J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
Article Number A28
Number of page(s) 15
Published online 08 July 2016
  • Ahmed, O., R. Qahwaji, T. Colak, P. Higgins, P. Gallagher, et al. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol. Phys., 283 (1), 157–175, 2013, DOI: 10.1007/s11207-011-9896-1. [NASA ADS] [CrossRef]
  • Aran, A., C. Jacobs, R. Rodríguez-Gasén, B. Sanahuja, and S. Poedts. WP410: Initial and boundary conditions for the shock-plus-particle model. SEPEM Technical Report, ESA/ESTEC Contract 20162/06/NL/JD, 1–58, 2011.
  • Aran, A., B. Sanahuja, and D. Lario. SOLPENCO: A SOLar Particle Engineering COde. Adv. Space Res., 37 (6), 1240–1246, 2006, DOI: 10.1016/j.asr.2005.09.019. [NASA ADS] [CrossRef]
  • Balch, C.C. SEC proton prediction model: verification and analysis. Radiat. Meas., 30 (3), 231–250, 1999, DOI: 10.1016/S1350-4487(99)00052-9. [CrossRef]
  • Balch, C.C. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather, 6 (1), S01001, 2008, DOI: 10.1029/2007SW000337. [CrossRef]
  • Barnes, G., and K.D. Leka. Evaluating the performance of solar flare forecasting methods. Astrophys. J., 688, L107, 2008, DOI: 10.1086/595550. [NASA ADS] [CrossRef]
  • Belov, A. Properties of solar X-ray flares and proton event forecasting. Adv. Space Res., 43 (4), 467–473, 2009, DOI: 10.1016/j.asr.2008.08.011. [CrossRef]
  • Béniguel, Y., M. Angling, E. Banfi, C. Bourga, M. Cueto, et al. Ionospheric effects on GNSS performance. Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, (NAVITEC), 6th ESA Workshop on, Noordwijk, 1–8, 2012, DOI: 10.1109/NAVITEC.2012.6423122.
  • Bloomfield, D.S., P.A. Higgins, R.T.J. McAteer, and P.T. Gallagher. Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J., 747, L41, 2012, DOI: 10.1088/2041-8205/747/2/L41. [NASA ADS] [CrossRef]
  • Cliver, E.W., A.G. Ling, A. Belov, and S. Yashiro. Size distributions of solar flares and solar energetic particle events. Astrophys. J. Lett., 756, L29, 2012, DOI: 10.1088/2041-8205/756/2/L29. [NASA ADS] [CrossRef]
  • Colak, T., and R. Qahwaji. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef]
  • Crosby, N.B., D. Heynderickx, P. Jiggens, A. Aran, B. Sanahuja, et al. SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather, 13 (7), 406–426, 2015, DOI: 10.1002/2013SW001008. [CrossRef]
  • Cui, Y., R. Li, L. Zhang, Y. He, and H. Wang. Correlation between solar flare productivity and photospheric magnetic field properties. Sol. Phys., 237 (1), 45–59, 2006, DOI: 10.1007/s11207-006-0077-6. [NASA ADS] [CrossRef]
  • Dierckxsens, M., K. Tziotziou, S. Dalla, I. Patsou, M.S. Marsh, et al. Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol. Phys., 290 (3), 841–874, 2015, DOI: 10.1007/s11207-014-0641-4. [CrossRef]
  • ESA SSA Team. Space Situational Awareness – Space Weather Customer Requirements Document, Document SSA-SWE-RS-CRD-1001, 2011, ESA,
  • Gallagher, P.T., Y.-J. Moon, and H. Wang. Active-region monitoring and flare forecasting. Sol. Phys., 209 (1), 171–183, 2002, DOI: 10.1023/A:1020950221179. [NASA ADS] [CrossRef]
  • García-Rigo, A. Contributions to ionospheric determination with global positioning system: solar flare detection and prediction of global maps of total electron content, Ph.D., Technical University of Catalonia (UPC), B. 25023-2013, Barcelona, Spain, 2012.
