Issue |
J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
|
|
---|---|---|
Article Number | A27 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/swsc/2016022 | |
Published online | 27 June 2016 |
- Abramenko, V.I., V. Carbone, V. Yurchyshyn, P.R. Goode, R.F. Stein, F. Lepreti, V. Capparelli, and A. Vecchio. Turbulent diffusion in the photosphere as derived from photospheric bright point motion. Astrophys. J., 743, 133, 2011. [Google Scholar]
- Babcock, H.W. The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J., 133, 572, 1961. [Google Scholar]
- Bakunin, O.G. Diffusion Turbulence: Scaling Versus Equations, Springer Verlag, Berlin, 2008. [Google Scholar]
- Balescu, R. Transport Processes in Plasmas: Classical Transport Theory, Elsevier Science Ltd., Amsterdam, 1988. [Google Scholar]
- Beck, J.G., L. Gizon, and T.L. Duvall Jr. A new component of solar dynamics: north-south diverging flows migrating toward the equator with an 11 year period. Astrophys. J., 575, L47, 2002. [CrossRef] [Google Scholar]
- Berrilli, F., S. Scardigli, and S. Giordano. Multiscale magnetic underdense regions on the solar surface: Granular and mesogranular scales. Sol. Phys., 282, 379, 2013. [NASA ADS] [CrossRef] [Google Scholar]
- Caroli, A., F. Giannattasio, M. Fanfoni, D. Del Moro, G. Consolini, and F. Berrilli. Turbulent convective flows in the solar photospheric plasma. J. Plasma Phys., 81, 5, 2015. [Google Scholar]
- DeForest, C.E., H.J. Hagenaar, D.A. Lamb, C.E. Parnell, and B.T. Welsch. Solar magnetic tracking. I. Software comparison and recommended practices. Astrophys. J., 666, 576, 2007. [Google Scholar]
- Giannattasio, F., F. Berrilli, L. Biferale, D. Del Moro, M. Sbragaglia, L. Bellot Rubio, M. Gošić, and D. Orozco Su′arez. Pair separation of magnetic elements in the quiet Sun. A&A, 569, A121, 2014a. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Giannattasio, F., M. Stangalini, F. Berrilli, D. Del Moro, and L. Bellot Rubio. Diffusion of magnetic elements in a supergranular cell. Astrophys. J., 788, 137, 2014b. [CrossRef] [Google Scholar]
- Gošić, M., L.R. Bellot Rubio, D. Orozco Suárez, Y. Katsukawa, and J.C. del Toro Iniesta. The solar internetwork. I. Contribution to the network magnetic flux. Astrophys. J., 797, 49, 2014. [CrossRef] [Google Scholar]
- Hagenaar, H.J., C.J. Schrijver, A.M. Title, and R.A. Shine. Dispersal of magnetic flux in the quiet solar photosphere. Astrophys. J., 511, 932, 1999. [Google Scholar]
- Iida, Y., H.J. Hagenaar, and T. Yokoyama. Detection of flux emergence, splitting, merging, and cancellation of network field. I. Splitting and merging. Astrophys. J., 752, 149, 2012. [Google Scholar]
- Iida, Y., H.J. Hagenaar, and T. Yokoyama. Detection of flux emergence, splitting, merging, and cancellation of network fields. II. Apparent unipolar flux change and cancellation. Astrophys. J., 814, 134, 2015. [Google Scholar]
- Kosugi, T., K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, et al. The Hinode (Solar-B) mission: an overview. Sol. Phys., 243, 3, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Lamb, D.A., C.E. DeForest, H.J. Hagenaar, C.E. Parnell, and B.T. Welsch. Solar magnetic tracking. II. The apparent unipolar origin of quiet-sun flux. Astrophys. J., 674, 520, 2008. [Google Scholar]
- Lamb, D.A., C.E. DeForest, H.J. Hagenaar, C.E. Parnell, and B.T. Welsch. Solar magnetic tracking.III. Apparent unipolar flux emergence in high-resolution observations. Astrophys. J., 720, 1405, 2010. [Google Scholar]
- Lawrence, J.K., and C.J. Schrijver. Anomalous diffusion of magnetic elements across the solar surface. Astrophys. J., 411, 402, 1993. [Google Scholar]
- Lawrence, J.K., A.C. Cadavid, A. Ruzmaikin, and T.E. Berger. Spatiotemporal scaling of solar surface flows. Phys. Rev. Lett., 86, 5894, 2001. [NASA ADS] [CrossRef] [Google Scholar]
- Leighton, R.B. Transport of magnetic fields on the Sun. Astrophys. J., 140, 1547, 1964. [Google Scholar]
- Lepreti, F., V. Carbone, V.I. Abramenko, V. Yurchyshyn, P.R. Goode, V. Capparelli, and A. Vecchio. Turbulent pair dispersion of photospheric bright points. Astrophys. J., 759, L17, 2012. [Google Scholar]
- Nordlund, Å., R.F. Stein, and M. Asplund. Solar surface convection. Living Rev. Sol. Phys., 6, 2, 2009. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- November, L.J., J. Toomre, K.B. Gebbie, and G.W. Simon. The detection of mesogranulation on the Sun. Astrophys. J., 245, L123, 1981. [Google Scholar]
- Parnell, C.E., C.E. DeForest, H.J. Hagenaar, B.A. Johnston, D.A. Lamb, and B.T. Welsch. A power-law distribution of solar magnetic fields over more than five decades in flux. Astrophys. J., 698, 75, 2009. [Google Scholar]
- Rieutord, M., and F. Rincon. The Sun’s supergranulation. Living Rev. Sol. Phys., 7, 2, 2010. [CrossRef] [Google Scholar]
- Schrijver, C.J., and S.F. Martin. Properties of the large- and small-scale flow patterns in and around AR 19824. Sol. Phys., 129, 95, 1990. [NASA ADS] [CrossRef] [Google Scholar]
- Thornton, L.M., and C.E. Parnell. Small-scale flux emergence observed using Hinode/SOT. Sol. Phys., 269, 13, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Wang, Y.-M., A.G. Nash, and N.R. Sheeley Jr. Magnetic flux transport on the Sun. Science, 245, 712, 1989. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang, Y.-M., N.R. Sheeley Jr., and A.G. Nash. A new solar cycle model including meridional circulation. Astrophys. J., 383, 431, 1991. [Google Scholar]
- Yelles Chaouche, L., F. Moreno-Insertis, V. Martínez Pillet, T. Wiegelmann, J.A. Bonet, et al. Mesogranulation and the solar surface magnetic field distribution. Astrophys. J., 727, L30, 2011. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.