Open Access
Issue |
J. Space Weather Space Clim.
Volume 5, 2015
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2015035 | |
Published online | 20 October 2015 |
- Berk, A., L.S. Bernstein, G.P. Anderson, P.K. Acharya, D.C. Robertson, J.H. Chetwynd, and S.M. Adler-Golden. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ., 65, 367–375, 1998, DOI: 10.1016/S0034-4257(98)00045-5. [Google Scholar]
- Clancy, R.T., M.J. Wolff, and P.R. Christensen. Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res., 108, 5098, 2003, DOI: 10.1029/2003JE002058. [CrossRef] [Google Scholar]
- Córdoba-Jabonero, C., L.M. Lara, A.M. Mancho, A. Márquez, and R. Rodrigo. Solar ultraviolet transfer in the Martian atmosphere: biological and geological implications. Planet. Space Sci., 51 (6), 399–410, 2003, DOI: 10.1016/S0032-0633(03)00023-0. [CrossRef] [Google Scholar]
- Encrenaz, T., T.K. Greathouse, F. Lefèvre, and S.K. Atreya. Hydrogen peroxide on Mars: observations, interpretation and future plans. Planet. Space Sci., 68 (1), 3–17, 2012, DOI: 10.1016/j.pss.2011.03.019. [NASA ADS] [CrossRef] [Google Scholar]
- Frederick, J.E., and J.E. Mentall. Solar irradiance in the stratosphere: implications for the Herzberg continuum absorption of O2. Geophys. Res. Lett., 9 (4), 461–464, 1982, DOI: 10.1029/GL009i004p00461. [CrossRef] [Google Scholar]
- Gómez-Elvira, J., C. Armiens, L. Castañer, M. Domínguez, M. Genzer, et al. REMS: the environmental sensor suite for the Mars Science Laboratory rover. Space Sci. Rev., 170 (1–4), 583–640, 2012, DOI: 10.1007/s11214-012-9921-1. [Google Scholar]
- Haberle, R.M., C.P. McKay, J.B. Pollack, O.E. Gwynne, D.H. Atkinson, J. Appelbaum, G.A. Landis, R.W. Zurek, and D.J. Flood. Atmospheric effects on the utility of solar power on Mars. In: J.S. Lewis, M.S. Matthews, and M.L. Guerrieri, Editors. Resources of Near-Earth Space, The University of Arizona Press, Tuscon, 845–885, 1993. [Google Scholar]
- Hansen, J.E., and L.D. Travis. Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610, 1974. [NASA ADS] [CrossRef] [Google Scholar]
- Henyey, L.G., and J.L. Greenstein. Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83, 1941. [Google Scholar]
- Ityaksov, D., H. Linnartz, and W. Ubachs. Deep-UV absorption and Rayleigh scattering of carbon dioxide. Chem. Phys. Lett., 462 (1), 31–34, 2008, DOI: 10.1016/j.cplett.2008.07.049. [NASA ADS] [CrossRef] [Google Scholar]
- Joseph, J.H., W.J. Wiscombe, and J.A. Weinman. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33 (12), 2452–2459, 1976, DOI: 10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2. [CrossRef] [Google Scholar]
- Kahre, M.A., J.R. Murphy, and R.M. Haberle. Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res., 111, E06008, 2006, DOI: 10.1029/2005JE002588. [Google Scholar]
- Lefèvre, F., F. Montmessin, A. Määttänen, and J.L. Bertaux. The Martian ozone layer as seen by SPICAM: 2004-2011. In: F. Forget, and M. Millour, Editors. The Fifth International Workshop on the Mars Atmosphere: Modelling and Observation, Oxford, UK, 2014, id.3403. [Google Scholar]
- Lemmon, M.T., M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor, and P.H. Smith. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 251, 96–111, 2015, DOI: 10.1016/j.icarus.2014.03.029. [CrossRef] [Google Scholar]
