Issue |
J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
|
|
---|---|---|
Article Number | A28 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2016021 | |
Published online | 08 July 2016 |
- Ahmed, O., R. Qahwaji, T. Colak, P. Higgins, P. Gallagher, et al. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol. Phys., 283 (1), 157–175, 2013, DOI: 10.1007/s11207-011-9896-1. [NASA ADS] [CrossRef] [Google Scholar]
- Aran, A., C. Jacobs, R. Rodríguez-Gasén, B. Sanahuja, and S. Poedts. WP410: Initial and boundary conditions for the shock-plus-particle model. SEPEM Technical Report, ESA/ESTEC Contract 20162/06/NL/JD, 1–58, 2011. [Google Scholar]
- Aran, A., B. Sanahuja, and D. Lario. SOLPENCO: A SOLar Particle Engineering COde. Adv. Space Res., 37 (6), 1240–1246, 2006, DOI: 10.1016/j.asr.2005.09.019. [NASA ADS] [CrossRef] [Google Scholar]
- Balch, C.C. SEC proton prediction model: verification and analysis. Radiat. Meas., 30 (3), 231–250, 1999, DOI: 10.1016/S1350-4487(99)00052-9. [Google Scholar]
- Balch, C.C. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather, 6 (1), S01001, 2008, DOI: 10.1029/2007SW000337. [CrossRef] [Google Scholar]
- Barnes, G., and K.D. Leka. Evaluating the performance of solar flare forecasting methods. Astrophys. J., 688, L107, 2008, DOI: 10.1086/595550. [Google Scholar]
- Belov, A. Properties of solar X-ray flares and proton event forecasting. Adv. Space Res., 43 (4), 467–473, 2009, DOI: 10.1016/j.asr.2008.08.011. [CrossRef] [Google Scholar]
- Béniguel, Y., M. Angling, E. Banfi, C. Bourga, M. Cueto, et al. Ionospheric effects on GNSS performance. Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, (NAVITEC), 6th ESA Workshop on, Noordwijk, 1–8, 2012, DOI: 10.1109/NAVITEC.2012.6423122. [Google Scholar]
- Bloomfield, D.S., P.A. Higgins, R.T.J. McAteer, and P.T. Gallagher. Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J., 747, L41, 2012, DOI: 10.1088/2041-8205/747/2/L41. [Google Scholar]
- Cliver, E.W., A.G. Ling, A. Belov, and S. Yashiro. Size distributions of solar flares and solar energetic particle events. Astrophys. J. Lett., 756, L29, 2012, DOI: 10.1088/2041-8205/756/2/L29. [Google Scholar]
- Colak, T., and R. Qahwaji. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef] [Google Scholar]
- Crosby, N.B., D. Heynderickx, P. Jiggens, A. Aran, B. Sanahuja, et al. SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather, 13 (7), 406–426, 2015, DOI: 10.1002/2013SW001008. [CrossRef] [Google Scholar]
- Cui, Y., R. Li, L. Zhang, Y. He, and H. Wang. Correlation between solar flare productivity and photospheric magnetic field properties. Sol. Phys., 237 (1), 45–59, 2006, DOI: 10.1007/s11207-006-0077-6. [NASA ADS] [CrossRef] [Google Scholar]
- Dierckxsens, M., K. Tziotziou, S. Dalla, I. Patsou, M.S. Marsh, et al. Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol. Phys., 290 (3), 841–874, 2015, DOI: 10.1007/s11207-014-0641-4. [NASA ADS] [CrossRef] [Google Scholar]
- ESA SSA Team. Space Situational Awareness – Space Weather Customer Requirements Document, Document SSA-SWE-RS-CRD-1001, 2011, ESA, http://swe.ssa.esa.int/web/guest/documents/ [Google Scholar]
- Gallagher, P.T., Y.-J. Moon, and H. Wang. Active-region monitoring and flare forecasting. Sol. Phys., 209 (1), 171–183, 2002, DOI: 10.1023/A:1020950221179. [Google Scholar]
- García-Rigo, A. Contributions to ionospheric determination with global positioning system: solar flare detection and prediction of global maps of total electron content, Ph.D., Technical University of Catalonia (UPC), B. 25023-2013, Barcelona, Spain, 2012. [Google Scholar]
- Gopalswamy, N., A. Lara, P.K. Manoharan, and R.A. Howard. An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res., 36 (12), 2289–2294, 2005, DOI: 10.1016/j.asr.2004.07.014. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy, N., P. Mäkelä, H. Xie, and S. Yashiro. Testing the empirical shock arrival model using quadrature observations. Space Weather, 11, 661–669, 2013, DOI: 10.1002/2013SW000945. [NASA ADS] [CrossRef] [Google Scholar]
