J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A20
Number of page(s) 22
Published online 26 April 2016
  • Akasofu, S.-I. Interplanetary energy flux associated with magnetospheric substorms. Planet. Space Sci., 27, 425–431, 1979, DOI: 10.1016/0032-0633(79)90119-3. [CrossRef] [Google Scholar]
  • Burke, W.J., D.R. Weimer, and N.C. Maynard. Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials. J. Geophys. Res., 104, 9989–9994, 1999, DOI: 10.1029/1999JA900031. [CrossRef] [Google Scholar]
  • Burke, W.J., L.C. Gentile, and M.P. Hagan. Thermospheric heating by high-speed streams in the solar wind. J. Geophys. Res., 115, A06318, 2010, DOI: 10.1029/2009JA014585. [CrossRef] [Google Scholar]
  • Burns, A.G., S.C. Solomon, L. Qian, W. Wang, B.A. Emery, M. Wiltberger, and D.R. Weimer. The effects of corotating interaction region/High speed stream storms on the thermosphere and ionosphere during the last solar minimum. J. Atmos. Sol. Terr. Phys., 83, 79–87, 2012, DOI: 10.1016/j.jastp.2012.02.006. [CrossRef] [Google Scholar]
  • Burton, R.K., R.L. McPherron, and C.T. Russell. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80 (31), 4204–4214, 1975, DOI: 10.1029/JA080i031p04204. [NASA ADS] [CrossRef] [Google Scholar]
  • Chamberlin, P.C., T.N. Woods, and F.G. Eparvier. Flare Irradiance Spectral Model (FISM): daily component algorithms and results. Space Weather, 5, S07005, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Cole, K.D. Joule heating of the upper atmosphere. Australian J. Phys., 15, 223–235, 1961. [CrossRef] [Google Scholar]
  • Deng, Y., and A.J. Ridley. Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity. J. Geophys. Res., 112, A09308, 2007, DOI: 10.1029/2006JA012006. [CrossRef] [Google Scholar]
  • Deng, Y., Y. Huang, J. Lei, A.J. Ridley, R. Lopez, and J. Thayer. Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. J. Geophys. Res., 116, A05303, 2011, DOI: 10.1029/2010JA016201. [Google Scholar]
  • Drob, D.P., J.T. Emmert, G. Crowley, J.M. Picone, G.G. Shepherd, et al. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res., 113, A12304, 2008, DOI: 10.1029/2008JA013668. [NASA ADS] [CrossRef] [Google Scholar]
  • Echer, E., B.T. Tsurutani, and W.D. Gonzalez. Interplanetary origins of moderate (-100 nT < Dst < -50 nT) geomagnetic storms during solar cycle 23 (1996–2008). J. Geophys. Res., 118, 385–392, 2013, DOI: 10.1029/2012JA018086. [CrossRef] [Google Scholar]
  • Emery, B.A., D.S. Evans, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, and W. Xu. The low energy auroral electron and ion hemispheric power after NOAA and DMSP intersatellite adjustments. NCAR technical note, NCAR/TN-470+STR, HAO/NCAR, 2006. [Google Scholar]
  • Emery, B.A., V. Coumans, D.S. Evans, G.A. Germany, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, and W. Xu. Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res., 113, A06311, 2008, DOI: 10.1029/2007JA012866. [Google Scholar]
  • Emery, B.A., I.G. Richardson, D.S. Evans, and F.J. Rich. Solar wind structure sources and periodicities of auroral electron power over three solar cycles. J. Atmos. Sol. Terr. Phys., 71, 1157–1175, 2009, DOI: 10.1016/j.jastp.2008.08.005. [CrossRef] [Google Scholar]
  • Emery, B.A., I.G. Richardson, D.S. Evans, F.J. Rich, and G.R. Wilson. Solar rotational periodicities and semiannual variation in the solar wind, radiation belt, and aurora. Solar Physics, 274, 399–425, 2011, DOI: 10.1007/s11207-011-9758-x. [CrossRef] [Google Scholar]
