Open Access
Issue
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A7
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2015045
Published online 05 February 2016
  • Aksnes, A., R. Eastes, S. Budzien, and K. Dymond. Dependence of neutral temperatures in the lower thermosphere on geomagnetic activity. J. Geophys. Res., 112, A06302, 2007, DOI: 10.1029/2006JA012214. [CrossRef] [Google Scholar]
  • Barlier, F., C. Berger, J.L. Falin, G. Kockarts, and G. Thuillier. A thermospheric model based on satellite drag data. Ann. Geophys., 34, 9–24, 1978. [Google Scholar]
  • Bertaux, J.L., E. Kyrölä, D. Fussen, A. Hauchecorne, F. Dalaudier, et al. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT. Atmos. Chem. Phys., 10, 12091–12148, 2010, DOI: 10.5194/acp-10-12091-2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Bowman, K.P., and A.J. Krueger. A global climatology of total ozone from the Nimbus-7 Total Ozone Mapping Spectrometer. J. Geophys. Res., 90, 7967–7976, 1985, DOI: 10.1029/JD090iD05p07967. [CrossRef] [Google Scholar]
  • Bruinsma, S. The DTM-2013 thermosphere model, J. Space Weather Space Clim., 5, A1, 2015, DOI: 10.1051/swsc/2015001. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bruinsma, S., D. Tamagnan, and R. Biancale. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet. Space Sci., 52, 297–312, 2004, DOI: 10.1016/j.pss.2003.11.004. [CrossRef] [Google Scholar]
  • Bruinsma, S.L., and J.M. Forbes. Medium to large-scale density variability as observed by CHAMP. Space Weather, 6, S08002, 2008, DOI: 10.1029/2008SW000411. [CrossRef] [Google Scholar]
  • Bruinsma, S.L., N. Sánchez-Ortiz, E. Olmedo, and N. Guijarro. Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. J. Space Weather Space Clim., 2, A04, 2012, DOI: 10.1051/swsc/2012005. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bruinsma, S.L., E. Doornbos, and B.R. Bowman. Validation of GOCE densities and thermosphere model evaluation. Adv. Space Res., 54, 576–585, 2014, DOI: 10.1016/j.asr.2014.04.008. [CrossRef] [Google Scholar]
  • Chu, W.P., C.R. Trepte, and G. Taha. Initial comparison of SAGE III Data with GOMOS and SCIAMACHY, in: Proc. of Envisat Validation Workshop, Frascati, Italy, ESA SP-531, 2003. [Google Scholar]
  • Cole, B.E., and R.N. Dexter. Photoabsorption and photoionisation measurements on some atmospheric gases in the wavelength region 50–340 A. J. Phys. B: At. Mol. Phys., 11, 1011–1023, 1978, DOI: 10.1088/0022-3700/11/6/013. [CrossRef] [Google Scholar]
  • Damadeo, R.P., J.M. Zawodny, L.W. Thomason, and N. Lyer. SAGE version 7.0 algorithm: application to SAGE II. Atmos. Meas. Tech., 6, 3539–3561, 2013, DOI: 10.5194/amt-6-3539-2013. [CrossRef] [Google Scholar]
  • Dudok de Wit, T., and S. Bruinsma. Determination of the most pertinent EUV proxy for use in thermosphere modelling. Geophys. Res. Lett., 38, L19102, 2011, DOI: 10.1029/2011GL049028. [CrossRef] [Google Scholar]
  • Dudok de Wit, T., S. Bruinsma, and K. Shibasaki. Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim., 4, A06, 2014, DOI: 10.1051/swsc/2014003. [CrossRef] [EDP Sciences] [Google Scholar]
  • Elliott, J.L. Stellar occultation studies of the solar system. Ann. Rev. Astron. Astrophys., 17, 445–475, 1979, DOI: 10.1146/annurev.aa.17.090179.002305. [CrossRef] [Google Scholar]
