Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A13
Number of page(s) 17
Published online 04 March 2016
  • Adamczyk, A.M., R.B. Norman, S.I. Sriprisan, L.W. Townsend, J.W. Norbury, S.R. Blattnig, and T.C. Slaba. NUCFRG3: light ion improvements to the nuclear fragmentation model. Nucl. Instrum. Methods Phys. Res. Sect. A, 678, 21–32, 2012, DOI: 10.1016/j.nima.2012.02.021. [CrossRef]
  • Adams Jr., J.H., R. Silberberg, and C.H. Tsao. Cosmic ray effects on microelectronics. Part 1: the near-Earth particle environment. NASA STI/Recon Technical Report N, 81, 34134, 1981.
  • Agostinelli, S., J. Allison, and K. Amako. Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A, 506, 250–303, 2003, DOI: 10.1016/S0168-9002(03)01368-8. [NASA ADS] [CrossRef] [EDP Sciences]
  • Allison, J., K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53, 270–278, 2006, DOI: 10.1109/TNS.2006.869826. [NASA ADS] [CrossRef]
  • Boudard, A., J. Cugnon, S. Leray, and C. Volant. Intranuclear cascade model for a comprehensive description of spallation reaction data. Phys. Rev. C, 66 (4), 44615, 2002, DOI: 10.1103/PhysRevC.66.044615. [CrossRef]
  • Boudard, A., J. Cugnon, J.C. David, S. Leray, and D. Mancusi. New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys. Rev. C, 87 (1), 014606, 2013, DOI: 10.1103/PhysRevC.87.014606. [CrossRef]
  • Bougher, S.W., R.G. Roble, E.C. Ridley, and R.E. Dickinson. The Mars thermosphere: 2 general circulation with coupled dynamics and composition. J. Geophys. Res. [Solid Earth], 95 (B9), 14811–14827, 1990, DOI: 10.1029/JB095iB09p14811. [CrossRef]
  • Cucinotta, F.A. Calculation of Cosmic-Ray Helium Transport in Shielding Materials. Report NASA-TP-3354, NASA, 1993.
  • Cucinotta, F.A., L.W. Townsend, J.W. Wilson, J.L. Shinn, G.D. Badhwar, and R.R. Dubey. Light ion components of the galactic cosmic rays: nuclear interactions and transport theory. Adv. Space Res., 17 (2), 77–86, 1996, DOI: 10.1016/0273-1177(95)00515-G. [CrossRef]
  • Cucinotta, F.A., S. Hu, N.A. Schwadron, K. Kozarev, L.W. Townsend, and M.H.Y. Kim. Space radiation risk limits and Earth-Moon-Mars environmental models. Space Weather, 8, 1–121, 2010, DOI: 10.1029/2010SW000572. [CrossRef]
  • Cucinotta, F.A., L.J. Chappell, and M.J. Kim. Space Radiation Cancer Risk Projections and Uncertainties – 2010. Report NASA TP 2011-216155, NASA, 2011.
  • Dartnell, L.R., L. Desorgher, J.M. Ward, and A.J. Coates. Martian sub-surface ionising radiation: biosignatures and geology. Biogeosciences, 4 (4), 545–558, 2007, DOI: 10.5194/bg-4-545-2007. [CrossRef]
  • Durante, M., and F.A. Cucinotta. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer, 8, 465–472, 2008, DOI: 10.1038/nrc2391. [CrossRef] [PubMed]
  • Ehresmann, B. The Martian radiation environment – early mars and future measurements with the radiation assessment detector. Thesis, Christian-Albrechts-Universität zu Kiel, 2012.
  • Ehresmann, B., C. Zeitlin, D.M. Hassler, R.F. Wimmer-Schweingruber, E. Böhm, et al. Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars. J. Geophys. Res. [Planets], 119 (3), 468–479, 2014, DOI: 10.1002/2013JE004547. [NASA ADS] [CrossRef]
  • Gronoff, G., R.B. Norman, and C.J. Mertens. Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles. Adv. Space Res., 55 (7), 1799–1805, 2015, DOI: 10.1016/j.asr.2015.01.028. [CrossRef]
  • Grotzinger, J.P., J. Crisp, A.R. Vasavada, R.C. Anderson, C.J. Baker, et al. Mars Science Laboratory mission and science investigation. Space Sci. Rev., 170 (1–4), 5–56, 2012, DOI: 10.1007/s11214-012-9892-2. [CrossRef]
  • Guo, J., C. Zeitlin, R.F. Wimmer-Schweingruber, D.M. Hassler, A. Posner, et al. Variations of dose rate observed by MSL/RAD in transit to Mars. A&A, 577, A58, 2015, DOI: 10.1051/0004-6361/201525680. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gómez-Elvira, J., C. Armiens, I. Carrasco, M. Genzer, F. Gómez, et al. Curiosity’s rover environmental monitoring station: overview of the first 100 sols. J. Geophys. Res. [Planets], 119 (7), 2013JE004576, 2014, DOI: 10.1002/2013JE004576.
