flares. Sol. Phys., 121, 387–397, 1989, DOI: 10.1007/BF00161708. [NASA ADS] [CrossRef] [Google Scholar]
- Sun, X., J.T. Hoeksema, Y. Liu, T. Wiegelmann, and K. Hayashi. Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J., 748, 77, 2012, DOI: 10.1088/0004-637X/748/2/77. [Google Scholar]
- Tappin, S.J., and T.A. Howard. Interplanetary coronal mass ejections observed in the heliosphere: 2. Model and data comparison. Space Sci. Rev., 147, 55–87, 2009, DOI: 10.1007/s11214-009-9550-5. [Google Scholar]
- Tappin, S.J., T.A. Howard, M.M. Hampson, R.N. Thompson, and C.E. Burns. On the autonomous detection of coronal mass ejections in heliospheric imager data. J. Geophys. Res., 117, A05103, 2012, DOI: 10.1029/2011JA017439. [Google Scholar]
- Temmer, M., S. Preiss, and A.M. Veronig. CME project effects studied with STEREO/COR and SOHO/LASCO. Sol. Phys., 256, 183–199, 2009, DOI: 10.1007/s11207-009-9336-7. [Google Scholar]
- Thernisien, A.F.R., R.A. Howard, and A. Vourlidas. Modeling of flux rope coronal mass ejections. Astrophys. J., 652, 763–773, 2006, DOI: 10.1086/508254. [NASA ADS] [CrossRef] [Google Scholar]
- Thompson, W.T., K. Wei, J.R. Burkepile, J.M. Davilla, and O.C. St. Cyr. Background subtraction for the SECCHI/COR1 telescope aboard STEREO. Sol. Phys., 262, 213–231, 2010, DOI: 10.1007/s11207-010-9513-8. [NASA ADS] [CrossRef] [Google Scholar]
- Török, T., and B. Kliem. The evolution of twisting coronal magnetic flux ropes. Astron. Astrophys., 406, 1043–1059, 2003, DOI: 10.1051/0004-6361:20030692. [CrossRef] [EDP Sciences] [Google Scholar]
- Török, T., and B. Kliem. Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J., 630, L97–L100, 2005, DOI: 10.1086/462412. [NASA ADS] [CrossRef] [Google Scholar]
- Tousey, R. The solar corona. Space Research XIII, 2, 713–730, 1973. [Google Scholar]
- Tripathi, D., V. Bothmer, and H. Cremades. The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions. Astron. Astrophys., 422, 337–349, 2004, DOI: 10.1051/0004-6361:20035815. [Google Scholar]
- Webb, D.F. Erupting prominences and the geometry of coronal mass ejections. J. Geophys. Res., 93, 1749–1758, 1988, DOI: 10.1029/JA093iA03p01749. [NASA ADS] [CrossRef] [Google Scholar]
- Webb, D.F., and T.A. Howard. Coronal mass ejections: observations. Living Rev. Sol. Phys., 9, 3, 2012, DOI: 10.12942/lrsp-2012-3. [Google Scholar]
- Wood, B.E., and R.A. Howard. An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys. J., 702, 901–910, 2009, DOI: 10.1088/0004-637X/702/2/901. [NASA ADS] [CrossRef] [Google Scholar]
- Xie, H., L. Ofman, and G. Lawrence. Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res., 109, A03109, 2004, DOI: 10.1029/2003JA010226. [Google Scholar]
- Yao, S., E. Marsch, C.-Y. Tu, and R. Schwenn. Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere. J. Geophys. Res., 115, A05103, 2010, DOI: 10.1029/2009JA014914. [Google Scholar]
- Zhang, J., and J. Wang. Filament eruptions and halo coronal mass ejections. Astrophys. J., 554, 474–487, 2001, DOI: 10.1086/321343. [Google Scholar]
- Zhang, M., and B.C. Low. Magnetic energy storage in the two hydromagnetic types of solar prominences. Astrophys. J., 600, 1043–1051, 2004, DOI: 10.1086/379891. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.