  • Emery, B.A., R.G. Roble, E.C. Ridley, A.D. Richmond, D.J. Knipp, G. Crowley, D.S. Evans, F.J. Rich, and S. Maeda. Parameterization of the ion convection and the auroral oval in the NCAR thermospheric general circulation models, NCAR technical note, NCAR/TN-491+STR, HAO/NCAR, 2012. [Google Scholar]
  • Foster, J.C., J.M. Holt, R.G. Musgrove, and D.S. Evans. Ionospheric convection associated with discrete levels of particle precipitation. Geophys. Res. Lett., 13, 656, 1986, DOI: 10.1029/GL013i007p00656. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data. J. Geophys. Res., 92, 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [CrossRef] [Google Scholar]
  • Gjerloev, J.W., S. Ohtani, T. Iijima, B. Anderson, J. Slavin, and G. Le. Characteristics of the terrestrial field-aligned current system. Ann. Geophys., 29, 1713–1729, 2011, DOI: 10.5194/angeo-29-1713-2011. [CrossRef] [Google Scholar]
  • Gonzalez, W.D., and B.T. Tsurutani. Criteria of interplanetary parameters causing intense magnetic storms. Planet. Space Sci., 35 (9), 1101–1109, 1987, DOI: 10.1016/0032-0633(87)90015-8. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99, 5771, 1994, DOI: 10.1029/93JA02867. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez, W.D., F.L. Guarnieri, A.L. Clua-Gonzalez, E. Echer, and M.V. Alves. Magnetospheric energetics during HILDCAAs. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM15. [Google Scholar]
  • Guarnieri, F.L. The nature of auroras during high-intensity long-duration continuous AE activity (HILDCAA) events, 1998 to 2001. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM19. [Google Scholar]
  • Hagan, M., K. Häusler, G. Lu, J.M. Forbes, and X. Zhan. Upper thermospheric responses to forcing from above and below during April 1–10, 2010: results from an ensemble of numerical simulations. J. Geophys. Res., 120, 3160–3174, 2015, DOI: 10.1002/2014JA020706. [CrossRef] [Google Scholar]
  • Hajra, R., E. Echer, B.T. Tsurutani, and W.D. Gonzalez. Solar cycle dependence of high-intensity long-duration continuous AE activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res., 118, 5626–5638, 2013, DOI: 10.1002/jgra.50530. [CrossRef] [Google Scholar]
  • Hajra, R., E. Echer, B.T. Tsurutani, and W.D. Gonzalez. Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR-storms during solar cycle 23. J. Geophys. Res., 119, 2675–2690, 2014, DOI: 10.1002/2013JA019646. [Google Scholar]
  • Hardy, D.A., E.G. Holeman, W.J. Burke, L.C. Gentile, and K.H. Bounar. Probability distributions of electron precipitation at high magnetic latitudes. J. Geophys. Res., 113, A06305, 2008, DOI: 10.1029/2007JA012746. [CrossRef] [Google Scholar]
  • Hedin, A. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96, 1159–1172, 1991, DOI: 10.1029/90JA02125. [NASA ADS] [CrossRef] [Google Scholar]
  • Heelis, R.A. Aspects of Coupling Processes in the Ionosphere and Thermosphere. In: J. Huba, R. Schunk, and G. Khazanov, Editors. Modeling the Ionosphere-Thermosphere System, John Wiley & Sons, Ltd, Chichester, UK, 2013, DOI: 10.1002/9781118704417.ch14. [Google Scholar]
  • Henney, C.J., W.A. Toussaint, S.M. White, and C.N. Arge. Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather, 10, S02011, 2012, DOI: 10.1029/2011SW000748. [NASA ADS] [CrossRef] [Google Scholar]
  • Huang, Y., Y. Deng, J. Lei, A. Ridley, R. Lopez, R.C. Allen, and B. MacButler. Comparison of Joule heating associated with high-speed solar wind between different models and observations. J. Atmos. Sol. Terr. Phys., 75–76, 5–14, 2012a, DOI: 10.1016/j.jastp.2011.05.013. [CrossRef] [Google Scholar]
