Open Access
Issue
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A6
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2016001
Published online 26 January 2016
  • Burton, R.K., R.L. McPherron, and C.T. Russell. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80, 4204–4214, 1975. [NASA ADS] [CrossRef] [Google Scholar]
  • Cid, C., J. Palacios, E. Saiz, A. Guerrero, and Y. Cerrato. On extreme geomagnetic storms. J. Space Weather Space Clim., 4, A28, 2014, DOI: 10.1051/swsc/2014026. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cid, C., E. Saiz, A. Guerrero, J. Palacios, and Y. Cerrato. A Carrington-like geomagnetic storm observed in the 21st century. J. Space Weather Space Clim., 5, A16, 2015, DOI: 10.1051/swsc/2015017. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cliver, E.W., and W.F. Dietrich. The 1859 space weather event revisited: limits of extreme activity. J. Space Weather Space Clim., 3, A31, 2013, DOI: 10.1051/swsc/2013053. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cliver, E.W., and L. Svalgaard. The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol. Phys., 224, 407–422, 2004. [Google Scholar]
  • Fiori, R.A.D., D.H. Boteler, and D.M. Gillies. Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather, 12, 76–91, 2014, DOI: 10.1002/2013SW000967. [CrossRef] [Google Scholar]
  • Foullon, C., C.J. Owen, S. Dasso, L.M. Green, I. Dandouras, et al. Multi-spacecraft study of the 21 January 2005 ICME: evidence of current sheet substructure near the periphery of a strongly expanding fast magnetic cloud. Sol. Phys., 244, 139–165, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99 (A4), 5771–5792, 1994, DOI: 10.1029/93JA02867. [Google Scholar]
  • Gopalswamy, N., L. Barbieri, E.W. Cliver, G. Lu, S.P. Plunkett, and R.M. Skoug. Introduction to violent Sun-Earth connection events of October–November 2003. J. Geophys. Res., 110, A09S00, 2005, DOI: 10.1029/2005JA011268. [Google Scholar]
  • Green, J.L., and S. Boardsen. Duration and extent of the great auroral storm of 1859. Adv. Space Res., 38, 130–135, 2006. [Google Scholar]
  • Kozyra, J.U., W.B. Manchester IV, C.P. Escoubet, S.T. Lepri, M.W. Liemohn, W.D. Gonzalez, M.W. Thomsen, and B.T. Tsurutani. Earth’s collision with a solar filament on 21 January 2005: overview. J. Geophys. Res. [Space Phys.], 118, 5967–5978, 2013, DOI: 10.1002/jgra.50567. [CrossRef] [Google Scholar]
  • Kozyra, J.U., M.W. Liemohn, C. Cattell, D. De Zeeuw, C.P. Escoubet, et al. Solar filament impact on 21 January 2005: geospace consequences. J. Geophys. Res. [Space Phys.], 119, 5401–5448, 2014, DOI: 10.1002/2013JA019748. [CrossRef] [Google Scholar]
  • Li, X., M. Temerin, B.T. Tsurutani, and S. Alex. Modeling of 1–2 September 1859 super magnetic storm. Adv. Space Res., 38, 273–279, 2006, DOI: 10.1016/j.asr.2005.06.070. [CrossRef] [Google Scholar]
  • Lopez, R.E., M. Wiltberger, S. Hernandez, and J.G. Lyon. Solar wind density control of energy transfer to the magnetosphere. Geophys. Res. Lett., 31, L08804, 2004, DOI: 10.1029/2003GL018780. [CrossRef] [Google Scholar]
  • Manchester, W.B., A.J. Ridley, T.I. Gombosi, and D.L. Dezeeuw. Modeling the Sun-to-Earth propagation of a very fast CME. Adv. Space Res., 38 (2), 253–262, 2006, DOI: 10.1016/j.asr.2005.09.044. [CrossRef] [Google Scholar]
  • McComas, D.J., S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, and J.W. Griffee. Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev., 86 (1–4), 563–612, 1998, DOI: 10.1023/A:1005040232597. [NASA ADS] [CrossRef] [Google Scholar]
  • Mende, S.B., H.U. Frey, T.J. Immel, J.-C. Gérard, B. Hubert, and S.A. Fuselier. Global imaging of proton and electron aurorae in the far ultraviolet. Space Sci. Rev., 109, 211–254, 2003. [CrossRef] [Google Scholar]
