Issue
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A20
Number of page(s) 22
DOI https://doi.org/10.1051/swsc/2016013
Published online 26 April 2016
  • Akasofu, S.-I. Interplanetary energy flux associated with magnetospheric substorms. Planet. Space Sci., 27, 425–431, 1979, DOI: 10.1016/0032-0633(79)90119-3. [CrossRef]
  • Burke, W.J., D.R. Weimer, and N.C. Maynard. Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials. J. Geophys. Res., 104, 9989–9994, 1999, DOI: 10.1029/1999JA900031. [CrossRef]
  • Burke, W.J., L.C. Gentile, and M.P. Hagan. Thermospheric heating by high-speed streams in the solar wind. J. Geophys. Res., 115, A06318, 2010, DOI: 10.1029/2009JA014585. [CrossRef]
  • Burns, A.G., S.C. Solomon, L. Qian, W. Wang, B.A. Emery, M. Wiltberger, and D.R. Weimer. The effects of corotating interaction region/High speed stream storms on the thermosphere and ionosphere during the last solar minimum. J. Atmos. Sol. Terr. Phys., 83, 79–87, 2012, DOI: 10.1016/j.jastp.2012.02.006. [CrossRef]
  • Burton, R.K., R.L. McPherron, and C.T. Russell. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80 (31), 4204–4214, 1975, DOI: 10.1029/JA080i031p04204. [NASA ADS] [CrossRef]
  • Chamberlin, P.C., T.N. Woods, and F.G. Eparvier. Flare Irradiance Spectral Model (FISM): daily component algorithms and results. Space Weather, 5, S07005, 2007. [NASA ADS] [CrossRef]
  • Cole, K.D. Joule heating of the upper atmosphere. Australian J. Phys., 15, 223–235, 1961. [CrossRef]
  • Deng, Y., and A.J. Ridley. Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity. J. Geophys. Res., 112, A09308, 2007, DOI: 10.1029/2006JA012006. [CrossRef]
  • Deng, Y., Y. Huang, J. Lei, A.J. Ridley, R. Lopez, and J. Thayer. Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. J. Geophys. Res., 116, A05303, 2011, DOI: 10.1029/2010JA016201.
  • Drob, D.P., J.T. Emmert, G. Crowley, J.M. Picone, G.G. Shepherd, et al. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res., 113, A12304, 2008, DOI: 10.1029/2008JA013668. [NASA ADS] [CrossRef]
  • Echer, E., B.T. Tsurutani, and W.D. Gonzalez. Interplanetary origins of moderate (-100 nT < Dst < -50 nT) geomagnetic storms during solar cycle 23 (1996–2008). J. Geophys. Res., 118, 385–392, 2013, DOI: 10.1029/2012JA018086. [CrossRef]
  • Emery, B.A., D.S. Evans, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, and W. Xu. The low energy auroral electron and ion hemispheric power after NOAA and DMSP intersatellite adjustments. NCAR technical note, NCAR/TN-470+STR, HAO/NCAR, 2006.
  • Emery, B.A., V. Coumans, D.S. Evans, G.A. Germany, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, and W. Xu. Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res., 113, A06311, 2008, DOI: 10.1029/2007JA012866.
  • Emery, B.A., I.G. Richardson, D.S. Evans, and F.J. Rich. Solar wind structure sources and periodicities of auroral electron power over three solar cycles. J. Atmos. Sol. Terr. Phys., 71, 1157–1175, 2009, DOI: 10.1016/j.jastp.2008.08.005. [CrossRef]
  • Emery, B.A., I.G. Richardson, D.S. Evans, F.J. Rich, and G.R. Wilson. Solar rotational periodicities and semiannual variation in the solar wind, radiation belt, and aurora. Solar Physics, 274, 399–425, 2011, DOI: 10.1007/s11207-011-9758-x. [CrossRef]
  • Emery, B.A., R.G. Roble, E.C. Ridley, A.D. Richmond, D.J. Knipp, G. Crowley, D.S. Evans, F.J. Rich, and S. Maeda. Parameterization of the ion convection and the auroral oval in the NCAR thermospheric general circulation models, NCAR technical note, NCAR/TN-491+STR, HAO/NCAR, 2012.
