J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
Article Number A14
Number of page(s) 21
Published online 04 March 2016
  • Anderson, G.P., and L.A. Hall. Solar irradiance between 2000 and 3100 Angstroms with spectral band pass of 1.0 Angstroms. J. Geophys. Res., 94, 6435–6441, 1989, DOI: 10.1029/JD094iD05p06435. [NASA ADS] [CrossRef] [Google Scholar]
  • Arvesen, J.C., R.N. Griffin, and B.D. Pearson, Jr. Determination of extraterrestrial solar spectral irradiance from a research aircraft, Appl. Opt., 8, 2215, 1969, DOI: 10.1364/AO.8.002215. [NASA ADS] [CrossRef] [Google Scholar]
  • Bailey, S.M., T.N. Woods, C.A. Barth, S.C. Solomon, L.R. Canfield, and R. Korde. Measurements of the solar soft X-ray irradiance by the Student Nitric Oxide Explorer: first analysis and underflight calibrations. J. Geophys. Res., 105, 27179–27194, 2000, DOI: 10.1029/2000JA000188. [CrossRef] [Google Scholar]
  • Balmaceda, L.A., S.K. Solanki, N.A. Krivova, and S. Foster. A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res., 114, A07104, 2009, DOI: 10.1029/2009JA014299. [NASA ADS] [CrossRef] [Google Scholar]
  • Baum, W.A., F.S. Johnson, J.J. Oberly, C.C. Rockwood, C.V. Strain, and R. Tousey. Solar ultraviolet spectrum to 88 kilometers. Phys. Rev., 70, 781–782, 1946, DOI: 10.1103/PhysRev.70.781. [CrossRef] [Google Scholar]
  • Burnham, K.P., and D.R. Anderson. Model selection and multimodel inference, 2nd edn., Springer, New York, ISBN: 0387953647, 2002. [Google Scholar]
  • Burrows, J.P., E. Hölzle, A.P.H. Goede, H. Visser, and W. Fricke. SCIAMACHY – scanning imaging absorption spectrometer for atmospheric cartography. Acta Astronaut., 35, 445–451, 1995, DOI: 10.1016/0094-5765(94)00278-T. [CrossRef] [Google Scholar]
  • Cebula, R.P., M.T. DeLand, and E. Hilsenrath. NOAA 11 solar backscattered ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989–1994. 1. Observations and long-term calibration. J. Geophys. Res., 103, 16235–16250, 1998, DOI: 10.1029/98JD01205. [NASA ADS] [CrossRef] [Google Scholar]
  • Chatfield, C. The Analysis of Time Series: An Introduction. 6th edn., Chapman and Hall/CRC, Boca Raton, Florida, ISBN: 9781584883173, 2003. [Google Scholar]
  • Colina, L., R.C. Bohlin, and F. Castelli. The 0.12–2.5 micron absolute flux distribution of the sun for comparison with solar analog stars. Astron. J., 112, 307–307, 1996, DOI: 10.1086/118016. [Google Scholar]
  • Del Zanna, G., and V. Andretta. The EUV spectrum of the Sun: SOHO CDS NIS irradiances from 1998 until 2010. A&A, 528, A139, 2011, DOI: 10.1051/0004-6361/201016106. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • DeLand, M.T., and R.P. Cebula. NOAA 11 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989–1994. 2. Results, validation, and comparisons. J. Geophys. Res., 103, 16251–16274, 1998, DOI: 10.1029/98JD01204. [Google Scholar]
  • DeLand, M.T., and R.P. Cebula. Spectral solar UV irradiance data for cycle 21. J. Geophys. Res., 106, 21569–21584, 2001, DOI: 10.1029/2000JA000436. [CrossRef] [Google Scholar]
  • DeLand, M.T., and R.P. Cebula. Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res., 113 (A12), A11103, 2008, DOI: 10.1029/2008JA013401. [Google Scholar]
  • DeLand, M.T., R.P. Cebula, and E. Hilsenrath. Observations of solar spectral irradiance change during cycle 22 from NOAA-9 Solar Backscattered Ultraviolet Model 2 (SBUV/2). J. Geophys. Res., 109, D06304, 2004, DOI: 10.1029/2003JD004074. [Google Scholar]
  • Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, and M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [Google Scholar]
  • Donoho, D.L., and I.M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90 (432), 1200–1224, 1995, DOI: 10.1080/01621459.1995.10476626. [Google Scholar]
  • Dudok de Wit, T. A method for filling gaps in solar irradiance and solar proxy data. A&A, 533, A29, 2011, DOI: 10.1051/0004-6361/201117024. [Google Scholar]
  • Eparvier, F.G., D. Crotser, A.R. Jones, W.E. McClintock, M. Snow, and T.N. Woods. The Extreme Ultraviolet Sensor (EUVS) for GOES-R. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7438 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 4, 2009, DOI: 10.1117/12.826445. [Google Scholar]
  • Ermolli, I., K. Matthes, T. Dudokdewit, N.A. Krivova, and K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [Google Scholar]
  • Evans, J.S., D.J. Strickland, W.K. Woo, D.R. McMullin, S.P. Plunkett, R.A. Viereck, S.M. Hill, T.N. Woods, and F.G. Eparvier. Early Observations by the GOES-13 Solar Extreme Ultraviolet Sensor (EUVS). Sol. Phys., 262, 71–115, 2010, DOI: 10.1007/s11207-009-9491-x. [Google Scholar]
  • Floyd, L., G. Rottman, M. DeLand, and J. Pap. 11 years of solar UV irradiance measurements from UARS. In: A. Wilson, Editor. Solar Variability as an Input to the Earth’s Environment, vol. 535 of ESA Special Publication, ESA Publications Division, Noordwijk, 195–203, 2003. [Google Scholar]
  • Fröhlich, C. Solar irradiance variability since 1978. Revision of the PMOD composite during solar cycle 21. Space Sci. Rev., 125, 53–65, 2006, DOI: 10.1007/s11214-006-9046-5. [Google Scholar]
  • Fröhlich, C., J. Romero, H. Roth, C. Wehrli, B.N. Andersen, et al. VIRGO: Experiment for helioseismology and solar irradiance monitoring. Sol. Phys., 162, 101–128, 1995, DOI: 10.1007/BF00733428. [NASA ADS] [CrossRef] [Google Scholar]
  • Harrison, R.A., E.C. Sawyer, M.K. Carter, A.M. Cruise, R.M. Cutler, et al. The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol. Phys., 162, 233–290, 1995, DOI: 10.1007/BF00733431. [NASA ADS] [CrossRef] [Google Scholar]
  • Hinteregger, H.E. Representations of solar EUV fluxes for aeronomical applications. Adv. Space Res., 1, 39–52, 1981, DOI: 10.1016/0273-1177(81)90416-6. [Google Scholar]
  • Hinteregger, H.E., D.E. Bedo, and J.E. Manson. The EUV spectroheliometer on atmosphere explorer. Radio Science, 8, 349–359, 1973, DOI: 10.1029/RS008i004p00349. [NASA ADS] [CrossRef] [Google Scholar]
  • Kalman, D. A singularly valuable decomposition: the SVD of a matrix. College Math J., 27, 2–23, 1996, DOI: [CrossRef] [Google Scholar]
  • Keil, S.L., T.W. Henry, and B. Fleck. NSO/AFRL/Sac Peak K-line Monitoring Program. In: K.S. Balasubramaniam, J. Harvey, and D. Rabin, Editors. Synoptic Solar Physics, vol. 140 of Astronomical Society of the Pacific Conference Series, American Scientific Publishers, Valencia, California, 301, 1998. [Google Scholar]
  • Kurucz, R.L. Remaining line opacity problems for the solar spectrum. Revista Mexicana de Astronomia y Astrofisica, 23, 187, 1992. [Google Scholar]
  • Kurucz, R.L. High Resolution Irradiance Spectrum from 300 to 1000 nm, ArXiv Astrophysics e-prints, 2006. [Google Scholar]
  • Lean, J. Evolution of the Sun’s spectral irradiance since the maunder minimum. Geophys. Res. Lett., 27, 2425–2428, 2000, DOI: 10.1029/2000GL000043. [CrossRef] [Google Scholar]
  • Lean, J., J. Beer, and R. Bradley. Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett., 22, 3195–3198, 1995, DOI: 10.1029/95GL03093. [NASA ADS] [CrossRef] [Google Scholar]