  • Haberle, R.M., J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, H. Lee, and J. Schaeffer. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. the zonal mean circulation. J. Geophys. Res. [Planets], 98 (E2), 3093–3123, 1993, DOI: 10.1029/92JE02946. [CrossRef]
  • Haberle, R.M., J. Gomez-Elvira, M.D. Juarez, A.M. Harri, J.L. Hollingsworth, et al. Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res. [Planets], 119 (3), 440–453, 2014, DOI: 10.1002/2013je004488. [CrossRef]
  • Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, S. Bottcher, C. Martin, et al. The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev., 170 (1–4), 503–558, 2012, DOI: 10.1007/s11214-012-9913-1. [NASA ADS] [CrossRef]
  • Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, B. Ehresmann, S. Rafkin, et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science, 343 (6169), 2014, DOI: 10.1126/Science.1244797. [CrossRef]
  • ICRP. 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP, 21 (1–3), 1–201, 1991. [CrossRef]
  • ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP, 37 (2–4), 1–332, 2007.
  • Justus, C.G., and D.L. Johnson. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): users guide, NASA/TM-2001-210961, 2001.
  • Justus, C.G., A. Duvall, and V.W. Keller. Validation of Mars Global Reference Atmospheric Model (Mars-GRAM 2001) and planned new features. Adv. Space Res., 38, 2633–2638, 2006, DOI: 10.1016/j.asr.2006.07.007. [CrossRef]
  • Kim, M.H.Y., F.A. Cucinotta, H.N. Nounu, C. Zeitlin, D.M. Hassler, et al. Comparison of Martian surface ionizing radiation measurements from MSL-RAD with Badhwar-O’Neill 2011/HZETRN model calculations. J. Geophys. Res. [Planets], 119 (6), 1311–1321, 2014, DOI: 10.1002/2013je004549. [CrossRef]
  • Köhler, J., C. Zeitlin, B. Ehresmann, R.F. Wimmer-Schweingruber, D.M. Hassler, et al. Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J. Geophys. Res. [Planets], 119 (3), 594–603, 2014, DOI: 10.1002/2013JE004539. [NASA ADS] [CrossRef]
  • Köhler, J., B. Ehresmann, C. Zeitlin, R.F. Wimmer-Schweingruber, D.M. Hassler, et al. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory. Life Sciences in Space Research, 5, 6–12, 2015, DOI: 10.1016/j.lssr.2015.03.001. [CrossRef]
  • Leray, S., D. Mancusi, P. Kaitaniemi, J.C. David, A. Boudard, B. Braunn, and J. Cugnon. Extension of the Liège Intra Nuclear Cascade model to light ion-induced collisions for medical and space applications. J. Phys: Conf. Ser., 420 (1), 12065, 2013, DOI: 10.1088/1742-6596/420/1/012065. [CrossRef]
  • Mancusi, D., A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, and S. Leray. Extension of the Liège intranuclear-cascade model to reactions induced by light nuclei. Phys. Rev. C, 90 (5), 54602, 2014, DOI: 10.1103/PhysRevC.90.054602. [CrossRef]
  • Matthiä, D., T. Berger, A.I. Mrigakshi, and G. Reitz. A ready-to-use galactic cosmic ray model. Adv. Space Res., 51, 329–338, 2013, DOI: 10.1016/j.asr.2012.09.022. [CrossRef]
  • McKenna-Lawlor, S., P. Goncalves, A. Keating, B. Morgado, D. Heynderickx, et al. Characterization of the particle radiation environment at three potential landing sites on Mars using ESA’s MEREM models. Icarus, 218 (1), 723–734, 2012a, DOI: 10.1016/j.icarus.2011.04.004. [CrossRef]
  • McKenna-Lawlor, S., P. Gonçalves, A. Keating, G. Reitz, and D. Matthiä. Overview of energetic particle hazards during prospective manned missions to Mars. Planet. Space Sci., 63–64, 123–132, 2012b, DOI: 10.1016/j.pss.2011.06.017. [CrossRef]
  • Mrigakshi, A.I., D. Matthiä, T. Berger, G. Reitz, and R.F. Wimmer-Schweingruber. Assessment of galactic cosmic ray models. J. Geophys. Res. [Space Phys.], 117 (A8), A08109, 2012, DOI: 10.1029/2012JA017611. [CrossRef]
  • Mrigakshi, A.I., D. Matthiä, T. Berger, G. Reitz, and R.F. Wimmer-Schweingruber. Estimation of galactic cosmic ray exposure inside and outside the Earth’s magnetosphere during the recent solar minimum between solar cycles 23 and 24. Adv. Space Res., 52, 979–987, 2013a, DOI: 10.1016/j.asr.2013.05.007. [CrossRef]
  • Mrigakshi, A.I., D. Matthiä, T. Berger, G. Reitz, and R.F. Wimmer-Schweingruber. How galactic cosmic ray models affect the estimation of radiation exposure in space. Adv. Space Res., 51, 825–834, 2013b, DOI: 10.1016/j.asr.2012.10.017. [CrossRef]
  • Nara, Y., N. Otuka, A. Ohnishi, K. Niita, and S. Chiba. Relativistic nuclear collisions at 10A GeV energies from p+Be to Au+Au with the hadronic cascade model. Phys. Rev. C, 61 (2), 024901, 1999, DOI: 10.1103/PhysRevC.61.024901. [CrossRef]
  • National Research Council. S. R. S. P. Radiobiological factors in manned space flight. Report. In: W.H. Langham, Editor. Publication (National Research Council (U.S.)); no. 1487, National Academy of Sciences, National Research Council, Washington, 1967.