  • Foster, J.C., J.M. Holt, R.G. Musgrove, and D.S. Evans. Ionospheric convection associated with discrete levels of particle precipitation. Geophys. Res. Lett., 13, 656, 1986, DOI: 10.1029/GL013i007p00656. [CrossRef]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data. J. Geophys. Res., 92, 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [CrossRef]
  • Gjerloev, J.W., S. Ohtani, T. Iijima, B. Anderson, J. Slavin, and G. Le. Characteristics of the terrestrial field-aligned current system. Ann. Geophys., 29, 1713–1729, 2011, DOI: 10.5194/angeo-29-1713-2011. [CrossRef]
  • Gonzalez, W.D., and B.T. Tsurutani. Criteria of interplanetary parameters causing intense magnetic storms. Planet. Space Sci., 35 (9), 1101–1109, 1987, DOI: 10.1016/0032-0633(87)90015-8. [NASA ADS] [CrossRef]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99, 5771, 1994, DOI: 10.1029/93JA02867. [NASA ADS] [CrossRef]
  • Gonzalez, W.D., F.L. Guarnieri, A.L. Clua-Gonzalez, E. Echer, and M.V. Alves. Magnetospheric energetics during HILDCAAs. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM15.
  • Guarnieri, F.L. The nature of auroras during high-intensity long-duration continuous AE activity (HILDCAA) events, 1998 to 2001. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM19.
  • Hagan, M., K. Häusler, G. Lu, J.M. Forbes, and X. Zhan. Upper thermospheric responses to forcing from above and below during April 1–10, 2010: results from an ensemble of numerical simulations. J. Geophys. Res., 120, 3160–3174, 2015, DOI: 10.1002/2014JA020706. [CrossRef]
  • Hajra, R., E. Echer, B.T. Tsurutani, and W.D. Gonzalez. Solar cycle dependence of high-intensity long-duration continuous AE activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res., 118, 5626–5638, 2013, DOI: 10.1002/jgra.50530. [CrossRef]
  • Hajra, R., E. Echer, B.T. Tsurutani, and W.D. Gonzalez. Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR-storms during solar cycle 23. J. Geophys. Res., 119, 2675–2690, 2014, DOI: 10.1002/2013JA019646.
  • Hardy, D.A., E.G. Holeman, W.J. Burke, L.C. Gentile, and K.H. Bounar. Probability distributions of electron precipitation at high magnetic latitudes. J. Geophys. Res., 113, A06305, 2008, DOI: 10.1029/2007JA012746. [CrossRef]
  • Hedin, A. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96, 1159–1172, 1991, DOI: 10.1029/90JA02125. [NASA ADS] [CrossRef]
  • Heelis, R.A. Aspects of Coupling Processes in the Ionosphere and Thermosphere. In: J. Huba, R. Schunk, and G. Khazanov, Editors. Modeling the Ionosphere-Thermosphere System, John Wiley & Sons, Ltd, Chichester, UK, 2013, DOI: 10.1002/9781118704417.ch14.
  • Henney, C.J., W.A. Toussaint, S.M. White, and C.N. Arge. Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather, 10, S02011, 2012, DOI: 10.1029/2011SW000748. [NASA ADS] [CrossRef]
  • Huang, Y., Y. Deng, J. Lei, A. Ridley, R. Lopez, R.C. Allen, and B. MacButler. Comparison of Joule heating associated with high-speed solar wind between different models and observations. J. Atmos. Sol. Terr. Phys., 75–76, 5–14, 2012a, DOI: 10.1016/j.jastp.2011.05.013. [CrossRef]
  • Huang, Y., A.D. Richmond, Y. Deng, and R. Roble. Height distribution of Joule heating and its influence on the thermosphere. J. Geophys. Res., 117, A08334, 2012b, DOI: 10.1029/2012JA017885. [CrossRef]
  • Huang, C.Y., and W.J. Burke. Transient sheets of field-aligned current observed by DMSP during the main phase of a magnetic superstorm. J. Geophys. Res., 109, A06303, 2004, DOI: 10.1029/2003JA010067.