  • Fennelly, J.A., and D.G. Torr. Photoionization and photoabsorption cross sections of O, N2 O2, and N for aeronomic calculations. At. Data Nucl. Data Tables, 51, 321–363, 1992, DOI: 10.1016/0092-640X(92)90004-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Gaikovich, K.P. Inverse Problems in Physical Diagnostics. Nova Science Publishers Inc., New York, 2004. [Google Scholar]
  • Gaikovich, K.P., A.S. Gurevich, and A.P. Naumov. On a reconstruction of meteorological parameters from intra-atmospheric measurements of optical refraction of cosmic sources. Izvestiya, Atmospheric and Oceanic Physics, 19 (7), 507–512, 1983. [Google Scholar]
  • Hedin, A.E. A revised thermospheric model based on mass spectrometer and incoherent scatter data - MSIS-83. J. Geophys. Res., 88 (A12), 10170–10188, 1983, DOI: 10.1029/JA088iA12p10170. [CrossRef] [Google Scholar]
  • Hedin, A.E. MSIS-86 thermospheric model. J. Geophys. Res., 92, 4649, 1987, DOI: 10.1029/JA088iA12p10170. [NASA ADS] [CrossRef] [Google Scholar]
  • Hedin, A.E. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96, 1159, 1991, DOI: 10.1029/90JA02125. [NASA ADS] [CrossRef] [Google Scholar]
  • Hedin, A.E., H.G. Mayr, L.H. Brace, H.C. Brinton, D.T. Pelz, P. Bauer, G.R. Carignan, and A.D. Parks. Observations of neutral composition and related ionospheric variations during a magnetic storm in February 1974. J. Geophys. Res., 82, 3183–3189, 1977, DOI: 10.1029/JA082i022p03183. [CrossRef] [Google Scholar]
  • Hinteregger, H.E. Absorption spectrometric analysis of the upper atmosphere in the EUV region. J. Atmos. Sci., 19, 351–368, 1962, DOI: 10.1175/1520-0469(1962)019<0351:ASAOTU>2.0.CO;2. [CrossRef] [Google Scholar]
  • Jacchia, L.G. Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles. SAO Special Report #332, 1971. [Google Scholar]
  • Kirchengast G., U. Foelsche, and A. Steiner, Editors. Occultations for Probing Atmosphere and Climate, Springer Science & Business Media, Springer-Verlag Berlin Heidelberg, ISBN: 3540341218, 9783540341215, 2004. [CrossRef] [Google Scholar]
  • Korablev, O.I. Solar occultation measurements of the Martian atmosphere on the Phobos spacecraft: water vapor profile, aerosol parameters, and other results. Sol. Syst. Res., 36, 12–34, 2002. [CrossRef] [Google Scholar]
  • Krasnopolsky, V.A., O.B. Likin, F. Farnik, and B. Valnicek. Solar occultation observations of the Martian atmosphere in the ranges of 2–4 and 4–8 keV measured by PHOBOS 2. Icarus, 89, 147–151, 1991, DOI: 10.1016/0019-1035(91)90094-A. [CrossRef] [Google Scholar]
  • Kuzin, S.V., S.A. Bogachev, I.A. Zhitnik, et al. TESIS experiment on EUV imaging spectroscopy of the Sun. Adv. Space Res., 43, 1001, 2009, DOI: 10.1016/j.asr.2008.10.021. [NASA ADS] [CrossRef] [Google Scholar]
  • Maltagliati, L., F. Montmessin, O. Korablev, A. Fedorova, F. Forget, A. Määttänen, F. Lefèvre, and J.-L. Bertaux. Annual survey of water vapor vertical distribution and water-aerosol coupling in the martian atmosphere observed by SPICAM/MEx solar occultations. Icarus, 223, 942–962, 2013, DOI: 10.1016/j.icarus.2012.12.012. [CrossRef] [Google Scholar]
  • Picone, J.M., A.E. Hedin, and D.P. Drob. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107 (A12), 1468, 2002, DOI: 10.1029/2002JA009430. [CrossRef] [Google Scholar]