  • Mallat S., Editor. A wavelet tour of signal processing, 3rd edn., Academic Press, Boston, ISBN: 978-0-12-374370-1, 2009, DOI: 10.1016/B978-0-12-374370-1.00001-X. [Google Scholar]
  • Mann, M.E., and J.M. Lees. Robust estimation of background noise and signal detection in climatic time series. Clim. Change, 33 (3), 409–445, 1996, DOI: 10.1007/BF00142586. [CrossRef] [Google Scholar]
  • Marchenko, S.V., and M.T. DeLand. Solar spectral irradiance changes during cycle 24. Astrophys. J., 789, 117–117, 2014, DOI: 10.1088/0004-637X/789/2/117. [CrossRef] [Google Scholar]
  • McClintock, W.E., G.J. Rottman, and T.N. Woods. Solar-Stellar Irradiance Comparison Experiment II (Solstice II): instrument concept and design. Sol. Phys., 230, 225–258, 2005, DOI: 10.1007/s11207-005-7432-x. [NASA ADS] [CrossRef] [Google Scholar]
  • Mount, G.H., and G.J. Rottman. The solar absolute spectral irradiance 1150–3173 A – May 17, 1982. J. Geophys. Res., 88, 5403–5410, 1983, DOI: 10.1029/JC088iC09p05403. [CrossRef] [Google Scholar]
  • Priestley, M.B. Spectral analysis and time series. Academic Press, London, 1981. [Google Scholar]
  • Rottman, G., J. Harder, J. Fontenla, T. Woods, O.R. White, and G.M. Lawrence. The Spectral Irradiance Monitor (SIM): early observations. Sol. Phys., 230, 205–224, 2005, DOI: 10.1007/s11207-005-1530-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Rottman, G.J., C.A. Barth, R.J. Thomas, G.H. Mount, G.M. Lawrence, D.W. Rusch, R.W. Sanders, G.E. Thomas, and J. London. Solar spectral irradiance, 120 to 190 nm, October 13, 1981–January 3, 1982. Geophys. Res. Lett., 9, 587–590, 1982, DOI: 10.1029/GL009i005p00587. [CrossRef] [Google Scholar]
  • Rottman, G.J., T.N. Woods, and T.P. Sparn. Solar-Stellar Irradiance Comparison Experiment 1. I – Instrument design and operation. J. Geophys. Res., 98, 10–667, 1993, DOI: 10.1029/93JD00462. [NASA ADS] [CrossRef] [Google Scholar]
  • Schmidtke, G. Extreme ultraviolet spectral irradiance measurements since 1946, 2014, Under review. [Google Scholar]
  • Schmidtke, G., B. Nikutowski, C. Jacobi, R. Brunner, C. Erhardt, S. Knecht, J. Scherle, and J. Schlagenhauf. Solar EUV Irradiance Measurements by the Auto-Calibrating EUV Spectrometers (SolACES) aboard the International Space Station (ISS). Sol. Phys., 289, 1863–1883, 2014, DOI: 10.1007/s11207-013-0430-5. [CrossRef] [Google Scholar]
  • SILSO World Data Center. The International Sunspot Number. International Sunspot Number Monthly Bulletin and online catalogue, 1970–2015. [Google Scholar]
  • Snow, M., W.E. McClintock, G. Rottman, and T.N. Woods. Solar Stellar Irradiance Comparison Experiment II (Solstice II): examination of the solar stellar comparison technique. Sol. Phys., 230, 295–324, 2005, DOI: 10.1007/s11207-005-8763-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather, 11, 394–406, 2013, DOI: 10.1002/swe.20064. [NASA ADS] [CrossRef] [Google Scholar]
  • Thekaekara, M.P. Extraterrestrial solar spectrum, 3000–6100 Å at 1-Å intervals. Appl. Opt., 13, 518–522, 1974, DOI: 10.1364/AO.13.000518. [Google Scholar]
  • Thuillier, G., L. Floyd, T.N. Woods, R. Cebula, E. Hilsenrath, M. Hersé, and D. Labs. Solar irradiance reference spectra. In: J.M. Pap, P. Fox, C. Frohlich, H.S. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprigg, and S.T. Wu, Editors. Solar variability and its effects on climate, Geophysical Monograph 141, American Geophysical Union, Washington, DC, 171, 2004. [Google Scholar]
