Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A33
Number of page(s) 13
Published online 20 October 2015
  • Berk, A., L.S. Bernstein, G.P. Anderson, P.K. Acharya, D.C. Robertson, J.H. Chetwynd, and S.M. Adler-Golden. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ., 65, 367–375, 1998, DOI: 10.1016/S0034-4257(98)00045-5. [CrossRef]
  • Clancy, R.T., M.J. Wolff, and P.R. Christensen. Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res., 108, 5098, 2003, DOI: 10.1029/2003JE002058. [CrossRef]
  • Córdoba-Jabonero, C., L.M. Lara, A.M. Mancho, A. Márquez, and R. Rodrigo. Solar ultraviolet transfer in the Martian atmosphere: biological and geological implications. Planet. Space Sci., 51 (6), 399–410, 2003, DOI: 10.1016/S0032-0633(03)00023-0. [CrossRef]
  • Encrenaz, T., T.K. Greathouse, F. Lefèvre, and S.K. Atreya. Hydrogen peroxide on Mars: observations, interpretation and future plans. Planet. Space Sci., 68 (1), 3–17, 2012, DOI: 10.1016/j.pss.2011.03.019. [NASA ADS] [CrossRef]
  • Frederick, J.E., and J.E. Mentall. Solar irradiance in the stratosphere: implications for the Herzberg continuum absorption of O2. Geophys. Res. Lett., 9 (4), 461–464, 1982, DOI: 10.1029/GL009i004p00461. [CrossRef]
  • Gómez-Elvira, J., C. Armiens, L. Castañer, M. Domínguez, M. Genzer, et al. REMS: the environmental sensor suite for the Mars Science Laboratory rover. Space Sci. Rev., 170 (1–4), 583–640, 2012, DOI: 10.1007/s11214-012-9921-1. [CrossRef]
  • Haberle, R.M., C.P. McKay, J.B. Pollack, O.E. Gwynne, D.H. Atkinson, J. Appelbaum, G.A. Landis, R.W. Zurek, and D.J. Flood. Atmospheric effects on the utility of solar power on Mars. In: J.S. Lewis, M.S. Matthews, and M.L. Guerrieri, Editors. Resources of Near-Earth Space, The University of Arizona Press, Tuscon, 845–885, 1993.
  • Hansen, J.E., and L.D. Travis. Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610, 1974. [NASA ADS] [CrossRef]
  • Henyey, L.G., and J.L. Greenstein. Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83, 1941. [NASA ADS] [CrossRef]
  • Ityaksov, D., H. Linnartz, and W. Ubachs. Deep-UV absorption and Rayleigh scattering of carbon dioxide. Chem. Phys. Lett., 462 (1), 31–34, 2008, DOI: 10.1016/j.cplett.2008.07.049. [NASA ADS] [CrossRef]
  • Joseph, J.H., W.J. Wiscombe, and J.A. Weinman. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33 (12), 2452–2459, 1976, DOI: 10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2. [CrossRef]
  • Kahre, M.A., J.R. Murphy, and R.M. Haberle. Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res., 111, E06008, 2006, DOI: 10.1029/2005JE002588.
  • Lefèvre, F., F. Montmessin, A. Määttänen, and J.L. Bertaux. The Martian ozone layer as seen by SPICAM: 2004-2011. In: F. Forget, and M. Millour, Editors. The Fifth International Workshop on the Mars Atmosphere: Modelling and Observation, Oxford, UK, 2014, id.3403.
  • Lemmon, M.T., M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor, and P.H. Smith. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 251, 96–111, 2015, DOI: 10.1016/j.icarus.2014.03.029. [CrossRef]
  • Lewis, B.R., and J.H. Carver. Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 Å. J. Quant. Spectrosc. Radiat. Transfer, 30 (4), 297–309, 1983, DOI: 10.1016/0022-4073(83)90027-4. [NASA ADS] [CrossRef]
  • Lilensten, J., A.J. Coates, V. Dehant, T.D. De Wit, R.B. Horne, F. Leblanc, J. Luhmann, E. Woodfield, and M. Barthélemy. What characterizes planetary space weather? Astron. Astrophys. Rev., 22 (1), 1–39, 2014, DOI: 10.1007/s00159-014-0079-6. [CrossRef]
  • Lin, C.L., N.K. Rohatgi, and W.B. DeMore. Ultraviolet absorption cross sections of hydrogen peroxide. Geophys. Res. Lett., 5 (2), 113–115, 1978, DOI: 10.1029/GL005i002p00113. [NASA ADS] [CrossRef]
  • Madeleine, J.-B., F. Forget, E. Millour, L. Montabone, and M.J. Wolff. Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res., 116, E11010, 2011, DOI: 10.1029/2011JE003855. [CrossRef]
  • Madeleine, J.-B., F. Forget, E. Millour, T. Navarro, and A. Spiga. The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett., 39, L23202, 2012, DOI: 10.1029/2012GL053564. [CrossRef]
  • Martínez, G.M., F. Valero, and L. Vázquez. Characterization of the Martian surface layer. J. Atmos. Sci., 66 (1), 187–198, 2009, DOI: 10.1175/2008JAS2765.1. [CrossRef]
  • Martínez, G.M., F. Valero, and L. Vázquez. The TKE budget in the convective Martian planetary boundary layer. Q. J. R. Meteorol. Soc., 137 (661), 2194–2208, 2011, DOI: 10.1002/qj.883. [CrossRef]
  • Martínez, G.M., N. Rennó, E. Fischer, C.S. Borlina, B. Hallet, et al. Surface energy budget and thermal inertia at Gale Crater: calculations from ground-based measurements. J. Geophys. Res. [Planets], 119 (8), 1822–1838, 2014, DOI: 10.1002/2014JE004618. [CrossRef]
  • Mustard, J.F., and J.F. Bell III. New composite reflectance spectra of Mars from 0.4 to 3.14 μm. Geophys. Res. Lett., 21 (5), 353–356, 1994, DOI: 10.1029/94GL00198. [CrossRef]
  • Parkinson, W.H., and K. Yoshino. Absorption cross-section measurements of water in the wavelength region 181–199 nm. Chem. Phys., 294 (1), 31–35, 2003, DOI: 10.1016/S0301-0104(03)00361-6. [NASA ADS] [CrossRef]
  • Patel, M.R., J.C. Zarnecki, and D.C. Catling. Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planet. Space Sci., 50 (9), 915–927, 2002, DOI: 10.1016/S0032-0633(02)00067-3. [CrossRef]
  • Patel, M.R., A. Bérces, T. Kerékgyárto, G. Rontó, H. Lammer, and J.C. Zarnecki. Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv. Space Res., 33 (8), 1247–1252, 2004, DOI: 10.1016/j.asr.2003.08.036. [CrossRef]
  • Perrier, S., J.L. Bertaux, F. Lefèvre, S. Lebonnois, O. Korablev, A. Fedorova, and F. Montmessin. Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res., 111, E09S06, 2006, DOI: 10.1029/2006JE002681.