  • Gopalswamy, N., A. Lara, P.K. Manoharan, and R.A. Howard. An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res., 36 (12), 2289–2294, 2005, DOI: 10.1016/j.asr.2004.07.014. [NASA ADS] [CrossRef]
  • Gopalswamy, N., P. Mäkelä, H. Xie, and S. Yashiro. Testing the empirical shock arrival model using quadrature observations. Space Weather, 11, 661–669, 2013, DOI: 10.1002/2013SW000945. [CrossRef]
  • Hernández-Pajares, M., A. García-Rigo, J.M. Juan, J. Sanz, E. Monte-Moreno, et al. GNSS measurement of EUV photons flux rate during strong and mid solar flares. Space Weather, 10 (12), 2012, DOI: 10.1029/2012SW000826. [CrossRef]
  • Jing, J., H. Song, V. Abramenko, C. Tan, and H. Wang. The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions. Astrophys. J., 644 (2), 1273, 2006, DOI: 10.1086/503895. [NASA ADS] [CrossRef]
  • Kahler, S.W. Characteristic times of gradual solar energetic particle events and their dependence on associated coronal mass ejection properties. Astrophys. J., 628 (2), 1014–1022, 2005, DOI: 10.1086/431194 [CrossRef]
  • Kecskemety, K., E.I. Daibog, Y.I. Logachev, and J. Kota. The decay phase of solar energetic particle events. Geophys. Res., 114 (A06), 2009, DOI: 10.1029/2008JA013730. [CrossRef]
  • Kahler, S.W., E.W. Cliver, and A.G. Ling. Validating the proton prediction system. J. Atmos. Sol. Terr. Phys., 69 (1–2), 43–49, 2007, DOI: 10.1016/j.jastp.2006.06.009. [CrossRef]
  • Lario, D., B. Sanahuja, and A.M. Heras. Energetic particle events: efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators. Astrophys. J., 509, 415–434, 1998, DOI: 10.1086/306461. [NASA ADS] [CrossRef]
  • Laurenza, M., E.W. Cliver, J. Hewitt, M. Storini, A.G. Ling, et al. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather, 7, S04008, 2009, DOI: 10.1029/2007SW000379. [NASA ADS] [CrossRef]
  • Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J., 656, 1173, 2007, DOI: 10.1086/510282. [NASA ADS] [CrossRef]
  • Luhmann, J.G., S.A. Ledvina, D. Odstrcil, M.J. Owens, X.-P. Zhao, et al. Cone model-based SEP event calculations for applications to multipoint observations. Adv. Space Res., 46, 1–21, 2010, DOI: 10.1016/j.asr.2010.03.011. [CrossRef]
  • Manchester, W.B. IV, T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev, et al. Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys. J., 622, 1225–1239, 2005, DOI: 10.1086/427768. [NASA ADS] [CrossRef]
  • Mason, J.P., and J.T. Hoeksema. Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J., 723, 634–640, 2010, DOI: 10.1088/0004-637X/723/1/634. [NASA ADS] [CrossRef]
  • McIntosh, P.S. The classification of sunspot groups. Sol. Phys., 125, 251–267, 1990, DOI: 10.1007/BF00158405. [NASA ADS] [CrossRef]
  • Monte-Moreno, E., and M. Hernández-Pajares. Occurrence of solar flares viewed with GPS: Statistics and fractal nature. J. Geophys. Res. [Space Phys.], 119 (11), 9216–9227, 2014, DOI: 10.1002/2014JA020206. [CrossRef]
  • Núñez, M. Predicting solar energetic proton events (E > 10 MeV). Space Weather, 9, S07003, 2011, DOI: 10.1029/2010SW000640.
  • Núñez, M. Real-time prediction of the occurrence and intensity of the first hours of > 100 MeV solar energetic proton events. Space Weather, 13 (11), 807–819, 2015, DOI: 10.1002/2015SW001256. [CrossRef]
  • Nuñez, M., R. Fidalgo, and M. Baena, R. Morales. The influence of active region information in the prediction of solar flares: an empirical model using data mining. Ann. Geophys., 23 (9), 3129–3138, 2005, DOI: 10.5194/angeo-23-3129-2005. [CrossRef]
  • Núñez, M., T. Nieves-Chinchilla, and A. Pulkkinen. Prediction of shock arrival times from CME and flare data. Space Weather, 2016 (accepted).
  • Odstrcil, D., V.J. Pizzo, J.A. Linker, P. Riley, R. Lionello, et al. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J. Atmos. Sol. Terr. Phys., 66 (15-16), 1311–1320, 2004, DOI: 10.1016/j.jastp.2004.04.007. [CrossRef]
  • Parker, E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J., 128, 664, 1958, DOI: 10.1086/146579. [NASA ADS] [CrossRef]
  • Pizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, et al. Wang-Sheeley-Arge-ENLIL cone model transitions to operations. Space Weather, 9, S033004, 2011, DOI: 10.1029/ 2011SW000663.