  • Thuillier, G., S.M.L. Melo, J. Lean, N.A. Krivova, C. Bolduc, et al. Analysis of different solar spectral irradiance reconstructions and their impact on solar heating rates. Sol. Phys., 289, 1115–1142, 2014, DOI: 10.1007/s11207-013-0381-x. [NASA ADS] [CrossRef] [Google Scholar]
  • Tobiska, W.K. SOLAR2000 irradiances for climate change research, aeronomy and space system engineering. Adv. Space Res., 34, 1736–1746, 2004, DOI: 10.1016/j.asr.2003.06.032. [NASA ADS] [CrossRef] [Google Scholar]
  • Viereck, R., F. Hanser, J. Wise, S. Guha, A. Jones, D. McMullin, S. Plunket, D. Strickland, and S. Evans. Solar extreme ultraviolet irradiance observations from GOES: design characteristics and initial performance. Proc. SPIE, 6689, 66890K.1–66890K.10, 2007, DOI: 10.1117/12.734886. [CrossRef] [Google Scholar]
  • Viereck, R.A., L.E. Floyd, P.C. Crane, T.N. Woods, B.G. Knapp, G. Rottman, M. Weber, L.C. Puga, and M.T. DeLand. A composite Mg II index spanning from 1978 to 2003. Space Weather, 2, S10005, 2004, DOI: 10.1002/2004SW000084. [Google Scholar]
  • Wieman, S.R., L.V. Didkovsky, and D.L. Judge. Resolving differences in absolute irradiance measurements between the SOHO/CELIAS/SEM and the SDO/EVE. Sol. Phys., 289, 2907–2925, 2014, DOI: 10.1007/s11207-014-0519-5. [NASA ADS] [CrossRef] [Google Scholar]
  • Wilson, R.M., and D.H. Hathaway. On the relation between sunspot area and sunspot number. NASA STI/Recon Technical Report N, 6, 20186, 2006. [Google Scholar]
  • Woods, T.N., P.C. Chamberlin, J.W. Harder, R.A. Hock, M. Snow, F.G. Eparvier, J. Fontenla, W.E. Mcclintock, and E.C. Richard. Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophys. Res. Lett., 36, L01101, 2009, DOI: 10.1029/2008GL036373. [NASA ADS] [CrossRef] [Google Scholar]
  • Woods, T.N., F.G. Eparvier, R. Hock, A.R. Jones, D. Woodraska, et al. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Sol. Phys., 275, 115–143, 2012, DOI: 10.1007/s11207-009-9487-6. [Google Scholar]
  • Woods, T.N., D.K. Prinz, G.J. Rottman, J. London, P.C. Crane, et al. Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res., 101, 9541–9570, 1996, DOI: 10.1029/96JD00225. [Google Scholar]
  • Woods, T.N., E.M. Rodgers, S.M. Bailey, F.G. Eparvier, and G.J. Ucker. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system. In: A.M. Larar, Editor. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, vol. 3756 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings of SPIE, Bellingham, Washington, 255–264, 1999. [CrossRef] [Google Scholar]
  • Woods, T.N., and G. Rottman. XUV Photometer System (XPS): Solar Variations during the SORCE Mission. Sol. Phys., 230, 375–387, 2005, DOI: 10.1007/s11207-005-2555-7. [CrossRef] [Google Scholar]
  • Woods, T.N., G.J. Rottman, R.G. Roble, O.R. White, S.C. Solomon, G.M. Lawrence, J. Lean, and W.K. Tobiska. Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) Solar EUV Experiment. In: J. Wang, and P.B. Hays, Editors. Optical spectroscopic techniques and instrumentation for atmospheric and space research, vol. 2266 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings of SPIE, Bellingham, Washington, 467–478, 1994. [CrossRef] [Google Scholar]
  • Woods, T.N., W.K. Tobiska, G.J. Rottman, and J.R. Worden. Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res., 105, 27195–27216, 2000, DOI: 10.1029/2000JA000051. [NASA ADS] [CrossRef] [Google Scholar]
  • Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. A&A, 570, A85–A85, 2014, DOI: 10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.