Issue
J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
Article Number A3
Number of page(s) 19
DOI https://doi.org/10.1051/swsc/2015043
Published online 25 January 2016
  • Ahmed, O.W., R. Qahwaji, T. Colak, P.A. Higgins, P.T. Gallagher, and D.S. Bloomfield. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol. Phys., 283, 157–175, 2013, DOI: 10.1007/s11207-011-9896-1. [NASA ADS] [CrossRef] [Google Scholar]
  • Barnes, G., K.D. Leka, E.A. Schumer, and D.J. Della-Rose. Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather, 5, S09002, 2007, DOI: 10.1029/2007SW000317. [CrossRef] [Google Scholar]
  • Bazot, C., N. Dobigeon, J.-Y. Tourneret, A. Zaas, G. Ginsburg, and A.O. HeroIII. Unsupervised Bayesian linear unmixing of gene expression microarrays. BMC Bioinf., 14 (1), 99, 2013, DOI: 10.1186/1471-2105-14-99. [CrossRef] [Google Scholar]
  • Bhattacharyya, A. On a measure of divergence between two multinomial populations. Sankhya, 7 (4), 401–406, 1946. [Google Scholar]
  • Bioucas-Dias, J.M., A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Observations Remote Sensing, 5 (2), 354–379, 2012. [Google Scholar]
  • Bobra, M.G., and S. Couvidat. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J., 798, 135, 2015, DOI: 10.1088/0004-637X/798/2/135. [Google Scholar]
  • Colak, T., and R. Qahwaji. Automated McIntosh-based classification of sunspot groups using MDI images. Sol. Phys., 248, 277–296, 2008, DOI: 10.1007/s11207-007-9094-3. [Google Scholar]
  • Colak, T., and R. Qahwaji. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef] [Google Scholar]
  • Comon, P., and C. Jutten. Handbook of Blind Source Separation: Independent Component Analysis and Blind Deconvolution. Academic Press, Oxford, 2010. [Google Scholar]
  • Csiszar, I. Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar., 2, 299–318, 1967. [Google Scholar]
  • DeForest, C. On re-sampling of solar images. Sol. Phys., 219 (1), 3–23, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Ding, C., T. Li, and M.I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell., 32 (1), 45–55, 2010. [Google Scholar]
  • Dudok de Wit, T., S. Moussaoui, C. Guennou, F. Auchère, G. Cessateur, M. Kretzschmar, L.A. Vieira, and F.F. Goryaev. Coronal temperature maps from solar EUV images: a blind source separation approach. Sol. Phys., 283, 31–47, 2013, DOI: 10.1007/s11207-012-0142-2. [CrossRef] [Google Scholar]
  • Edelman, A., T.A. Arias, and S.T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20 (2), 303–353, 1998. [CrossRef] [Google Scholar]
  • Falconer, D.A., R.L. Moore, and G.A. Gary. Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J., 689, 1433–1442, 2008, DOI: 10.1086/591045. [NASA ADS] [CrossRef] [Google Scholar]
  • Galluccio, L., O. Michel, P. Comon, M. Kliger, and A.O. HeroIII. Clustering with a new distance measure based on a dual-rooted tree. Inform. Sciences, 251, 96–113, 2013. [CrossRef] [Google Scholar]
  • Georgoulis, M.K., and D.M. Rust. Quantitative forecasting of major solar flares. Astrophys. J. Lett., 661, L109–L112, 2007, DOI: 10.1086/518718. [Google Scholar]
  • Guo, J., H. Zhang, O.V. Chumak, and Y. Liu. A quantitative study on magnetic configuration for active regions. Sol. Phys., 237, 25–43, 2006, DOI: 10.1007/s11207-006-2081-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Győri, L., T. Baranyi, and A. Ludmány. Photospheric data programs at the Debrecen observatory. Proc. Int. Astron. Union, 6 (S273), 403–407, 2010. [CrossRef] [Google Scholar]
  • Hale, G.E., F. Ellerman, S.B. Nicholson, and A.H. Joy. The magnetic polarity of sun-spots. Astrophys. J., 49, 153, 1919, DOI: 10.1086/142452. [CrossRef] [Google Scholar]
  • Hellinger, E. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. Journal für die reine und angewandte Mathematik, 136, 210–271, 1909. [Google Scholar]
  • Higgins, P.A., P.T. Gallagher, R. McAteer, and D.S. Bloomfield. Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res., 47 (12), 2105–2117, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Huang, X., D. Yu, Q. Hu, H. Wang, and Y. Cui. Short-term solar flare prediction using predictor teams. Sol. Phys., 263, 175–184, 2010, DOI: 10.1007/s11207-010-9542-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Jolliffe, I.T. Principal Component Analysis, 2nd ed., Springer-Verlag New York, Inc., New York, 2002. [Google Scholar]
  • Kruskal, J.B., and M. Wish. Multidimensional Scaling, vol. 11, Sage, New York, 1978. [CrossRef] [Google Scholar]
  • Kullback, S., and R.A. Leibler. On information and sufficiency. Ann. Math. Stat., 22, 79–86, 1951. [CrossRef] [Google Scholar]
  • Künzel, H. Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur. Astron. Nachr., 285, 271–271, 1960. [NASA ADS] [CrossRef] [Google Scholar]
  • Langville, A.N., C.D. Meyer, R. Albright, J. Cox, and D. Duling. Initializations for the nonnegative matrix factorization, in Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Citeseer, 2006. [Google Scholar]
  • Lee, D.D., and H.S. Seung. Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems (NIPS), 556–562, 2001. [Google Scholar]
