Issue
J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
Article Number A2
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2015044
Published online 25 January 2016
  • Abramenko, V.I. Multifractal analysis of solar magnetograms. Sol. Phys., 228, 29–42, 2005, DOI: 10.1007/s11207-005-3525-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Bloomfield, D.S., P.A. Higgins, R.T.J. McAteer, and P.T. Gallagher. Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett., 747, L41, 2012, DOI: 10.1088/2041-8205/747/2/L41. [Google Scholar]
  • Bornmann, P.L., and D. Shaw. Flare rates and the McIntosh active-region classifications. Sol. Phys., 150, 127–146, 1994, DOI: 10.1007/BF00712882. [Google Scholar]
  • Borovsky, J.E. Canonical correlation analysis of the combined solar wind and geomagnetic index data sets. J. Geophys. Res. [Space Phys.], 119, 5364–5381, 2014, DOI: 10.1002/2013JA019607. [Google Scholar]
  • Bühlmann, P., and S. Van De Geer. Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media, Berlin, Germany, 2011. [Google Scholar]
  • Cadavid, A.C., J.K. Lawrence, and A. Ruzmaikin. Principal components and independent component analysis of solar and space data. Sol. Phys., 248, 247–261, 2008, DOI: 10.1007/s11207-007-9026-2. [CrossRef] [Google Scholar]
  • Carter, K.M., R. Raich, and A.O. Hero. On local intrinsic dimension estimation and its applications. IEEE Trans. Sign. Process., 58 (2), 650–663, 2010. [CrossRef] [Google Scholar]
  • Colak, T., and R. Qahwaji. Automated Mcintosh-based classification of sunspot groups using MDI images. Sol. Phys., 248, 277–296, 2008, DOI: 10.1007/s11207-007-9094-3. [Google Scholar]
  • Colak, T., and R. Qahwaji. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef] [Google Scholar]
  • Conlon, P.A., P.T. Gallagher, R.T.J. McAteer, J. Ireland, C.A. Young, P. Kestener, R.J. Hewett, and K. Maguire. Multifractal properties of evolving active regions. Sol. Phys., 248, 297–309, 2008, DOI: 10.1007/s11207-007-9074-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Conlon, P.A., R.T.J. McAteer, P.T. Gallagher, and L. Fennell. Quantifying the evolving magnetic structure of active regions. Astrophys. J., 722, 577–585, 2010, DOI: 10.1088/0004-637X/722/1/577. [NASA ADS] [CrossRef] [Google Scholar]
  • Costa, J.A., and A.O. Hero III. Determining intrinsic dimension and entropy of high-dimensional shape spaces. Statistics and Analysis of Shapes, Springer, 231–252, 2006. [CrossRef] [Google Scholar]
  • Dobigeon, N., J.-Y. Tourneret, C. Richard, J. Bermudez, S. Mclaughlin, and A.O. Hero. Nonlinear unmixing of hyperspectral images: Models and algorithms. IEEE Signal Process Mag., 31 (1), 82–94, 2014. [CrossRef] [Google Scholar]
  • Dudok de Wit, T., S. Moussaoui, C. Guennou, F. Auchère, G. Cessateur, M. Kretzschmar, L.A. Vieira, and F.F. Goryaev. Coronal temperature maps from solar EUV images: a blind source separation approach. Sol. Phys., 283, 31–47, 2013, DOI: 10.1007/s11207-012-0142-2. [CrossRef] [Google Scholar]
  • Dudok de Wit, T., and F. Auchère. Multispectral analysis of solar EUV images: linking temperature to morphology. A&A, 466, 347–355, 2007, DOI: 10.1051/0004-6361:20066764. [CrossRef] [EDP Sciences] [Google Scholar]
  • Efron, B., and R. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, Boca Raton, Florida, 1994. [Google Scholar]
