Issue
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A19
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2016014
Published online 26 April 2016
  • Afraimovich, E.L., E.I. Astafyeva, V.V. Demyanov, I.K. Edemskiy, N.S. Gavrilyuk, et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim., 3, A27, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Buonsanto, M.J. Ionospheric storms – a review. Space Sci. Rev., 88, 563–601, 1999. [CrossRef] [Google Scholar]
  • Burns, A.G., S.C. Solomon, L. Qian, W. Wamh, B.A. Emery, M. Wiltberger, and D.R. Weimer. The effects of corotating interaction region/high speed stream storms on the thermosphere and ionosphere during the last solar minimum. J. Atmos. Sol. Terr. Phys., 83, 79–87, 2012, DOI: 10.1016/j.jastp.2012.02.006. [CrossRef] [Google Scholar]
  • Drob, D.P., J.T. Emmert, G. Crowley, J.M. Picone, G.G. Shepherd, et al. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res., 113, A12304, 2008, DOI: 10.1029/2008JA013668. [NASA ADS] [CrossRef] [Google Scholar]
  • Hedin, A. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96, 1159–1991. [NASA ADS] [CrossRef] [Google Scholar]
  • Huba, J.D., G. Joyce, and J.A. Fedder. Sami2 is Another Model of the Ionosphere (SAMI2): a new low-latitude ionosphere model. J. Geophys. Res., 105 (A10), 23035–23053, 2000, DOI: 10.1029/2000JA000035. [CrossRef] [Google Scholar]
  • Iijima, B.A., I.L. Harris, C.M. Ho, U.J. Lindqwister, A.J. Mannucci, X. Pi, M.J. Reyes, L.C. Sparks, and B.D. Wilson. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data. J. Atmos. Sol. Terr. Phys., 61, 1205–1218, 1999. [CrossRef] [Google Scholar]
  • Keil, M. Numerical space weather prediction: Can meteorologists forecast the way ahead? In: J. Lilensten, Editor. Space Weather: Research Towards Applications in Europe, Springer, Netherlands, 115–124, 2007. [CrossRef] [Google Scholar]
  • Mannucci, A.J., B.D. Wilson, D.N. Yuan, C.H. Ho, U.J. Lindqwister, and T.F. Runge. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci., 33, 565–582, 1998. [CrossRef] [Google Scholar]
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-range thermosphere-ionosphere storm forecasts. Space Weather, 13, 125–129, 2015, DOI: 1002/2014SW001125. [CrossRef] [Google Scholar]
  • Mendillo, M. Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys, 44, RG4001, 2006, DOI: 10.1029/2005RG000193. [CrossRef] [Google Scholar]
  • Millward, G.H., R.J. Moffett, S. Quegan, and T.J. Fuller-Rowell. A coupled thermosphere ionosphere plasmasphere Model (CTIP). In: R.W. Schunk, Editor. STEP Handbook on Ionospheric Models, Utah State Univ., Logan, 239–279, 1996. [Google Scholar]
  • Newell, P.T., T. Sotirelis, and S. Wing. Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res., 114, A09207, 2009, DOI: 10.1029/2009JA014326. [CrossRef] [Google Scholar]
  • Odstrcil, D. Modeling 3-D solar wind structure. Adv. Space Res., 32, 497–506, 2003, DOI: 10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Pedatella, N.M., and J.M. Forbes. Electrodynamic response of the ionosphere to high-speed solar wind streams. J. Geophys. Res., 116, A12310, 2011, DOI: 10.1029/2011JA017050. [CrossRef] [Google Scholar]
  • Prölss, G.W. Ionospheric F-region storms. In: H. Volland, Editor. Handbook of Atmospheric Electrodynamics, CRC Press, Boca Raton, 195–248, 1995. [Google Scholar]
  • Rawer, K., D. Bilitza, and S. Ramakrishnan. Goals and status of the international reference ionosphere. Rev. Geophys., 16, 177, 1978. [CrossRef] [Google Scholar]
  • Richmond, A.D., E.C. Ridley, and R.G. Roble. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett., 19, 369, 1992, DOI: 10.1029/92GL00401. [CrossRef] [Google Scholar]
  • Ridley, A.J., Y. Deng, and G. Tóth. The global ionosphere-thermosphere model. J. Atmos. Sol. Terr. Phys., 68, 839–864, 2006, DOI: 10.1016/j.jastp.2006.01.008. [CrossRef] [Google Scholar]
  • Riley, P.R., J.A. Linker, and Z. Mikić. On the application of ensemble modeling techniques to improve ambient solar wind models. J. Geophys. Res., 118, 600–607, 2013, DOI: 10.1002/jgra.50156. [CrossRef] [Google Scholar]
  • Roble, R.G., and E.C. Ridley. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett., 21, 417, 1994, DOI: 10.1029/93GL03391. [CrossRef] [Google Scholar]
  • Schunk, R.W., and A.F. Nagy. Ionospheres: Physics, Plasma Physics and Chemistry. Cambridge University Press, NY, 2000. [CrossRef] [Google Scholar]
  • Schunk, R.W., L. Scherliess, J.J. Sojka, D.C. Thompson, D.N. Anderson, et al. Global assimilation of ionospheric measurements (GAIM). Radio Sci., 39, RS1S02, 2004, DOI: 10.1029/2002RS002794. [CrossRef] [Google Scholar]
  • Schunk, R.W., L. Scherliess, J.J. Sojka, D.C. Thompson, L. Zhu. Ionospheric weather forecasting on the horizon. Space Weather, 3, S08007, 2005, DOI: 10.1029/2004SW000138. [CrossRef] [Google Scholar]
  • Schunk, R.W., L. Gardner, L. Scherliess, and L. Zhu. Problems associated with uncertain parameters and missing physics for long-term ionosphere-thermosphere forecasting. Radio Sci., 47, RS0L23, 2012, DOI: 10.1029/2011RS004911. [CrossRef] [Google Scholar]
  • Schunk, R.W., L. Scherliess, V. Eccles, L.C. Gardner, J.J. Sojka, et al. Ensemble modeling with data assimilation models a new strategy for space weather specifications, forecasts, and science. Space Weather, 12, 123–126, 2014, DOI: 10.1002/2014SW001050. [CrossRef] [Google Scholar]
  • Solomon, S.C., A.G. Burns, B.A. Emery, M.G. Mlynczak, L. Qian, W. Wang, D.R. Weimer, and M. Wiltberger. Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere. J. Geophys. Res., 117, A00L11, 2012, DOI: 10.1029/2011JA017417. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, et al. Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res., 111, A07S01, 2006, DOI: 10.1029/2005JA011273. [Google Scholar]
  • van der Holst, B., I.V. Sokolov, X. Meng, M. Jin, I.W.B. Manchester, G. Tóth, and T.I. Gombosi. Alfvén wave solar model (AWSoM): coronal heating. Astrophys. J., 782, 81, 2014, DOI: 10.1088/0004-637X/782/2/81. [NASA ADS] [CrossRef] [Google Scholar]
  • Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res., 110, A05306, 2005a, DOI: 10.1029/2004JA010884. [Google Scholar]
  • Weimer, D.R. Predicting surface geomagnetic variations using ionospheric electrodynamic models. J. Geophys. Res., 110, A12307, 2005b, DOI: 10.1029/2005JA011270. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.