  • Nealy, J., F. Cucinotta, J. Wilson, F. Badavi, T. Dachev, B. Tomov, S. Walker, G.D. Angelis, S. Blattnig, and W. Atwell. Pre-engineering spaceflight validation of environmental models and the 2005 HZETRN simulation code. Adv. Space Res., 40 (11), 1593–1610, 2007, DOI: 10.1016/j.asr.2006.12.029. [CrossRef]
  • Niita, K., S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto. Analysis of the (N, xN’) reactions by quantum molecular dynamics plus statistical decay model. Phys. Rev. C, 52 (5), 2620–2635, 1995, DOI: 10.1103/PhysRevC.52.2620. [CrossRef]
  • Niita, K., T. Sato, H. Iwase, H. Nose, H. Nakashima, and L. Sihver. PHITS – a particle and heavy ion transport code system. Radiat. Meas., 41, 1080–1090, 2006, DOI: 10.1016/j.radmeas.2006.07.013. [CrossRef]
  • Norman, R.B., T.C. Slaba, and S.R. Blattnig. An extension of HZETRN for cosmic ray initiated electromagnetic cascades. Adv. Space Res., 51, 2251–2260, 2013, DOI: 10.1016/j.asr.2013.01.021. [CrossRef]
  • Ogawa, T., T. Sato, S. Hashimoto, and K. Niita. Development of a reaction ejectile sampling algorithm to recover kinematic correlations from inclusive cross-section data in Monte-Carlo particle transport simulations. Nucl. Instrum. Methods Phys. Res. Sect. A, 763, 575–590, 2014, DOI: 10.1016/j.nima.2014.06.088. [CrossRef]
  • O’Neill, P.M. Badhwar O’Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present. Adv. Space Res., 37, 1727–1733, 2006, DOI: 10.1016/j.asr.2005.02.001. [NASA ADS] [CrossRef]
  • O’Neill, P.M. Badhwar-O’Neill 2010 galactic cosmic ray flux model revised. IEEE Trans. Nucl. Sci., 57 (6), 3148–3153, 2010, DOI: 10.1109/TNS.2010.2083688.