  • Elad, M., and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process., 15 (12), 3736–3745, 2006, DOI: 10.1109/TIP.2006.881969. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Gallagher, P.T., Y.-J. Moon, and H. Wang. Active-region monitoring and flare forecasting I. Data processing and first results. Sol. Phys., 209, 171–183, 2002, DOI: 10.1023/A:1020950221179. [Google Scholar]
  • Georgoulis, M.K. Turbulence in the solar atmosphere: Manifestations and diagnostics via solar image processing. Sol. Phys., 228, 5–27, 2005, DOI: 10.1007/s11207-005-2513-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Hale, G.E., F. Ellerman, S.B. Nicholson, and A.H. Joy. The magnetic polarity of sun-spots. Astrophys. J., 49, 153–153, 1919, DOI: 10.1086/142452. [Google Scholar]
  • Härdle, W., and L. Simar. Applied multivariate statistical analysis. Springer, Berlin, Germany, 2007. [Google Scholar]
  • Hero, A., and B. Rajaratnam. Large-scale correlation screening. J. Am. Stat. Assoc., 106 (496), 1540–1552, 2011. [CrossRef] [Google Scholar]
  • Hewett, R.J., P.T. Gallagher, R.T.J. McAteer, C.A. Young, J. Ireland, P.A. Conlon, and K. Maguire. Multiscale analysis of active region evolution. Sol. Phys., 248, 311–322, 2008, DOI: 10.1007/s11207-007-9028-0. [NASA ADS] [CrossRef] [Google Scholar]
  • Higgins, P.A., P.T. Gallagher, R. McAteer, and D.S. Bloomfield. Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res., 47 (12), 2105–2117, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Holappa, L., K. Mursula, T. Asikainen, and I.G. Richardson. Annual fractions of high-speed streams from principal component analysis of local geomagnetic activity. J. Geophys. Res. [Space Phys.], 119, 4544–4555, 2014, DOI: 10.1002/2014JA019958. [CrossRef] [Google Scholar]
  • Ireland, J., C.A. Young, R.T.J. McAteer, C. Whelan, R.J. Hewett, and P.T. Gallagher. Multiresolution analysis of active region magnetic structure and its correlation with the mount wilson classification and flaring activity. Sol. Phys., 252, 121–137, 2008, DOI: 10.1007/s11207-008-9233-5. [NASA ADS] [CrossRef] [Google Scholar]
  • Jolliffe, I.T. Principal component analysis. 2nd edn. Springer-Verlag New York, Inc., New York, 2002. [Google Scholar]
  • Kestener, P., P.A. Conlon, A. Khalil, L. Fennell, R.T.J. McAteer, P.T. Gallagher, and A. Arneodo. Characterizing complexity in solar magnetogram data using a wavelet-based segmentation method. Astrophys. J., 717, 995–1005, 2010, DOI: 10.1088/0004-637X/717/2/995. [Google Scholar]
  • Kullback, S., and R.A. Leibler. On information and sufficiency. Ann. Math. Stat., 79–86, 1951. [Google Scholar]
  • Lauritzen, S. Graphical models. Clarendon Press, Oxford, ISBN: 9780191591228, 1996. [Google Scholar]
  • Lawrence, J.K., A. Cadavid, and A. Ruzmaikin. Principal component analysis of the solar magnetic field I: the axisymmetric field at the photosphere. Sol. Phys., 225, 1–19, 2004, DOI: 10.1007/s11207-004-3257-2. [Google Scholar]
  • Levina, E., and P.J. Bickel. Maximum likelihood estimation of intrinsic dimension. Advances in Neural Information Processing Systems, 17, 777–784, 2004. [Google Scholar]
  • Mallat, S., and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process., 41 (12), 3397–3415, 1993, DOI: 10.1109/78.258082. [Google Scholar]
  • Mayfield, E.B., and J.K. Lawrence. The correlation of solar flare production with magnetic energy in active regions. Sol. Phys., 96, 293–305, 1985, DOI: 10.1007/BF00149685. [CrossRef] [Google Scholar]
  • McAteer, R.T.J., P.T. Gallagher, and P.A. Conlon. Turbulence complexity, and solar flares. Adv. Space Res., 45, 1067–1074, 2010, DOI: 10.1016/j.asr.2009.08.026. [Google Scholar]