  • Pomoell, J., A. Aran, C. Jacobs, R. Rodríguez-Gasén, S. Poedts, et al. Modelling large solar proton events with the shock-and-particle model - Extraction of the characteristics of the MHD shock front at the cobpoint. J. Space Weather Space Clim., 5, A12, 2015, DOI: 10.1051/swsc/2015015. [NASA ADS] [CrossRef] [EDP Sciences]
  • Posner, A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather, 5, S05001, 2007, DOI: 10.1029/2006SW000268. [CrossRef]
  • Qahwaji, R., and T. Colak. Automatic short-term solar flare prediction using machine learning and sunspot associations. Sol. Phys., 241 (1), 195–211, 2007, DOI: 10.1007/s11207-006-0272-5. [NASA ADS] [CrossRef]
  • Reames, D.V. Solar energetic particle variations. Adv. Space Res., 34 (2), 381, 2004, DOI: 10.1016/j.asr.2003.02.046. [CrossRef]
  • Rodríguez-Gasén, R., A. Aran, B. Sanahuja, C. Jacobs, and S. Poedts. Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint. Adv. Space Res., 47, 2140–2151, 2011, DOI: 10.1016/j.asr.2010.03.021. [CrossRef]
  • Rouillard, A.P., D. Odstrcil, N.R. Sheeley, A. Tylka, A. Vourlidas, et al. Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. Astrophys. J., 735, 7, 2011, DOI: 10.1088/0004-637X/735/1/7. [NASA ADS] [CrossRef]
  • Song, H., C. Tan, J. Jing, H. Wang, V. Yuchyshyn, et al. Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Sol. Phys., 254 (1), 101–125, 2008, DOI: 10.1007/s11207-008-9288-3. [NASA ADS] [CrossRef]
  • Swets, J.A. Signal detection theory and ROC analysis in psychology and diagnostics: collected papers, Lawrence Erlbaum Associates, Mahwah, New Jersey, ISBN-10: 0-8058-1834-0/ISBN-13: 978-0-8058-1834-5, 1996.
  • Tsagouri, I., A. Belehaki, N. Bergeot, C. Cid, M. Núñez, et al. Progress in space weather modeling in an operational environment. J. Space Weather Space Clim., 3, A17, 2013, DOI: 10.1051/swsc/2013037. [CrossRef] [EDP Sciences]
  • Tylka, A.J., C.M.S. Cohen, W.F. Dietrich, M.A. Lee, C.G. Maclennan, et al. Shock geometry, seed populations, and origin of variable elemental composition at high energies in large gradual particle events. Astrophys. J., 625, 474–495, 2005, DOI: 10.1086/429384. [NASA ADS] [CrossRef]
  • Uritsky, V.M., J.M. Davila, L. Ofman, and A.J. Coyner. Stochastic coupling of solar photosphere and corona. Astrophys. J., 769, 62, 2013, DOI: 10.1088/0004-637X/769/1/62. [NASA ADS] [CrossRef]
  • Vrsnak, B., M. Temmer, T. Zic, A. Taktakishvili, M. Dumbovic, C. Moestl, A. Veronig, M. Mays, and D. Odstrcil. Heliospheric propagation of coronal mass ejections: comparison of numerical WSA-ENLIL + Cone model and analytical drag-based model. Astrophys. J. Suppl. Ser., 213 (2), 21, 2014, DOI: 10.1088/0067-0049/213/2/21. [CrossRef]
  • Wheatland, M.S. A statistical solar flare forecast method. Space Weather, 3 (7), S07003, 2005, DOI: 10.1029/2004SW000131. [NASA ADS] [CrossRef]
  • Xie, H., L. Ofman, and G. Lawrence. Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res., 109, A03109, 2004, DOI: 10.1029/2003JA010226.
  • Yu, D., X. Huang, Q. Hu, X. Zhou, H. Wang, et al. Short-term solar flare prediction using multiresolution predictors. Astrophys. J., 709 (1), 321–326, 2010, DOI: 10.1088/0004-637X/709/1/321. [NASA ADS] [CrossRef]
  • Yuan, Y., F.Y. Shih, J. Jing, and H.-M. Wang. Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys., 10 (8), 785, 2010, DOI: 10.1088/1674-4527/10/8/008. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.