Issue
J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
Article Number A3
Number of page(s) 19
DOI https://doi.org/10.1051/swsc/2015043
Published online 25 January 2016
  • Ahmed, O.W., R. Qahwaji, T. Colak, P.A. Higgins, P.T. Gallagher, and D.S. Bloomfield. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol. Phys., 283, 157–175, 2013, DOI: 10.1007/s11207-011-9896-1. [NASA ADS] [CrossRef]
  • Barnes, G., K.D. Leka, E.A. Schumer, and D.J. Della-Rose. Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather, 5, S09002, 2007, DOI: 10.1029/2007SW000317. [CrossRef]
  • Bazot, C., N. Dobigeon, J.-Y. Tourneret, A. Zaas, G. Ginsburg, and A.O. HeroIII. Unsupervised Bayesian linear unmixing of gene expression microarrays. BMC Bioinf., 14 (1), 99, 2013, DOI: 10.1186/1471-2105-14-99. [CrossRef]
  • Bhattacharyya, A. On a measure of divergence between two multinomial populations. Sankhya, 7 (4), 401–406, 1946.
  • Bioucas-Dias, J.M., A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Observations Remote Sensing, 5 (2), 354–379, 2012. [CrossRef]
  • Bobra, M.G., and S. Couvidat. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J., 798, 135, 2015, DOI: 10.1088/0004-637X/798/2/135. [NASA ADS] [CrossRef]
  • Colak, T., and R. Qahwaji. Automated McIntosh-based classification of sunspot groups using MDI images. Sol. Phys., 248, 277–296, 2008, DOI: 10.1007/s11207-007-9094-3. [NASA ADS] [CrossRef]
  • Colak, T., and R. Qahwaji. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef]
  • Comon, P., and C. Jutten. Handbook of Blind Source Separation: Independent Component Analysis and Blind Deconvolution. Academic Press, Oxford, 2010.
  • Csiszar, I. Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar., 2, 299–318, 1967.
  • DeForest, C. On re-sampling of solar images. Sol. Phys., 219 (1), 3–23, 2004. [NASA ADS] [CrossRef]
  • Ding, C., T. Li, and M.I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell., 32 (1), 45–55, 2010. [CrossRef]
  • Dudok de Wit, T., S. Moussaoui, C. Guennou, F. Auchère, G. Cessateur, M. Kretzschmar, L.A. Vieira, and F.F. Goryaev. Coronal temperature maps from solar EUV images: a blind source separation approach. Sol. Phys., 283, 31–47, 2013, DOI: 10.1007/s11207-012-0142-2. [CrossRef]
  • Edelman, A., T.A. Arias, and S.T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20 (2), 303–353, 1998. [CrossRef]
  • Falconer, D.A., R.L. Moore, and G.A. Gary. Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J., 689, 1433–1442, 2008, DOI: 10.1086/591045. [NASA ADS] [CrossRef]
  • Galluccio, L., O. Michel, P. Comon, M. Kliger, and A.O. HeroIII. Clustering with a new distance measure based on a dual-rooted tree. Inform. Sciences, 251, 96–113, 2013. [CrossRef]
  • Georgoulis, M.K., and D.M. Rust. Quantitative forecasting of major solar flares. Astrophys. J. Lett., 661, L109–L112, 2007, DOI: 10.1086/518718. [NASA ADS] [CrossRef]
  • Guo, J., H. Zhang, O.V. Chumak, and Y. Liu. A quantitative study on magnetic configuration for active regions. Sol. Phys., 237, 25–43, 2006, DOI: 10.1007/s11207-006-2081-2. [NASA ADS] [CrossRef]
  • Győri, L., T. Baranyi, and A. Ludmány. Photospheric data programs at the Debrecen observatory. Proc. Int. Astron. Union, 6 (S273), 403–407, 2010. [CrossRef]
  • Hale, G.E., F. Ellerman, S.B. Nicholson, and A.H. Joy. The magnetic polarity of sun-spots. Astrophys. J., 49, 153, 1919, DOI: 10.1086/142452. [NASA ADS] [CrossRef]
  • Hellinger, E. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. Journal für die reine und angewandte Mathematik, 136, 210–271, 1909.
  • Higgins, P.A., P.T. Gallagher, R. McAteer, and D.S. Bloomfield. Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res., 47 (12), 2105–2117, 2011. [NASA ADS] [CrossRef]
  • Huang, X., D. Yu, Q. Hu, H. Wang, and Y. Cui. Short-term solar flare prediction using predictor teams. Sol. Phys., 263, 175–184, 2010, DOI: 10.1007/s11207-010-9542-3. [NASA ADS] [CrossRef]
  • Jolliffe, I.T. Principal Component Analysis, 2nd ed., Springer-Verlag New York, Inc., New York, 2002.
  • Kruskal, J.B., and M. Wish. Multidimensional Scaling, vol. 11, Sage, New York, 1978. [CrossRef]
  • Kullback, S., and R.A. Leibler. On information and sufficiency. Ann. Math. Stat., 22, 79–86, 1951. [CrossRef] [MathSciNet]
  • Künzel, H. Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur. Astron. Nachr., 285, 271–271, 1960. [NASA ADS] [CrossRef]
  • Langville, A.N., C.D. Meyer, R. Albright, J. Cox, and D. Duling. Initializations for the nonnegative matrix factorization, in Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Citeseer, 2006.