  • McAteer, R.T.J., P.T. Gallagher, and J. Ireland. Statistics of active region complexity: a large-scale fractal dimension survey. Astrophys. J., 631, 628–635, 2005, DOI: 10.1086/432412. [Google Scholar]
  • McIntosh, P.S. The classification of sunspot groups. Sol. Phys., 125, 251–267, 1990, DOI: 10.1007/BF00158405. [Google Scholar]
  • Moon, K.R., V. Delouille, J.J. Li, R. De Visscher, F. Watson, and A.O. HeroIII. Image patch analysis of sunspots and active regions. II. Clustering via matrix factorization. J. Space Weather Space Clim., 2015. [Google Scholar]
  • Moon, K.R., and A.O. HeroIII. Ensemble estimation of multivariate f-divergence. Ensemble estimation of multivariate f-divergence. In Information Theory (ISIT), 2014 IEEE International Symposium on, IEEE, Honolulu, USA, pp. 356–360, 2014a. [Google Scholar]
  • Moon, K.R., and A.O. HeroIII. Multivariate f-divergence estimation with confidence. Advances in Neural Information Processing Systems, 27, 2420–2428, 2014b. [Google Scholar]
  • Moon, K.R., J.J. Li, V. Delouille, F. Watson, and A.O. HeroIII. Image patch analysis and clustering of sunspots: A dimensionality reduction approach. IEEE International Conference on Image Processing (ICIP), IEEE, Paris, France, 1623–1627, 2014. [Google Scholar]
  • Muller, K.E. Understanding canonical correlation through the general linear model and principal components. Am. Stat., 36, 342–354, 1982. [Google Scholar]
  • Nimon, K., R. Henson, and M. Gates. Revisiting interpretation of canonical correlation analysis: A tutorial and demonstration of canonical commonality analysis. Multivar. Behav. Res., 45, 702–724, 2010. [CrossRef] [Google Scholar]
  • Phillips, K.J.H. Solar flares – a review. Vistas in Astron., 34, 353–365, 1991, DOI: 10.1016/0083-6656(91)90014-J [CrossRef] [Google Scholar]
  • Rast, M.P. The scales of granulation, mesogranulation, and supergranulation. Astrophys. J., 597 (2), 1200, 2003. [Google Scholar]
  • Rieutord, M., T. Roudier, J. Malherbe, and F. Rincon. On mesogranulation, network formation and supergranulation. A&A, 357, 1063–1072, 2000. [Google Scholar]
  • Sammis, I., F. Tang, and H. Zirin. The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J., 540, 583–587, 2000, DOI: 10.1086/309303. [Google Scholar]
  • Scherrer, P.H., R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, et al. The solar oscillations investigation - Michelson doppler imager. Sol. Phys., 162, 129–188, 1995, DOI: 10.1007/BF00733429. [Google Scholar]
  • Stenning, D.C., T.C.M. Lee, D.A. van Dyk, V. Kashyap, J. Sandell, and C.A. Young. Morphological feature extraction for statistical learning with applications to solar image data. Statistical Analysis and Data Mining, 6 (4), 329–345, 2013, DOI: 10.1002/sam.11200 [Google Scholar]
  • Tiwari, S.K., M. van Noort, A. Lagg, and S.K. Solanki. Structure of sunspot penumbral filaments: a remarkable uniformity of properties. A&A, 557, A25, 2013. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Watson, F.T., L. Fletcher, and S. Marshall. Evolution of sunspot properties during solar cycle 23. A&A, 533, A14, 2011, DOI: 10.1051/0004-6361/201116655. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Zharkova, V.V., S.J. Shepherd, and S.I. Zharkov. Principal component analysis of background and sunspot magnetic field variations during solar cycles 21–23. Monthly Notices of the RAS, 424, 2943–2953, 2012, DOI: 10.1111/j.1365-2966.2012.21436.x [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.