  • Huang, Y., A.D. Richmond, Y. Deng, and R. Roble. Height distribution of Joule heating and its influence on the thermosphere. J. Geophys. Res., 117, A08334, 2012b, DOI: 10.1029/2012JA017885. [CrossRef] [Google Scholar]
  • Huang, C.Y., and W.J. Burke. Transient sheets of field-aligned current observed by DMSP during the main phase of a magnetic superstorm. J. Geophys. Res., 109, A06303, 2004, DOI: 10.1029/2003JA010067. [Google Scholar]
  • Huang, C.Y., Y.-J. Su, E.K. Sutton, D. R.Weimer, and R.L. Davidson. Energy coupling during the August 2011 magnetic storm. J. Geophys. Res., 119, 1219–1232, 2014, DOI: 10.1002/2013JA019297. [CrossRef] [Google Scholar]
  • Kan, J.R., and L.C. Lee. Energy coupling and the solar wind dynamo. Geophys. Res. Lett., 6, 577–580, 1979, DOI: 10.1029/GL006i007p00577. [NASA ADS] [CrossRef] [Google Scholar]
  • Katus, R.M., and M.W. Liemohn. Similarities and differences in low- to middle-latitude geomagnetic indices. J. Geophys. Res., 118, 5149–5156, 2013, DOI: 10.1002/jgra.50501. [CrossRef] [Google Scholar]
  • Kelley, M.C. The Earth’s ionosphere: plasma physics and electrodynamics. 2nd edition, Burlington, MA, USA, Elsevier, 556, 2009. [Google Scholar]
  • Knipp, D.J., W.K. Tobiska, and B.A. Emery. Direct and indirect thermospheric heating sources for the solar cycle 21–23. Solar Physics, 224, 495–505, 2004, DOI: 10.1007/s11207-005-6393-4. [CrossRef] [Google Scholar]
  • Knipp, D.J., T. Welliver, M.G. McHarg, F.K. Chun, W.K. Tobiska, and D. Evans. Climatology of extreme upper atmospheric heating events. Adv. Space Res., 36, 2506–2510, 2005. [CrossRef] [Google Scholar]
  • Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake. Extreme Poynting flux in the dayside thermosphere: examples and statistics. Geophys. Res. Lett., 38, L16102, 2011, DOI: 10.1029/2011GL048302. [CrossRef] [Google Scholar]
  • Korth, H., Y. Zhang, B.J. Anderson, T. Sotirelis, and C.L. Waters. Statistical relationship between largescale upward field-aligned currents and electron precipitation. J. Geophys. Res., 119, 6715–6731, 2014, DOI: 10.1002/2014JA019961. [CrossRef] [Google Scholar]
  • Koskinen, H.E.J., and E. Tanskanen. Magnetospheric energy budget and the epsilon parameter. J. Geophys. Res., 107 (A11), 1415, 2002, DOI: 10.1029/2002JA009283. [CrossRef] [Google Scholar]
  • Kozyra, J.U., G. Crowley, B.A. Emery, X. Fang, G. Maris, et al. Response of the upper/middle atmosphere to coronal holes and powerful high-speed solar wind streams in 2003. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM24. [Google Scholar]
  • Lane, C., A. Acebal, and Y. Zheng. Assessing predictive ability of three auroral precipitation models using DMSP energy flux. Space Weather, 13, 61–71, 2015, DOI: 10.1002/2014SW001085. [CrossRef] [Google Scholar]
  • Liu, H.-L., W. Wang, A.D. Richmond, and R.G. Roble. Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res., 115, A00G01, 2010, DOI: 10.1029/2009JA015188. [Google Scholar]
  • Lu, G. High-speed streams, coronal mass ejections, and interplanetary shocks: a comparative study of geoefectiveness. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM10. [Google Scholar]
  • Lu, G., A.D. Richmond, B.A. Emery, and R.G. Roble. Magnetosphere-ionosphere-thermosphere coupling: effect of neutral winds on energy transfer and field-aligned current. J. Geophys. Res., 100 (A10), 19643–19659, 1995, DOI: 10.1029/95JA00766. [CrossRef] [Google Scholar]