  • Ngwira, C.M., A. Pulkkinen, M.M. Kuznetsova, and A. Glocer. Modeling extreme “Carrington-type” space weather events using three-dimensional global MHD simulations. J. Geophys. Res. [Space Phys.], 119, 4456–4474, 2014, DOI: 10.1002/2013JA019661. [Google Scholar]
  • Pohjolainen, S., L. van Driel-Gesztelyi, J.L. Culhane, P.K. Manoharan, and H.A. Elliott. CME propagation characteristics from radio observations. Sol. Phys., 244, 167–188, 2007, DOI: 10.1007/s11207-007-9006-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Ohtani, S., T. Uozumi, H. Kawano, A. Yoshikawa, H. Utada, T. Nagatsuma, and K. Yumoto. The response of the dayside equatorial electrojet to step-like changes of IMF Bz. J. Geophys. Res. [Space Phys.], 118, 3637–3646, 2013, DOI: 10.1002/jgra.50318. [CrossRef] [Google Scholar]
  • Rodriguez, L., A.N. Zhukov, S. Dasso, C.H. Mandrini, H. Cremades, et al. Magnetic clouds seen at different locations in the heliosphere. Ann. Geophys., 26, 213–229, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Saiz, E., C. Cid, and Y. Cerrato. Forecasting intense geomagnetic activity using interplanetary magnetic field data. Ann. Geophys., 26, 3989–3998, 2008. [CrossRef] [Google Scholar]
  • Siscoe, G., N. Cooker, and C.R. Clauer. Dst of the Carrington storm of 1859. Adv. Space Res., 38, 173–179, 2006, DOI: 10.1016/j.asr.2005.02.102. [Google Scholar]
  • Skoug, R.M., J.T. Gosling, J.T. Steinberg, D.J. McComas, C.W. Smith, N.F. Ness, Q. Hu, and L.F. Burlaga. Extremely high speed solar wind: 29–30 October 2003. J. Geophys. Res., 109, A09102, 2004, DOI: 10.1029/2004JA010494. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith, C.W., J. L’Heureux, N.F. Ness, M.H. Acuña, L.F. Burlaga, and J. Scheifele. The ACE magnetic fields experiment. Space Sci. Rev., 86 (1–4), 613–632, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Theodoridis, S., and K. Koutroumbas. Pattern Recognition, Elsevier, Amsterdam, 2008. [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez. The future of geomagnetic storm predictions: implications from recent solar and interplanetary observations. J. Atmos. Sol. Terr. Phys., 57, 1369–1384, 1995. [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, G.S. Lakhina, and S. Alex. The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res., 108 (A7), 1268, 2003, DOI: 10.1029/2002JA009504. [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, G.S. Lakhina, and S. Alex. Reply to comment by S.-I. Akasofu and Y. Kamide on “The extreme magnetic storm of 1–2 September 1859”. J. Geophys. Res., 110, A09227, 2005, DOI: 10.1029/2005JA011121. [Google Scholar]
  • Villante, U., and M. Regi. Solar flare effect preceding Halloween storm (28 October 2003): Results of a worldwide analysis. J. Geophys. Res., 113, A00A05, 2008, DOI: 10.1029/2008JA013132. [Google Scholar]
  • Wei, Y., M. Hong, W. Wan, A. Du, J. Lei, B. Zhao, W. Wang, Z. Ren, and X. Yue. Unusually long lasting multiple penetration of interplanetary electric field to equatorial ionosphere under oscillating IMF Bz. Geophys. Res. Lett., 35, L02102, 2008, DOI: 10.1029/2007GL032305. [Google Scholar]
  • Yu, Y., A.J. Ridley, D.T. Welling, and G. Tóth. Including gap region field-aligned currents and magnetospheric currents in the MHD calculation of ground-based magnetic field perturbations. J. Geophys. Res., 115, A08207, 2010, DOI: 10.1029/2009JA014869. [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005. J. Geophys. Res., 112, A10102, 2007, DOI: 10.1029/2007JA012321. [Google Scholar]
  • Zhang, Y., L.J. Paxton, and Y. Zheng. Interplanetary shock induced ring current auroras. J. Geophys. Res., 113, A01212, 2008, DOI: 10.1029/2007JA012554. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.