  • Huang, C.Y., Y.-J. Su, E.K. Sutton, D. R.Weimer, and R.L. Davidson. Energy coupling during the August 2011 magnetic storm. J. Geophys. Res., 119, 1219–1232, 2014, DOI: 10.1002/2013JA019297. [CrossRef]
  • Kan, J.R., and L.C. Lee. Energy coupling and the solar wind dynamo. Geophys. Res. Lett., 6, 577–580, 1979, DOI: 10.1029/GL006i007p00577. [NASA ADS] [CrossRef]
  • Katus, R.M., and M.W. Liemohn. Similarities and differences in low- to middle-latitude geomagnetic indices. J. Geophys. Res., 118, 5149–5156, 2013, DOI: 10.1002/jgra.50501. [CrossRef]
  • Kelley, M.C. The Earth’s ionosphere: plasma physics and electrodynamics. 2nd edition, Burlington, MA, USA, Elsevier, 556, 2009.
  • Knipp, D.J., W.K. Tobiska, and B.A. Emery. Direct and indirect thermospheric heating sources for the solar cycle 21–23. Solar Physics, 224, 495–505, 2004, DOI: 10.1007/s11207-005-6393-4. [CrossRef]
  • Knipp, D.J., T. Welliver, M.G. McHarg, F.K. Chun, W.K. Tobiska, and D. Evans. Climatology of extreme upper atmospheric heating events. Adv. Space Res., 36, 2506–2510, 2005. [CrossRef]
  • Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake. Extreme Poynting flux in the dayside thermosphere: examples and statistics. Geophys. Res. Lett., 38, L16102, 2011, DOI: 10.1029/2011GL048302. [CrossRef]
  • Korth, H., Y. Zhang, B.J. Anderson, T. Sotirelis, and C.L. Waters. Statistical relationship between largescale upward field-aligned currents and electron precipitation. J. Geophys. Res., 119, 6715–6731, 2014, DOI: 10.1002/2014JA019961. [CrossRef]
  • Koskinen, H.E.J., and E. Tanskanen. Magnetospheric energy budget and the epsilon parameter. J. Geophys. Res., 107 (A11), 1415, 2002, DOI: 10.1029/2002JA009283. [CrossRef]
  • Kozyra, J.U., G. Crowley, B.A. Emery, X. Fang, G. Maris, et al. Response of the upper/middle atmosphere to coronal holes and powerful high-speed solar wind streams in 2003. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM24.
  • Lane, C., A. Acebal, and Y. Zheng. Assessing predictive ability of three auroral precipitation models using DMSP energy flux. Space Weather, 13, 61–71, 2015, DOI: 10.1002/2014SW001085. [CrossRef]
  • Liu, H.-L., W. Wang, A.D. Richmond, and R.G. Roble. Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res., 115, A00G01, 2010, DOI: 10.1029/2009JA015188.
  • Lu, G. High-speed streams, coronal mass ejections, and interplanetary shocks: a comparative study of geoefectiveness. In: B. Tsurutani, R. McPherron, G. Lu, J.H.A. Sobral, and N. Gopalswamy, Editors. Recurrent Magnetic Storms: Corotating Solar Wind Streams, American Geophysical Union, Washington, DC, 2006, DOI: 10.1029/167GM10.