- Lewis, B.R., and J.H. Carver. Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 Å. J. Quant. Spectrosc. Radiat. Transfer, 30 (4), 297–309, 1983, DOI: 10.1016/0022-4073(83)90027-4. [Google Scholar]
- Lilensten, J., A.J. Coates, V. Dehant, T.D. De Wit, R.B. Horne, F. Leblanc, J. Luhmann, E. Woodfield, and M. Barthélemy. What characterizes planetary space weather? Astron. Astrophys. Rev., 22 (1), 1–39, 2014, DOI: 10.1007/s00159-014-0079-6. [CrossRef] [Google Scholar]
- Lin, C.L., N.K. Rohatgi, and W.B. DeMore. Ultraviolet absorption cross sections of hydrogen peroxide. Geophys. Res. Lett., 5 (2), 113–115, 1978, DOI: 10.1029/GL005i002p00113. [NASA ADS] [CrossRef] [Google Scholar]
- Madeleine, J.-B., F. Forget, E. Millour, L. Montabone, and M.J. Wolff. Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res., 116, E11010, 2011, DOI: 10.1029/2011JE003855. [Google Scholar]
- Madeleine, J.-B., F. Forget, E. Millour, T. Navarro, and A. Spiga. The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett., 39, L23202, 2012, DOI: 10.1029/2012GL053564. [CrossRef] [Google Scholar]
- Martínez, G.M., F. Valero, and L. Vázquez. Characterization of the Martian surface layer. J. Atmos. Sci., 66 (1), 187–198, 2009, DOI: 10.1175/2008JAS2765.1. [CrossRef] [Google Scholar]
- Martínez, G.M., F. Valero, and L. Vázquez. The TKE budget in the convective Martian planetary boundary layer. Q. J. R. Meteorol. Soc., 137 (661), 2194–2208, 2011, DOI: 10.1002/qj.883. [CrossRef] [Google Scholar]
- Martínez, G.M., N. Rennó, E. Fischer, C.S. Borlina, B. Hallet, et al. Surface energy budget and thermal inertia at Gale Crater: calculations from ground-based measurements. J. Geophys. Res. [Planets], 119 (8), 1822–1838, 2014, DOI: 10.1002/2014JE004618. [CrossRef] [Google Scholar]
- Mustard, J.F., and J.F. Bell III. New composite reflectance spectra of Mars from 0.4 to 3.14 μm. Geophys. Res. Lett., 21 (5), 353–356, 1994, DOI: 10.1029/94GL00198. [CrossRef] [Google Scholar]
- Parkinson, W.H., and K. Yoshino. Absorption cross-section measurements of water in the wavelength region 181–199 nm. Chem. Phys., 294 (1), 31–35, 2003, DOI: 10.1016/S0301-0104(03)00361-6. [NASA ADS] [CrossRef] [Google Scholar]
- Patel, M.R., J.C. Zarnecki, and D.C. Catling. Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planet. Space Sci., 50 (9), 915–927, 2002, DOI: 10.1016/S0032-0633(02)00067-3. [CrossRef] [Google Scholar]
- Patel, M.R., A. Bérces, T. Kerékgyárto, G. Rontó, H. Lammer, and J.C. Zarnecki. Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv. Space Res., 33 (8), 1247–1252, 2004, DOI: 10.1016/j.asr.2003.08.036. [CrossRef] [Google Scholar]
- Perrier, S., J.L. Bertaux, F. Lefèvre, S. Lebonnois, O. Korablev, A. Fedorova, and F. Montmessin. Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res., 111, E09S06, 2006, DOI: 10.1029/2006JE002681. [Google Scholar]
- Petrosyan, A., B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, et al. The Martian atmospheric boundary layer. Rev. Geophys., 49 (3), RG3005, 2011, DOI: 10.1029/2010RG000351. [CrossRef] [Google Scholar]
- Rannou, P., S. Perrier, J.L. Bertaux, F. Montmessin, O. Korablev, and A. Rébérac. Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM. J. Geophys. Res., 111, E09S10, 2006, DOI: 10.1029/2006JE002693. [Google Scholar]