  • Lee, K., Y.-J. Moon, J.-Y. Lee, K.-S. Lee, and H. Na. Solar flare occurrence rate and probability in terms of the sunspot classification supplemented with sunspot area and its changes. Sol. Phys., 281, 639–650, 2012, DOI: 10.1007/s11207-012-0091-9. [CrossRef] [Google Scholar]
  • Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring vs. flare-quiet active regions III: discriminant analysis of a statistically significant database. In American Astronomical Society Meeting Abstracts #204, vol. 36 of Bulletin of the American Astronomical Society, 715, 2004. [Google Scholar]
  • Lin, C.-J. Projected gradient methods for nonnegative matrix factorization. Neural Comput., 19 (10), 2756–2779, 2007. [CrossRef] [Google Scholar]
  • Mayfield, E.B., and J.K. Lawrence. The correlation of solar flare production with magnetic energy in active regions. Sol. Phys., 96, 293–305, 1985, DOI: 10.1007/BF00149685. [CrossRef] [Google Scholar]
  • Mittelman, R., N. Dobigeon, and A. Hero. Hyperspectral image unmixing using a multiresolution sticky HDP. IEEE Trans. Signal Process., 60 (4), 1656–1671, 2012, DOI: 10.1109/TSP.2011.2180718. [CrossRef] [Google Scholar]
  • Moon, K.R., and A.O. HeroIII. Ensemble estimation of multivariate f-divergence, in Information Theory (ISIT), 2014 IEEE International Symposium on, Honolulu, USA, IEEE, 356–360, 2014a. [Google Scholar]
  • Moon, K.R., and A.O. HeroIII. Multivariate f-divergence estimation with confidence. Adv. Neural Inf. Process. Syst., 27, 2420–2428, 2014b. [Google Scholar]
  • Moon, K.R., J.J. Li, V. Delouille, F. Watson, and A.O. HeroIII. Image patch analysis and clustering of sunspots: a dimensionality reduction approach, in IEEE International Conference on Image Processing (ICIP), Paris, France, IEEE, 1623–1627, 2014. [Google Scholar]
  • Moon, K.R., J.J. Li, V. Delouille, R. De Visscher, F. Watson, and A.O. HeroIII. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis. J. Space Weather Space Clim., 2015. [Google Scholar]
  • Moon, T.K., and W.C. Stirling. Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, New York, 2000. [Google Scholar]
  • Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J., 36 (6), 1389–1401, 1957. [Google Scholar]
  • Ramírez, I., and G. Sapiro. An MDL framework for sparse coding and dictionary learning. IEEE Trans. Signal Process., 60 (6), 2913–2927, 2012. [CrossRef] [Google Scholar]
  • Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Assoc., 66 (336), 846–850, 1971. [Google Scholar]
  • Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53–65, 1987. [Google Scholar]
  • Sammis, I., F. Tang, and H. Zirin. The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J., 540, 583–587, 2000, DOI: 10.1086/309303. [Google Scholar]
  • Scherrer, P.H., R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, et al. The solar oscillations investigation – Michelson Doppler imager. Sol. Phys., 162, 129–188, 1995, DOI: 10.1007/BF00733429. [Google Scholar]
  • Schrijver, C.J. A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett., 655, L117–L120, 2007, DOI: 10.1086/511857. [CrossRef] [Google Scholar]
  • Seichepine, N., S. Essid, C. Févotte, and O. Cappé. Soft nonnegative matrix co-factorization. IEEE Trans. Signal Process., 62 (22), 5940–5949, 2014. [CrossRef] [Google Scholar]
  • Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 93, 1591–1595, 1995. [Google Scholar]
  • Song, H., C. Tan, J. Jing, H. Wang, V. Yurchyshyn, and V. Abramenko. Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Sol. Phys., 254, 101–125, 2009, DOI: 10.1007/s11207-008-9288-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Stenning, D.C., T.C.M. Lee, D.A. van Dyk, V. Kashyap, J. Sandell, and C.A. Young. Morphological feature extraction for statistical learning with applications to solar image data. Stat. Anal. Data Min., 6 (4), 329–345, 2013, DOI: 10.1002/sam.11200. [Google Scholar]
  • Stewart, G.W. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev., 15 (4), 727–764, 1973. [CrossRef] [Google Scholar]
  • Warwick, C.S. Sunspot configurations and proton flares. Astrophys. J., 145, 215, 1966, DOI: 10.1086/148755. [Google Scholar]
  • Watson, F.T., L. Fletcher, and S. Marshall. Evolution of sunspot properties during solar cycle 23. Astron. Astrophys., 533, A14, 2011, DOI: 10.1051/0004-6361/201116655. [CrossRef] [EDP Sciences] [Google Scholar]
  • Yaghoobi, M., T. Blumensath, and M.E. Davies. Dictionary learning for sparse approximations with the majorization method, IEEE Trans. Signal Process., 57 (6), 2178–2191, 2009. [CrossRef] [Google Scholar]
  • Yokoya, N., T. Yairi, and A. Iwasaki. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens., 50 (2), 528–537, 2012. [CrossRef] [Google Scholar]
  • Yu, D., X. Huang, H. Wang, Y. Cui, Q. Hu, and R. Zhou. Short-term solar flare level prediction using a Bayesian network approach. Astrophys. J., 710, 869–877, 2010, DOI: 10.1088/0004-637X/710/1/869. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.