  • Lu, G., M.G. Mlynczak, L.A. Hunt, T.N. Woods, and R.G. Roble. On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J. Geophys. Res., 115, A05306, 2010, DOI: 10.1029/2009JA014662. [Google Scholar]
  • Maeda, S., T.J. Fuller-Rowell, and D.S. Evans. Zonally averaged dynamical and compositional response of the thermosphere to auroral activity during September 18–24, 1984. J. Geophys. Res., 94, 16869–16883, 1989, DOI: 10.1029/JA094iA12p16869. [CrossRef] [Google Scholar]
  • Manchester IV, W.B., B. van der Holst, and B. Lavraud. Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event. Plasma Phys. Control. Fusion, 56 (6), 064006, 2014. [CrossRef] [Google Scholar]
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-Range Thermosphere-Ionosphere Storm Forecasts. Space Weather, 13, 125–129, 2015, DOI: 10.1002/2014SW001125. [CrossRef] [Google Scholar]
  • McHarg, M., F. Chun, D. Knipp, G. Lu, B. Emery, and A. Ridley. High-latitude Joule heating response to IMF inputs. J. Geophys. Res., 110, A08309, 2005, DOI: 10.1029/2004JA010949. [CrossRef] [Google Scholar]
  • Mlynczak, M., F.J. Martin-Torres, J.M. Russell, K. Beaumont, S. Jacobson, et al. The natural thermostat of nitric oxide emission at 5.3 mm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett., 30, 2100, 2003, DOI: 10.1029/2003GL017693. [CrossRef] [Google Scholar]
  • Mlynczak, M.G., F.J. Martin-Torres, C.J. Mertens, B.T. Marshall, R.E. Thompson, et al. Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere. Geophys. Res. Lett., 35, L05808, 2008, DOI: 10.1029/2007GL032620. [CrossRef] [Google Scholar]
  • Mlynczak, M.G., L.A. Hunt, B.T. Marshall, F.J. Martin-Torres, C.J. Mertens, et al. Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res., 115, A03309, 2010a, DOI: 10.1029/2009JA014713. [CrossRef] [Google Scholar]
  • Mlynczak, M.G., L.A. Hunt, J.U. Kozyra, and J.M. Russell III. Short-term periodic features observed in the infrared cooling of the thermosphere and in solar and geomagnetic indexes from 2002 to 2009. Proc. R. Soc. A, 466, 3409–3419, 2010b, DOI: 10.1098/rspa.2010.0077. [CrossRef] [Google Scholar]
  • Newell, P.T., T. Sotirelis, K. Liou, C.-I. Meng, and F.J. Rich. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res., 112, A01206, 2007, DOI: 10.1029/2006JA012015. [Google Scholar]
  • Newell, P.T., T. Sotirelis, and S. Wing. Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res., 114, A09207, 2009, DOI: 10.1029/2009JA014326. [CrossRef] [Google Scholar]
  • Ohtani, S., S. Wing, P.T. Newell, and T. Higuchi. Locations of night-side precipitation boundaries relative to R2 and R1 currents. J. Geophys. Res., 115, A10233, 2010, DOI: 10.1029/2010JA015444. [Google Scholar]
  • Pawlowsky, D.J., and A.J. Ridley. Quantifying the effect of thermospheric parameterization in a global model. J. Atmos. Sol. Terr. Phys., 71, 2017–2026, 2009, DOI: 10.1016/j.jastp.2009.09.007. [CrossRef] [Google Scholar]
  • Perreault, P., and S.-I. Akasofu. A study of geomagnetic storm. Geophys. J. Int., 54, 547–573, 1978. [NASA ADS] [CrossRef] [Google Scholar]
  • Richmond, A.D. On the ionospheric application of Poynting’s theorem. J. Geophys. Res., 115, A10311, 2010, DOI: 10.1029/2010JA015768. [CrossRef] [Google Scholar]
  • Richmond, A., and Y. Kamide. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: technique. J. Geophys. Res., 93, 5741–5759, 1988, DOI: 10.1029/JA093iA06p05741. [CrossRef] [Google Scholar]