  • Lu, G., A.D. Richmond, B.A. Emery, and R.G. Roble. Magnetosphere-ionosphere-thermosphere coupling: effect of neutral winds on energy transfer and field-aligned current. J. Geophys. Res., 100 (A10), 19643–19659, 1995, DOI: 10.1029/95JA00766. [CrossRef]
  • Lu, G., M.G. Mlynczak, L.A. Hunt, T.N. Woods, and R.G. Roble. On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J. Geophys. Res., 115, A05306, 2010, DOI: 10.1029/2009JA014662.
  • Maeda, S., T.J. Fuller-Rowell, and D.S. Evans. Zonally averaged dynamical and compositional response of the thermosphere to auroral activity during September 18–24, 1984. J. Geophys. Res., 94, 16869–16883, 1989, DOI: 10.1029/JA094iA12p16869. [CrossRef]
  • Manchester IV, W.B., B. van der Holst, and B. Lavraud. Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event. Plasma Phys. Control. Fusion, 56 (6), 064006, 2014. [CrossRef]
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-Range Thermosphere-Ionosphere Storm Forecasts. Space Weather, 13, 125–129, 2015, DOI: 10.1002/2014SW001125. [CrossRef]
  • McHarg, M., F. Chun, D. Knipp, G. Lu, B. Emery, and A. Ridley. High-latitude Joule heating response to IMF inputs. J. Geophys. Res., 110, A08309, 2005, DOI: 10.1029/2004JA010949. [CrossRef]
  • Mlynczak, M., F.J. Martin-Torres, J.M. Russell, K. Beaumont, S. Jacobson, et al. The natural thermostat of nitric oxide emission at 5.3 mm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett., 30, 2100, 2003, DOI: 10.1029/2003GL017693. [CrossRef]
  • Mlynczak, M.G., F.J. Martin-Torres, C.J. Mertens, B.T. Marshall, R.E. Thompson, et al. Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere. Geophys. Res. Lett., 35, L05808, 2008, DOI: 10.1029/2007GL032620. [CrossRef]
  • Mlynczak, M.G., L.A. Hunt, B.T. Marshall, F.J. Martin-Torres, C.J. Mertens, et al. Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res., 115, A03309, 2010a, DOI: 10.1029/2009JA014713. [CrossRef]
  • Mlynczak, M.G., L.A. Hunt, J.U. Kozyra, and J.M. Russell III. Short-term periodic features observed in the infrared cooling of the thermosphere and in solar and geomagnetic indexes from 2002 to 2009. Proc. R. Soc. A, 466, 3409–3419, 2010b, DOI: 10.1098/rspa.2010.0077. [CrossRef]
  • Newell, P.T., T. Sotirelis, K. Liou, C.-I. Meng, and F.J. Rich. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res., 112, A01206, 2007, DOI: 10.1029/2006JA012015.
  • Newell, P.T., T. Sotirelis, and S. Wing. Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res., 114, A09207, 2009, DOI: 10.1029/2009JA014326. [CrossRef]
  • Ohtani, S., S. Wing, P.T. Newell, and T. Higuchi. Locations of night-side precipitation boundaries relative to R2 and R1 currents. J. Geophys. Res., 115, A10233, 2010, DOI: 10.1029/2010JA015444.