- Hernández-Pajares, M., A. García-Rigo, J.M. Juan, J. Sanz, E. Monte-Moreno, et al. GNSS measurement of EUV photons flux rate during strong and mid solar flares. Space Weather, 10 (12), 2012, DOI: 10.1029/2012SW000826. [Google Scholar]
- Jing, J., H. Song, V. Abramenko, C. Tan, and H. Wang. The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions. Astrophys. J., 644 (2), 1273, 2006, DOI: 10.1086/503895. [NASA ADS] [CrossRef] [Google Scholar]
- Kahler, S.W. Characteristic times of gradual solar energetic particle events and their dependence on associated coronal mass ejection properties. Astrophys. J., 628 (2), 1014–1022, 2005, DOI: 10.1086/431194 [CrossRef] [Google Scholar]
- Kecskemety, K., E.I. Daibog, Y.I. Logachev, and J. Kota. The decay phase of solar energetic particle events. Geophys. Res., 114 (A06), 2009, DOI: 10.1029/2008JA013730. [Google Scholar]
- Kahler, S.W., E.W. Cliver, and A.G. Ling. Validating the proton prediction system. J. Atmos. Sol. Terr. Phys., 69 (1–2), 43–49, 2007, DOI: 10.1016/j.jastp.2006.06.009. [Google Scholar]
- Lario, D., B. Sanahuja, and A.M. Heras. Energetic particle events: efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators. Astrophys. J., 509, 415–434, 1998, DOI: 10.1086/306461. [Google Scholar]
- Laurenza, M., E.W. Cliver, J. Hewitt, M. Storini, A.G. Ling, et al. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather, 7, S04008, 2009, DOI: 10.1029/2007SW000379. [NASA ADS] [CrossRef] [Google Scholar]
- Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J., 656, 1173, 2007, DOI: 10.1086/510282. [CrossRef] [Google Scholar]
- Luhmann, J.G., S.A. Ledvina, D. Odstrcil, M.J. Owens, X.-P. Zhao, et al. Cone model-based SEP event calculations for applications to multipoint observations. Adv. Space Res., 46, 1–21, 2010, DOI: 10.1016/j.asr.2010.03.011. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester, W.B. IV, T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev, et al. Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys. J., 622, 1225–1239, 2005, DOI: 10.1086/427768. [CrossRef] [Google Scholar]
- Mason, J.P., and J.T. Hoeksema. Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J., 723, 634–640, 2010, DOI: 10.1088/0004-637X/723/1/634. [CrossRef] [Google Scholar]
- McIntosh, P.S. The classification of sunspot groups. Sol. Phys., 125, 251–267, 1990, DOI: 10.1007/BF00158405. [NASA ADS] [CrossRef] [Google Scholar]
- Monte-Moreno, E., and M. Hernández-Pajares. Occurrence of solar flares viewed with GPS: Statistics and fractal nature. J. Geophys. Res. [Space Phys.], 119 (11), 9216–9227, 2014, DOI: 10.1002/2014JA020206. [Google Scholar]
- Núñez, M. Predicting solar energetic proton events (E > 10 MeV). Space Weather, 9, S07003, 2011, DOI: 10.1029/2010SW000640. [Google Scholar]
- Núñez, M. Real-time prediction of the occurrence and intensity of the first hours of > 100 MeV solar energetic proton events. Space Weather, 13 (11), 807–819, 2015, DOI: 10.1002/2015SW001256. [CrossRef] [Google Scholar]
- Nuñez, M., R. Fidalgo, and M. Baena, R. Morales. The influence of active region information in the prediction of solar flares: an empirical model using data mining. Ann. Geophys., 23 (9), 3129–3138, 2005, DOI: 10.5194/angeo-23-3129-2005. [CrossRef] [Google Scholar]
- Núñez, M., T. Nieves-Chinchilla, and A. Pulkkinen. Prediction of shock arrival times from CME and flare data. Space Weather, 2016 (accepted). [Google Scholar]
- Odstrcil, D., V.J. Pizzo, J.A. Linker, P. Riley, R. Lionello, et al. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J. Atmos. Sol. Terr. Phys., 66 (15-16), 1311–1320, 2004, DOI: 10.1016/j.jastp.2004.04.007. [Google Scholar]