  • Russell, J.M. III, L.L. Gordley,, J.H. Park, S.R. Drayson, W.D. Hesket, et al. The Halogen occultation experiment. J. Geophys. Res., 98, 10777–10797, 1993, DOI: 10.1029/93JD00799. [CrossRef] [Google Scholar]
  • Seaton, D.B., D. Berghmans, B. Nicula, J.-P. Halain, A. De Groof, et al. The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Solar Phys., 286, 43, 2013, DOI: 10.1007/s11207-012-0114-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Slemzin, V., O. Bugaenko, A. Ignatiev, V. Krutov, S. Kuzin, et al. Investigation of absorption of solar EUV-radiation in the Earth’s atmosphere at altitudes of 100–500 km using solar images in the experiments TEREK-C (Coronas-I) and SPIRIT (Coronas-F). In: A. Wilson, Editor, Solar Variability as an Input to the Earth’s Environment. International Solar Cycle Studies (ISCS) Symposium, Tanranská Lomnica, Slovak Republic, ESA-SP-535, ESA Publications Division, Noordwijk, 389–392, ISBN 92-9092-845-X, 2003. [Google Scholar]
  • Slemzin, V.A., S.V. Kuzin, I.A. Zhitnik, J.-P. Delaboudinière, F. Auchère, et al. Observations of solar EUV radiation with the CORONAS-F/SPIRIT and SOHO/EIT instruments. Sol. Syst. Res., 39, 489–500, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith, G.R., and D.M. Hunten. Study of planetary atmospheres by absorptive occultations. Rev. Geophys., 28, 117–143, 1990, DOI: 10.1029/RG028i002p00117. [CrossRef] [Google Scholar]
  • Smith, G.R., D.E. Shemansky, J.B. Holberg, A.L. Broadfoot, B.R. Sandel, and J.C. McConnell. Saturn’s upper atmosphere from the Voyager 2 EUV solar and stellar occultations. J. Geophys. Res., 88, 8667–8678, 1983, DOI: 10.1029/JA088iA11p08667. [NASA ADS] [CrossRef] [Google Scholar]
  • Sobelman, I.I., I.A. Zhitnik, A.P. Ignat’ev, V.V. Korneev, V.Y. Klepikov, and V.V. Krutov. X-ray spectroscopy of the Sun in the 0.84–30.4 nm band in the TEREK-K and RES-K experiments on the KORONAS satellite. Astron. Lett., 22, 539–554, 1996. [Google Scholar]
  • Tikhonov, A.N., and V.Y. Arsenin. Solutions of ill-posed problems, Winston, New York, ISBN 0-470-99124-0, 1977. [Google Scholar]
  • Verner, D.A., G.J. Ferland, K.T. Korista, and D.G. Yakovlev. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J., 465, 487–498, 1996, DOI: 10.1086/177435. [NASA ADS] [CrossRef] [Google Scholar]
  • Woods, T.N., F.G. Epavier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res., 110, A01312, 2005, DOI: 10.1029/2004JA010765. [NASA ADS] [CrossRef] [Google Scholar]
  • Zhitnik, I.A., A.P. Ignatiev, V.V. Korneev, V.V. Krutov, S.V. Kuzin, et al. Instruments for imaging XUV spectroscopy of the Sun on board the CORONAS-I satellite. Proc. SPIE, 3406, 1–19, 1998. [CrossRef] [Google Scholar]
  • Zhitnik, I.A., K.A. Boyarchuk, O.I. Bugaenko, G.S. Ivanov-Kholodnyi, A.P. Ignat’ev, et al. Effects of absorption of solar XUV radiation by the Earth’s atmosphere at altitudes of 100–500 km in the X-ray solar images obtained onboard the CORONAS-I (TEREK telescope) and CORONAS-F (SPIRIT X-ray complex) satellites, Sol. Syst. Res., 37, 296–301, 2003. [CrossRef] [Google Scholar]
  • Zhou, Y.L., S.Y. Ma, H. Lühr, C. Xiong, and C. Reigber. An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data. Adv. Space Res., 43, 819, 2009, DOI: 10.1016/j.asr.2008.06.016. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.