- Read, P.L., and S.R. Lewis. The Martian climate revisited: atmosphere and environment of a desert planet, Springer-Verlag, Berlin, ISBN: 978-3-540-40743-0, 2004. [Google Scholar]
- Rothman, L.S., I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 4–50, 2013, DOI: 10.1016/j.jqsrt.2013.07.002. [Google Scholar]
- Savijärvi, H., and J. Kauhanen. Surface and boundary-layer modelling for the Mars Exploration Rover sites. Q. J. R. Meteorol. Soc., 134 (632), 635–641, 2008, DOI: 10.1002/qj.232. [CrossRef] [Google Scholar]
- Savijärvi, H., D. Crisp, and A.-M. Harri. Effects of CO2 and dust on present-day solar radiation and climate on Mars. Q. J. R. Meteorol. Soc., 131, 2907–2922, 2005, DOI: 10.1256/qj.04.09. [CrossRef] [Google Scholar]
- Serdyuchenko, A., V. Gorshelev, M. Weber, W. Chehade, and J.P. Burrows. High spectral resolution ozone absorption cross-sections – Part 2: temperature dependence. Atmos. Meas. Tech., 7, 625–636, 2014, DOI: 10.5194/amt-7-625-2014. [Google Scholar]
- Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167 (1), 148–165, 2004, DOI: 10.1016/j.icarus.2003.09.010. [NASA ADS] [CrossRef] [Google Scholar]
- Sneep, M., and W. Ubachs. Direct measurement of the Rayleigh scattering cross section in various gases. J. Quant. Spectrosc. Radiat. Transfer, 92 (3), 293–310, 2005, DOI: 10.1016/j.jqsrt.2004.07.025. [CrossRef] [Google Scholar]
- Stamnes, K., S.C. Tsay, W. Wiscombe, and K. Jayaweera. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509, 1988, DOI: 10.1364/AO.27.002502. [Google Scholar]
- Stamnes, K., S.C. Tsay, W. Wiscombe, and I. Laszlo. DISORT, a general-purpose FORTRAN program for Discrete-Ordinate-Method radiative transfer in scattering and emitting layered media: documentation of methodology, version 1.1. ftp://climate1.gsfc.nasa.gov/wiscombe/Multiple_Scatt/DISORTReport1.1.pdf, 2000 [Google Scholar]
- Vázquez, L., M.P. Zorzano, and S. Jiménez. Spectral information retrieval from integrated broadband photodiode Martian ultraviolet measurements. Opt. Lett., 32 (17), 2596–2598, 2007, DOI: 10.1364/OL.32.002596. [CrossRef] [Google Scholar]
- Warren, S.G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23 (8), 1206–1225, 1984, DOI: 10.1364/AO.23.001206. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Weber, M.J. Handbook of optical materials, CRC Press, Boca Raton, Florida, ISBN: 0-8493-3512-4, 2003. [Google Scholar]
- Wolff, M.J., and R.T. Clancy. Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J. Geophys. Res., 108, 5097, 2003, DOI: 10.1029/2003JE002057. [Google Scholar]
- Wolff, M.J., M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos IV, S. Murchie, and H. Savijärvi. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res., 114, E00D04, 2009, DOI: 10.1029/2009JE003350. [Google Scholar]
- Wolff, M.J., R.T. Clancy, J.D. Goguen, M.C. Malin, and B.A. Cantor. Ultraviolet dust aerosol properties as observed by MARCI. Icarus, 208 (1), 143–155, 2010, DOI: 10.1016/j.icarus.2010.01.010. [CrossRef] [Google Scholar]
- Zorzano, M.P., L. Vázquez, and S. Jiménez. Retrieval of ultraviolet spectral irradiance from filtered photodiode measurements. Inverse Prob., 25 (11), 115023, 2009, DOI: 10.1088/0266-5611/25/11/115023. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.