- Parker, E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J., 128, 664, 1958, DOI: 10.1086/146579. [Google Scholar]
- Pizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, et al. Wang-Sheeley-Arge-ENLIL cone model transitions to operations. Space Weather, 9, S033004, 2011, DOI: 10.1029/ 2011SW000663. [Google Scholar]
- Pomoell, J., A. Aran, C. Jacobs, R. Rodríguez-Gasén, S. Poedts, et al. Modelling large solar proton events with the shock-and-particle model - Extraction of the characteristics of the MHD shock front at the cobpoint. J. Space Weather Space Clim., 5, A12, 2015, DOI: 10.1051/swsc/2015015. [Google Scholar]
- Posner, A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather, 5, S05001, 2007, DOI: 10.1029/2006SW000268. [NASA ADS] [CrossRef] [Google Scholar]
- Qahwaji, R., and T. Colak. Automatic short-term solar flare prediction using machine learning and sunspot associations. Sol. Phys., 241 (1), 195–211, 2007, DOI: 10.1007/s11207-006-0272-5. [NASA ADS] [CrossRef] [Google Scholar]
- Reames, D.V. Solar energetic particle variations. Adv. Space Res., 34 (2), 381, 2004, DOI: 10.1016/j.asr.2003.02.046. [Google Scholar]
- Rodríguez-Gasén, R., A. Aran, B. Sanahuja, C. Jacobs, and S. Poedts. Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint. Adv. Space Res., 47, 2140–2151, 2011, DOI: 10.1016/j.asr.2010.03.021. [Google Scholar]
- Rouillard, A.P., D. Odstrcil, N.R. Sheeley, A. Tylka, A. Vourlidas, et al. Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. Astrophys. J., 735, 7, 2011, DOI: 10.1088/0004-637X/735/1/7. [NASA ADS] [CrossRef] [Google Scholar]
- Song, H., C. Tan, J. Jing, H. Wang, V. Yuchyshyn, et al. Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Sol. Phys., 254 (1), 101–125, 2008, DOI: 10.1007/s11207-008-9288-3. [Google Scholar]
- Swets, J.A. Signal detection theory and ROC analysis in psychology and diagnostics: collected papers, Lawrence Erlbaum Associates, Mahwah, New Jersey, ISBN-10: 0-8058-1834-0/ISBN-13: 978-0-8058-1834-5, 1996. [Google Scholar]
- Tsagouri, I., A. Belehaki, N. Bergeot, C. Cid, M. Núñez, et al. Progress in space weather modeling in an operational environment. J. Space Weather Space Clim., 3, A17, 2013, DOI: 10.1051/swsc/2013037. [CrossRef] [EDP Sciences] [Google Scholar]
- Tylka, A.J., C.M.S. Cohen, W.F. Dietrich, M.A. Lee, C.G. Maclennan, et al. Shock geometry, seed populations, and origin of variable elemental composition at high energies in large gradual particle events. Astrophys. J., 625, 474–495, 2005, DOI: 10.1086/429384. [NASA ADS] [CrossRef] [Google Scholar]
- Uritsky, V.M., J.M. Davila, L. Ofman, and A.J. Coyner. Stochastic coupling of solar photosphere and corona. Astrophys. J., 769, 62, 2013, DOI: 10.1088/0004-637X/769/1/62. [NASA ADS] [CrossRef] [Google Scholar]
- Vrsnak, B., M. Temmer, T. Zic, A. Taktakishvili, M. Dumbovic, C. Moestl, A. Veronig, M. Mays, and D. Odstrcil. Heliospheric propagation of coronal mass ejections: comparison of numerical WSA-ENLIL + Cone model and analytical drag-based model. Astrophys. J. Suppl. Ser., 213 (2), 21, 2014, DOI: 10.1088/0067-0049/213/2/21. [Google Scholar]
- Wheatland, M.S. A statistical solar flare forecast method. Space Weather, 3 (7), S07003, 2005, DOI: 10.1029/2004SW000131. [NASA ADS] [CrossRef] [Google Scholar]
- Xie, H., L. Ofman, and G. Lawrence. Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res., 109, A03109, 2004, DOI: 10.1029/2003JA010226. [Google Scholar]
- Yu, D., X. Huang, Q. Hu, X. Zhou, H. Wang, et al. Short-term solar flare prediction using multiresolution predictors. Astrophys. J., 709 (1), 321–326, 2010, DOI: 10.1088/0004-637X/709/1/321. [NASA ADS] [CrossRef] [Google Scholar]
- Yuan, Y., F.Y. Shih, J. Jing, and H.-M. Wang. Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys., 10 (8), 785, 2010, DOI: 10.1088/1674-4527/10/8/008. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.