  • Posner, A., D. Hassler, D. McComas, S. Rafkin, R. Wimmer-Schweingruber, E. Böhm, S. Böttcher, S. Burmeister, W. Dröge, and B. Heber. A high energy telescope for the Solar Orbiter. Adv. Space Res., 36 (8), 1426–1431, 2005, Solar Encounter, Solar-B and {STEREO}, DOI: 10.1016/j.asr.2004.11.040. [NASA ADS] [CrossRef]
  • Rafkin, S.C.R., C. Zeitlin, B. Ehresmann, D. Hassler, J.N. Guo, et al. Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector. J. Geophys. Res. [Planets], 119 (6), 1345–1358, 2014, DOI: 10.1002/2013je004525. [CrossRef]
  • Sato, T., K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, et al. Particle and heavy ion transport code system, PHITS, version 2.52. J. Nucl. Sci. Technol., 50, 913–923, 2013, DOI: 10.1080/00223131.2013.814553. [CrossRef]
  • Sato, T., R. Kataoka, H. Yasuda, S. Yashiro, T. Kuwabara, D. Shiota, and Y. Kubo. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles. Radiat. Prot. Dosim., 161 (1–4), 274–278, 2014, DOI: 10.1093/rpd/nct332. [CrossRef]
  • Shibata, K., O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, et al. JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol., 48 (1), 1–30, 2011, DOI: 10.1080/18811248.2011.9711675. [CrossRef]
  • Simonsen, L.C., J.E. Nealy, L.W. Townsend, and J.W. Wilson. Space radiation-dose estimates on the surface of Mars. Journal of Spacecraft and Rockets, 27 (4), 353–354, 1990, DOI: 10.2514/3.26149. [CrossRef]
  • Simpson, J.A. Elemental and isotopic composition of the galactic cosmic rays. Annual Review of Nuclear and Particle Science, 33, 323–382, 1983, DOI: 10.1146/annurev.ns.33.120183.001543. [NASA ADS] [CrossRef]
  • Singleterry, R.C., S.R. Blattnig, M.S. Clowdsley, G.D. Qualls, C.A. Sandridge, et al. OLTARIS: On-line tool for the assessment of radiation in space. Acta Astronaut., 68, 1086–1097, 2011, DOI: 10.1016/j.actaastro.2010.09.022. [CrossRef]
  • Slaba, T.C., and S.R. Blattnig. GCR environmental models I: sensitivity analysis for GCR environments. Space Weather, 12 (4), 217–224, 2014, DOI: 10.1002/2013sw001025. [CrossRef]
  • Slaba, T.C., S.R. Blattnig, S.K. Aghara, L.W. Townsend, T. Handler, T.A. Gabriel, L.S. Pinsky, and B. Reddell. Coupled neutron transport for HZETRN. Radiat. Meas., 45, 173–182, 2010a, DOI: 10.1016/j.radmeas.2010.01.005. [CrossRef]
  • Slaba, T.C., S.R. Blattnig, and F.F. Badavi. Faster and more accurate transport procedures for HZETRN. J. Comput. Phys., 229, 9397–9417, 2010b, DOI: 10.1016/ [CrossRef]
  • Slaba, T.C., S.R. Blattnig, and J. Tweed. Reduced discretization error in HZETRN. J. Comput. Phys., 234, 217–229, 2013, DOI: 10.1016/ [CrossRef]
  • Slaba, T.C., X.J. Xu, S.R. Blattnig, and R.B. Norman. GCR environmental models III: GCR model validation and propagated uncertainties in effective dose. Space Weather, 12 (4), 233–245, 2014, DOI: 10.1002/2013sw001027. [CrossRef]
  • Smith, D.E., M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. [Planets], 106 (E10), 23689–23722, 2001, DOI: 10.1029/2000JE001364. [CrossRef]
  • Townsend, L.W., M. PourArsalan, F.A. Cucinotta, M.Y. Kim, and N.A. Schwadron. Transmission of galactic cosmic rays through Mars atmosphere. Space Weather, 9, S00E11, 2011, DOI: 10.1029/2009sw000564. [CrossRef]
  • Usoskin, I.G., G.A. Bazilevskaya, and G.A. Kovaltsov. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. [Space Phys.], 116 (A2), A02104, 2011, DOI: 10.1029/2010JA016105. [CrossRef]
  • Wilson, J.W., L.W. Townsend, J.E. Nealy, S.Y. Chun, B.S. Hong, W.W. Buck, S.L. Lamkin, B.D. Ganapol, F. Khan, and F.A. Cucinotta. BRYNTRN: a baryon transport model. NASA STI/Recon Technical Report N, 89, 17562, 1989.
  • Wilson, J.W., L. Townsend, W. Schimmerling, G.S. Khandelwal, F. Khan, J.E. Nealy, F.A. Cucinotta, L.C. Simonsen, J.L. Shinn, and J.W. Norbury. Transport methods and interactions for space radiations. Report NASA RP 1257, NASA, 1991.
  • Wilson, J.W., T.C. Slaba, F.F. Badavi, B.D. Reddell, and A.A. Bahadori. Advances in NASA radiation transport research: 3DHZETRN. Life Sciences in Space Research, 2, 6–22, 2014, DOI: 10.1016/j.lssr.2014.05.003. [CrossRef]
  • Wilson, J.W., T.C. Slaba, F.F. Badavi, B.D. Reddell, and A.A. Bahadori. 3DHZETRN: shielded ICRU spherical phantom. Life Sciences in Space Research, 4, 46–61, 2015, DOI: 10.1016/j.lssr.2015.01.002. [CrossRef]
  • Zeitlin, C., D.M. Hassler, F.A. Cucinotta, B. Ehresmann, R.F. Wimmer-Schweingruber, et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science, 340, 1080–1084, 2013, DOI: 10.1126/science.1235989. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.