  • Ridley, A.J., and E.A. Kihn. Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophys. Res. Lett., 31, L07801, 2004, DOI: 10.1029/2003GL019113. [CrossRef] [Google Scholar]
  • Ridley, A.J., Y. Deng, and G. Toth. The global ionosphere-thermosphere model. J. Atmos. Sol. Terr. Phys., 68, 839–864, 2006, DOI: 10.1016/j.jastp.2006.01.008. [CrossRef] [Google Scholar]
  • Smith, E.J., and J.H. Wolfe. Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett., 3, 137–140, 1976, DOI: 10.1029/GL003i003p00137. [NASA ADS] [CrossRef] [Google Scholar]
  • Thayer, J.P., and J. Semeter. The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Sol. Terr. Phys., 66, 807–824, 2004, DOI: 10.1016/j.jastp.2004.01.035. [CrossRef] [Google Scholar]
  • Thayer, J.P., J.F. Vickrey, R.A. Heelis, and J.B. Gary. Interpretation and modeling of the high-latitude electromagnetic energy flux. J. Geophys. Res., 100 (A10), 19715–19728, 1995, DOI: 10.1029/95JA01159. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez. The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet. Space Sci., 35, 405, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, and M. Okada. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res., 100, 21717–21733, 1995, DOI: 10.1029/95JA01476. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, et al. Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res., 111, A07S01, 2006. DOI: 10.1029/2005JA011273 [Google Scholar]
  • Turner, N.E., W.D. Cramer, S.K. Earles, and B.A. Emery. Geoefficiency and energy partitioning in CIR-driven and CME-driven storms. J. Atmos. Sol. Terr. Phys., 71, 1023–1031, 2009, DOI: 10.1016/j.jastp.2009.02.005. [CrossRef] [Google Scholar]
  • Verkhoglyadova, O.P., B.T. Tsurutani, A.J. Mannucci, M.G. Mlynczak, L.A. Hunt, A. Komjathy, and T. Runge. Ionospheric VTEC and thermospheric infrared emission dynamics during corotating interaction region and high-speed stream intervals at solar minimum: 25 March to 26 April 2008. J. Geophys. Res., 116, A09325, 2011, DOI: 10.1029/2011JA016604. [CrossRef] [Google Scholar]
  • Verkhoglyadova, O.P., B.T. Tsurutani, A.J. Mannucci, M.G. Mlynczak, L.A. Hunt, and T. Runge. Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers. Ann. Geophys., 31, 263–276, 2013, DOI: 10.5194/angeo-31-263-2013. [CrossRef] [Google Scholar]
  • Verkhoglyadova, O.P., A.J. Mannucci, B.T. Tsurutani, M.G. Mlynczak, L.A. Hunt, R.J. Redmon, and J.C. Green. Localized thermosphere ionization events during the high-speed stream interval of 29 April to 5 May 2011. J. Geophys. Res. [Space Phys.], 120, 675–696, 2015, DOI: 10.1002/2014JA020535. [CrossRef] [Google Scholar]
  • Vichare, G., A. Ridley, and E. Yigit. Quiet-time low latitude ionospheric electrodynamics in the non-hydrostatic Global Ionosphere-Thermosphere Model. J. Atmos. Sol. Terr. Phys., 90, 161–172, 2012, DOI: 10.1016/j.jastp.2012.01.009. [CrossRef] [Google Scholar]
  • Vourlidas, A. Mission to the Sun-Earth L5 Lagrangian point: an optimal platform for space weather research. Space Weather, 13, 197–201, 2015, DOI: 10.1002/2015SW001173. [CrossRef] [Google Scholar]
  • Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res., 110, A05306, 2005, DOI: 10.1029/2004JA010884. [Google Scholar]
  • Zhang, Y., and L.J. Paxton. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol. Terr. Phys. 70, 1231–1242, 2008, DOI: 10.1016/j.jastp.2008.03.008. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.