  • Petrosyan, A., B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, et al. The Martian atmospheric boundary layer. Rev. Geophys., 49 (3), RG3005, 2011, DOI: 10.1029/2010RG000351. [CrossRef]
  • Rannou, P., S. Perrier, J.L. Bertaux, F. Montmessin, O. Korablev, and A. Rébérac. Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM. J. Geophys. Res., 111, E09S10, 2006, DOI: 10.1029/2006JE002693.
  • Read, P.L., and S.R. Lewis. The Martian climate revisited: atmosphere and environment of a desert planet, Springer-Verlag, Berlin, ISBN: 978-3-540-40743-0, 2004.
  • Rothman, L.S., I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 4–50, 2013, DOI: 10.1016/j.jqsrt.2013.07.002. [NASA ADS] [CrossRef]
  • Savijärvi, H., and J. Kauhanen. Surface and boundary-layer modelling for the Mars Exploration Rover sites. Q. J. R. Meteorol. Soc., 134 (632), 635–641, 2008, DOI: 10.1002/qj.232. [CrossRef]
  • Savijärvi, H., D. Crisp, and A.-M. Harri. Effects of CO2 and dust on present-day solar radiation and climate on Mars. Q. J. R. Meteorol. Soc., 131, 2907–2922, 2005, DOI: 10.1256/qj.04.09. [CrossRef]
  • Serdyuchenko, A., V. Gorshelev, M. Weber, W. Chehade, and J.P. Burrows. High spectral resolution ozone absorption cross-sections – Part 2: temperature dependence. Atmos. Meas. Tech., 7, 625–636, 2014, DOI: 10.5194/amt-7-625-2014. [CrossRef]
  • Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167 (1), 148–165, 2004, DOI: 10.1016/j.icarus.2003.09.010. [NASA ADS] [CrossRef]
  • Sneep, M., and W. Ubachs. Direct measurement of the Rayleigh scattering cross section in various gases. J. Quant. Spectrosc. Radiat. Transfer, 92 (3), 293–310, 2005, DOI: 10.1016/j.jqsrt.2004.07.025. [NASA ADS] [CrossRef]
  • Stamnes, K., S.C. Tsay, W. Wiscombe, and K. Jayaweera. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509, 1988, DOI: 10.1364/AO.27.002502. [NASA ADS] [CrossRef] [PubMed]
  • Stamnes, K., S.C. Tsay, W. Wiscombe, and I. Laszlo. DISORT, a general-purpose FORTRAN program for Discrete-Ordinate-Method radiative transfer in scattering and emitting layered media: documentation of methodology, version 1.1., 2000
  • Vázquez, L., M.P. Zorzano, and S. Jiménez. Spectral information retrieval from integrated broadband photodiode Martian ultraviolet measurements. Opt. Lett., 32 (17), 2596–2598, 2007, DOI: 10.1364/OL.32.002596. [CrossRef]
  • Warren, S.G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23 (8), 1206–1225, 1984, DOI: 10.1364/AO.23.001206. [NASA ADS] [CrossRef] [PubMed]
  • Weber, M.J. Handbook of optical materials, CRC Press, Boca Raton, Florida, ISBN: 0-8493-3512-4, 2003.
  • Wolff, M.J., and R.T. Clancy. Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J. Geophys. Res., 108, 5097, 2003, DOI: 10.1029/2003JE002057. [CrossRef]
  • Wolff, M.J., M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos IV, S. Murchie, and H. Savijärvi. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res., 114, E00D04, 2009, DOI: 10.1029/2009JE003350.
  • Wolff, M.J., R.T. Clancy, J.D. Goguen, M.C. Malin, and B.A. Cantor. Ultraviolet dust aerosol properties as observed by MARCI. Icarus, 208 (1), 143–155, 2010, DOI: 10.1016/j.icarus.2010.01.010. [CrossRef]
  • Zorzano, M.P., L. Vázquez, and S. Jiménez. Retrieval of ultraviolet spectral irradiance from filtered photodiode measurements. Inverse Prob., 25 (11), 115023, 2009, DOI: 10.1088/0266-5611/25/11/115023. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.