Open Access
Issue
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A15
Number of page(s) 7
DOI https://doi.org/10.1051/swsc/2016011
Published online 04 March 2016
  • Alanko-Huotari, K., K. Mursula, I.G. Usoskin, and G.A. Kovaltsov. Global heliospheric parameters and cosmic-ray modulation: an empirical relation for the last decades. Sol. Phys., 238, 391–404, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Alanko-Huotari, K., I.G. Usoskin, K. Mursula, and G.A. Kovaltsov. Cyclic variations of the heliospheric tilt angle and cosmic ray modulation. Adv. Space Res., 40, 1064–1069, 2007. [CrossRef] [Google Scholar]
  • Beer, J., K. McCracken, and R. von Steiger. Cosmogenic radionuclides. Springer-Verlag, Berlin Heidelberg, 2012. [CrossRef] [Google Scholar]
  • Belov, A. Large scale modulation: view from the Earth. Space Sci. Rev., 93, 79–105, 2000. [CrossRef] [Google Scholar]
  • Belov, A.V., R.T. Gushchina, V.N. Obridko, B.D. Shelting, and V.G. Yanke. Long-term variations of galactic cosmic rays in the past and future from observations of various solar activity characteristics. J. Atmos. Sol. Terr. Phys., 68, 1161–1166, 2006. [CrossRef] [Google Scholar]
  • Berggren, A.-M., J. Beer, G. Possnert, A. Aldahan, P. Kubik, M. Christl, S.J. Johnsen, J. Abreu, and B.M. Vinther. A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophys. Res. Lett., 36, L11801, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., F.B. McDonald, and N.F. Ness. Cosmic ray modulation and the distant heliospheric magnetic field – Voyager 1 and 2 observations from 1986 to 1989. J. Geophys. Res., 98, 1–11, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Caballero-Lopez, R.A., and H. Moraal. Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res., 109, A01101, 2004. [Google Scholar]
  • Cliver, E.W. The shapes of galactic cosmic ray intensity maxima and the evolution of the heliospheric current sheet. J. Geophys. Res., 98, 17435–17442, 1993. [CrossRef] [Google Scholar]
  • Cliver, E.W., and A.G. Ling. 22 year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophys. J. Lett., 551, L189–L192, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Cliver, E.W., I.G. Richardson, and A.G. Ling. Solar drivers of 11-yr and long-term cosmic ray modulation. Space Sci. Rev., 176, 3–19, 2013. [CrossRef] [Google Scholar]
  • Dorman, L. Cosmic ray interactions, propagation, and acceleration in space plasmas, vol. 339, Springer, Dordrecht, The Netherlands, 2006. [Google Scholar]
  • Ferreira, S.E.S., and M.S. Potgieter. Long-term cosmic-ray modulation in the heliosphere. Astrophys. J., 603, 744–752, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Gleeson, L.J., and W.I. Axford. Solar modulation of galactic cosmic rays. Astrophys. J., 154, 1011, 1968, DOI: 10.1086/149822. [NASA ADS] [CrossRef] [Google Scholar]
  • Hathaway, D.H. The solar cycle. Living Rev. Sol. Phys., 7, 1, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Hattingh, M., and R.A. Burger. Some properties of a fully three-dimensional drift model for the modulation of galactic cosmic rays. International Cosmic Ray Conference, 4, 337, 1995. [Google Scholar]
  • Hoeksema, J.T. Large-scale solar and heliospheric magnetic fields. Adv. Space Res., 11, 15–24, 1991. [NASA ADS] [CrossRef] [Google Scholar]
  • Jokipii, J.R., and B. Thomas. Effects of drift on the transport of cosmic rays. IV – Modulation by a wavy interplanetary current sheet. Astrophys. J., 243, 1115–1122, 1981. [NASA ADS] [CrossRef] [Google Scholar]
  • Kota, J., and J.R. Jokipii. Effects of drift on the transport of cosmic rays. VI – A three-dimensional model including diffusion. Astrophys. J., 265, 573–581, 1983. [NASA ADS] [CrossRef] [Google Scholar]
  • Kovaltsov, G.A., and I.G. Usoskin. A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere. Earth Planet. Sci. Lett., 291, 182–188, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Kovaltsov, G.A., A. Mishev, and I.G. Usoskin. A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth Planet. Sci. Lett., 337, 114–120, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Krymskij, G.F. Modulation of cosmic rays in interplanetary space, Nauka, Moskva, 152, 1969. [Google Scholar]
  • Kta, J., and J.R. Jokipii. Cosmic ray transport in a heliospheric magnetic field with non-polar coronal holes. Space Sci. Rev., 97, 327–330, 2001. [CrossRef] [Google Scholar]
  • Lockwood, M., and M.J. Owens. Centennial variations in sunspot number, open solar flux and streamer belt width: 3. Modeling. J. Geophys. Res., 119, 5193–5209, 2014. [CrossRef] [Google Scholar]
  • Lockwood, M., L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P. Rouillard, and C.J. Davis. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 1: a new geomagnetic data composite. Ann. Geophys., 31, 1957–1977, 2013a. [CrossRef] [Google Scholar]
  • Lockwood, M., L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P. Rouillard, and C.J. Davis. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 2: a new reconstruction of the interplanetary magnetic field. Ann. Geophys., 31, 1979–1992, 2013b. [NASA ADS] [CrossRef] [Google Scholar]
  • Lockwood, M., H. Nevanlinna, L. Barnard, M.J. Owens, R.G. Harrison, A.P. Rouillard, and C.J. Scott. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 4: near-Earth solar wind speed, IMF, and open solar flux. Ann. Geophys., 32, 383–399, 2014a. [NASA ADS] [CrossRef] [Google Scholar]