  • Pawlowsky, D.J., and A.J. Ridley. Quantifying the effect of thermospheric parameterization in a global model. J. Atmos. Sol. Terr. Phys., 71, 2017–2026, 2009, DOI: 10.1016/j.jastp.2009.09.007. [CrossRef]
  • Perreault, P., and S.-I. Akasofu. A study of geomagnetic storm. Geophys. J. Int., 54, 547–573, 1978. [NASA ADS] [CrossRef]
  • Richmond, A.D. On the ionospheric application of Poynting’s theorem. J. Geophys. Res., 115, A10311, 2010, DOI: 10.1029/2010JA015768. [CrossRef]
  • Richmond, A., and Y. Kamide. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: technique. J. Geophys. Res., 93, 5741–5759, 1988, DOI: 10.1029/JA093iA06p05741. [CrossRef]
  • Ridley, A.J., and E.A. Kihn. Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophys. Res. Lett., 31, L07801, 2004, DOI: 10.1029/2003GL019113. [CrossRef]
  • Ridley, A.J., Y. Deng, and G. Toth. The global ionosphere-thermosphere model. J. Atmos. Sol. Terr. Phys., 68, 839–864, 2006, DOI: 10.1016/j.jastp.2006.01.008. [CrossRef]
  • Smith, E.J., and J.H. Wolfe. Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett., 3, 137–140, 1976, DOI: 10.1029/GL003i003p00137. [NASA ADS] [CrossRef]
  • Thayer, J.P., and J. Semeter. The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Sol. Terr. Phys., 66, 807–824, 2004, DOI: 10.1016/j.jastp.2004.01.035. [CrossRef]
  • Thayer, J.P., J.F. Vickrey, R.A. Heelis, and J.B. Gary. Interpretation and modeling of the high-latitude electromagnetic energy flux. J. Geophys. Res., 100 (A10), 19715–19728, 1995, DOI: 10.1029/95JA01159. [CrossRef]
  • Tsurutani, B.T., and W.D. Gonzalez. The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet. Space Sci., 35, 405, 1987. [NASA ADS] [CrossRef]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, and M. Okada. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res., 100, 21717–21733, 1995, DOI: 10.1029/95JA01476. [NASA ADS] [CrossRef]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, et al. Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res., 111, A07S01, 2006. DOI: 10.1029/2005JA011273
  • Turner, N.E., W.D. Cramer, S.K. Earles, and B.A. Emery. Geoefficiency and energy partitioning in CIR-driven and CME-driven storms. J. Atmos. Sol. Terr. Phys., 71, 1023–1031, 2009, DOI: 10.1016/j.jastp.2009.02.005. [CrossRef]
  • Verkhoglyadova, O.P., B.T. Tsurutani, A.J. Mannucci, M.G. Mlynczak, L.A. Hunt, A. Komjathy, and T. Runge. Ionospheric VTEC and thermospheric infrared emission dynamics during corotating interaction region and high-speed stream intervals at solar minimum: 25 March to 26 April 2008. J. Geophys. Res., 116, A09325, 2011, DOI: 10.1029/2011JA016604. [CrossRef]
  • Verkhoglyadova, O.P., B.T. Tsurutani, A.J. Mannucci, M.G. Mlynczak, L.A. Hunt, and T. Runge. Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers. Ann. Geophys., 31, 263–276, 2013, DOI: 10.5194/angeo-31-263-2013. [CrossRef]
  • Verkhoglyadova, O.P., A.J. Mannucci, B.T. Tsurutani, M.G. Mlynczak, L.A. Hunt, R.J. Redmon, and J.C. Green. Localized thermosphere ionization events during the high-speed stream interval of 29 April to 5 May 2011. J. Geophys. Res. [Space Phys.], 120, 675–696, 2015, DOI: 10.1002/2014JA020535. [CrossRef]
  • Vichare, G., A. Ridley, and E. Yigit. Quiet-time low latitude ionospheric electrodynamics in the non-hydrostatic Global Ionosphere-Thermosphere Model. J. Atmos. Sol. Terr. Phys., 90, 161–172, 2012, DOI: 10.1016/j.jastp.2012.01.009. [CrossRef]
  • Vourlidas, A. Mission to the Sun-Earth L5 Lagrangian point: an optimal platform for space weather research. Space Weather, 13, 197–201, 2015, DOI: 10.1002/2015SW001173. [CrossRef]
  • Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res., 110, A05306, 2005, DOI: 10.1029/2004JA010884.
  • Zhang, Y., and L.J. Paxton. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol. Terr. Phys. 70, 1231–1242, 2008, DOI: 10.1016/j.jastp.2008.03.008. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.