  • Lee, D.D., and H.S. Seung. Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems (NIPS), 556–562, 2001.
  • Lee, K., Y.-J. Moon, J.-Y. Lee, K.-S. Lee, and H. Na. Solar flare occurrence rate and probability in terms of the sunspot classification supplemented with sunspot area and its changes. Sol. Phys., 281, 639–650, 2012, DOI: 10.1007/s11207-012-0091-9. [CrossRef]
  • Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring vs. flare-quiet active regions III: discriminant analysis of a statistically significant database. In American Astronomical Society Meeting Abstracts #204, vol. 36 of Bulletin of the American Astronomical Society, 715, 2004.
  • Lin, C.-J. Projected gradient methods for nonnegative matrix factorization. Neural Comput., 19 (10), 2756–2779, 2007. [CrossRef]
  • Mayfield, E.B., and J.K. Lawrence. The correlation of solar flare production with magnetic energy in active regions. Sol. Phys., 96, 293–305, 1985, DOI: 10.1007/BF00149685. [CrossRef]
  • Mittelman, R., N. Dobigeon, and A. Hero. Hyperspectral image unmixing using a multiresolution sticky HDP. IEEE Trans. Signal Process., 60 (4), 1656–1671, 2012, DOI: 10.1109/TSP.2011.2180718. [CrossRef]
  • Moon, K.R., and A.O. HeroIII. Ensemble estimation of multivariate f-divergence, in Information Theory (ISIT), 2014 IEEE International Symposium on, Honolulu, USA, IEEE, 356–360, 2014a.
  • Moon, K.R., and A.O. HeroIII. Multivariate f-divergence estimation with confidence. Adv. Neural Inf. Process. Syst., 27, 2420–2428, 2014b.
  • Moon, K.R., J.J. Li, V. Delouille, F. Watson, and A.O. HeroIII. Image patch analysis and clustering of sunspots: a dimensionality reduction approach, in IEEE International Conference on Image Processing (ICIP), Paris, France, IEEE, 1623–1627, 2014.
  • Moon, K.R., J.J. Li, V. Delouille, R. De Visscher, F. Watson, and A.O. HeroIII. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis. J. Space Weather Space Clim., 2015.
  • Moon, T.K., and W.C. Stirling. Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, New York, 2000.
  • Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J., 36 (6), 1389–1401, 1957. [CrossRef]
  • Ramírez, I., and G. Sapiro. An MDL framework for sparse coding and dictionary learning. IEEE Trans. Signal Process., 60 (6), 2913–2927, 2012. [CrossRef]
  • Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Assoc., 66 (336), 846–850, 1971. [CrossRef]
  • Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53–65, 1987. [CrossRef]
  • Sammis, I., F. Tang, and H. Zirin. The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J., 540, 583–587, 2000, DOI: 10.1086/309303. [NASA ADS] [CrossRef]
  • Scherrer, P.H., R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, et al. The solar oscillations investigation – Michelson Doppler imager. Sol. Phys., 162, 129–188, 1995, DOI: 10.1007/BF00733429. [NASA ADS] [CrossRef] [MathSciNet]
  • Schrijver, C.J. A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett., 655, L117–L120, 2007, DOI: 10.1086/511857. [NASA ADS] [CrossRef]
  • Seichepine, N., S. Essid, C. Févotte, and O. Cappé. Soft nonnegative matrix co-factorization. IEEE Trans. Signal Process., 62 (22), 5940–5949, 2014. [CrossRef]
  • Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 93, 1591–1595, 1995. [CrossRef]
  • Song, H., C. Tan, J. Jing, H. Wang, V. Yurchyshyn, and V. Abramenko. Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Sol. Phys., 254, 101–125, 2009, DOI: 10.1007/s11207-008-9288-3. [NASA ADS] [CrossRef]
  • Stenning, D.C., T.C.M. Lee, D.A. van Dyk, V. Kashyap, J. Sandell, and C.A. Young. Morphological feature extraction for statistical learning with applications to solar image data. Stat. Anal. Data Min., 6 (4), 329–345, 2013, DOI: 10.1002/sam.11200. [CrossRef]
  • Stewart, G.W. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev., 15 (4), 727–764, 1973. [CrossRef]
  • Warwick, C.S. Sunspot configurations and proton flares. Astrophys. J., 145, 215, 1966, DOI: 10.1086/148755. [NASA ADS] [CrossRef]
  • Watson, F.T., L. Fletcher, and S. Marshall. Evolution of sunspot properties during solar cycle 23. Astron. Astrophys., 533, A14, 2011, DOI: 10.1051/0004-6361/201116655. [NASA ADS] [CrossRef] [EDP Sciences]
  • Yaghoobi, M., T. Blumensath, and M.E. Davies. Dictionary learning for sparse approximations with the majorization method, IEEE Trans. Signal Process., 57 (6), 2178–2191, 2009. [CrossRef]
  • Yokoya, N., T. Yairi, and A. Iwasaki. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens., 50 (2), 528–537, 2012. [CrossRef]
  • Yu, D., X. Huang, H. Wang, Y. Cui, Q. Hu, and R. Zhou. Short-term solar flare level prediction using a Bayesian network approach. Astrophys. J., 710, 869–877, 2010, DOI: 10.1088/0004-637X/710/1/869. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.