  • Lockwood, M., H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, et al. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 3: improved representation of solar cycle 11. Ann. Geophys., 32, 367–381, 2014b. [CrossRef] [Google Scholar]
  • Lopate, C., and J.A. Simpson. The physics of cosmic ray modulation – heliospheric propagation during the 1987 minimum. J. Geophys. Res., 96, 15877, 1991. [CrossRef] [Google Scholar]
  • McCracken, K.G., and J. Beer. Comparison of the extended solar minimum of 2006–2009 with the Spoerer, Maunder, and Dalton Grand Minima in solar activity in the past. J. Geophys. Res., 119, 2379–2387, 2014. [CrossRef] [Google Scholar]
  • Mursula, K., I.G. Usoskin, and G.A. Kovaltsov. Reconstructing the long-term cosmic ray intensity: linear relations do not work. Ann. Geophys., 21, 863–867, 2003. [CrossRef] [Google Scholar]
  • Parker, E.N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 13, 9–49, 1965. [NASA ADS] [CrossRef] [Google Scholar]
  • Pedro, J., T. van Ommen, M. Curran, V. Morgan, A. Smith, and A. McMorrow. Evidence for climate modulation of the 10Be solar activity proxy. J. Geophys. Res., 111, D21105, 2006. [CrossRef] [Google Scholar]
  • Pedro, J.B., U.E. Heikkil, A. Klekociuk, A.M. Smith, T.D. van Ommen, and M.A.J. Curran. Beryllium-10 transport to Antarctica: results from seasonally resolved observations and modeling. J. Geophys. Res., 116, D23120, 2011. [CrossRef] [Google Scholar]
  • Pishkalo, M.I. Reconstruction of the heliospheric current sheet tilts using sunspot numbers. Sol. Phys., 233, 277–290, 2006. [CrossRef] [Google Scholar]
  • Potgieter, M. Solar modulation of cosmic rays. Living Rev. Sol. Phys., 10, 3, 2013, DOI: 10.12942/lrsp-2013-3. [CrossRef] [Google Scholar]
  • Potgieter, M.S., and J.A. Le Roux. The simulated features of heliospheric cosmic-ray modulation with a time-dependent drift model. I – General effects of the changing neutral sheet over the period 1985–1990. Astrophys. J., 386, 336–346, 1992. [CrossRef] [Google Scholar]
  • Potgieter, M.S., R.A. Burger, and S.E.S. Ferreira. Modulation of cosmic rays in the heliosphere from solar minimum to maximum: a theoretical perspective. Space Sci. Rev., 97, 295–307, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Roth, R., and F. Joos. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties. Climate of the Past, 9, 1879–1909, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Sabbah, I., and M. Rybansk. Galactic cosmic ray modulation during the last five solar cycles. J. Geophys. Res., 111, A01105, 2006. [CrossRef] [Google Scholar]
  • Solanki, S.K., I.G. Usoskin, B. Kromer, M. Schssler, and J. Beer. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 431, 1084–1087, 2004. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Stozhkov, Y.I., V.P. Okhlopkov, and N.S. Svirzhevsky. Cosmic ray fluxes in present and past times. Sol. Phys., 224, 323–333, 2004. [CrossRef] [Google Scholar]
  • Suess, S.T., D.J. McComas, and J.T. Hoeksema. Prediction of the heliospheric current sheet tilt – 1992–1996. Geophys. Res. Lett., 20, 161–164, 1993. [CrossRef] [Google Scholar]
  • Sun, X., J.T. Hoeksema, Y. Liu, and J. Zhao. On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J., 798, 114, 2015. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin, I.G. A history of solar activity over millennia. Living Rev. Sol. Phys., 10, 1, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin, I.G., K. Mursula, S.K. Solanki, M. Schssler, and G.A. Kovaltsov. A physical reconstruction of cosmic ray intensity since 1610. J. Geophys. Res., 107, 1374, 2002. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin, I.G., K. Alanko-Huotari, G.A. Kovaltsov, and K. Mursula. Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J. Geophys. Res., 110, A12108, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin, I.G., K. Horiuchi, S. Solanki, G.A. Kovaltsov, and E. Bard. On the common solar signal in different cosmogenic isotope data sets. J. Geophys. Res., 114, A03112, 2009. [Google Scholar]
  • Usoskin, I.G., G.A. Bazilevskaya, and G.A. Kovaltsov. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res., 116, A02104, 2011. [CrossRef] [Google Scholar]
  • Uzal, L.C., R.D. Piacentini, and P.F. Verdes. Predictions of the maximum amplitude, time of occurrence, and total length of solar cycle 24. Sol. Phys., 279, 551–560, 2012. [CrossRef] [Google Scholar]
  • Wang, Y.-M., and N.R. Sheeley Jr. On potential field models of the solar corona. Astrophys. J., 392, 310–319, 1992. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang, Y.-M., N.R. Sheeley Jr., and A.P. Rouillard. Role of the Sun’s nonaxisymmetric open flux in cosmic-ray modulation. Astrophys. J., 644, 638–645, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Wibberenz, G., H.V. Cane, I.G. Richardson, and T.T. von Rosenvinge. The influence of tilt angle and magnetic field variations on cosmic ray modulation. Space Sci. Rev., 97, 343–347, 2001a. [CrossRef] [Google Scholar]
  • Wibberenz, G., S.E.S. Ferreira, M.S. Potgieter, and H.V. Cane. Time-dependent 2D model compared with observations during the 1974 mini cycle. Space Sci. Rev., 97, 373–376, 2001b. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.