Open Access
Review
Issue
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A31
Number of page(s) 56
DOI https://doi.org/10.1051/swsc/2016024
Published online 02 August 2016
  • Abel, B., and R.M. Thorne. Relativistic charged particle precipitation into Jupiter’s sub-auroral atmosphere. Icarus, 166, 311–319, 2003, DOI: 10.1016/j.icarus.2003.08.017. [CrossRef] [Google Scholar]
  • Acuña, M.H., J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, et al. Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science, 284 (5415), 790–793, 1999, DOI: 10.1126/science.284.5415.790. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Akasofu, S.I. Auroral substorms as an electrical discharge phenomenon. PEPS, 2, 20, 2015, DOI: 10.1186/s40645-015-0050-9. [Google Scholar]
  • Alexeev, I.I., E.S. Belenkaya, J.A. Slavin, H. Korth, B.J. Anderson, et al. Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209 (1), 23–39, 2010. [CrossRef] [Google Scholar]
  • Ambrosi, R. European space nuclear power systems: enabing technology for space exploration missions, in: “Uranus beyond Voyager 2” Workshop, Meudon, France, 16–18 Sept., 2013. [Google Scholar]
  • Andersen, V. Observations of cosmic ray modulation with MARIE. BAAS, 1, 38, 2006. [Google Scholar]
  • Anderson, B.J., C.L. Johnson, H. Korth, M.E. Purucker, R.M. Winslow, et al. The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 1859–1862, 2011a. [NASA ADS] [CrossRef] [Google Scholar]
  • Anderson, B.J., J.A. Slavin, H. Korth, S.A. Boardsen, T.H. Zurbuchen, J.M. Raines, G. Gloeckler, R.L. McNutt, and S.C. Solomon. The dayside magnetospheric boundary layer at Mercury. Planet. Space Sci., 59 (15), 2037–2050, 2011b. [CrossRef] [Google Scholar]
  • André, N., M. Blanc, S. Maurice, P. Schippers, E. Pallier, et al. Identification of Saturn’s magnetospheric regions and associated plasma processes: synopsis of Cassini observations during orbit insertion. Rev. Geophys., 46, RG4008, 2008, DOI: 10.1029/2007RG000238. [Google Scholar]
  • Andriopoulou, M., E. Roussos, N. Krupp, C. Paranicas, M. Thomsen, S. Krimigis, M.K. Dougherty, and K.-H. Glassmeier. Spatial and temporal dependence of the convective electric field in Saturn’s inner magnetosphere. Icarus, 229, 57–70, 2014, DOI: 10.1016/j.icarus.2013.10.028. [CrossRef] [Google Scholar]
  • Aplin, K.L. Atmospheric electrification in the Solar System. Surv. Geophys., 27, 63–108, 2006, DOI: 10.1007/s10712-005-0642-9. [CrossRef] [Google Scholar]
  • Aplin, K.L. Electrifying atmospheres: charging, ionisation and lightning in the Solar System and beyond, in SpringerBriefs in Astronomy, Springer, Netherlands, Dordrecht, 2013, DOI: 10.1007/978-94-007-6633-4. [CrossRef] [Google Scholar]
  • Araki, T., S. Fujitani, M. Emoto, K. Yumoto, K. Shiokawa, et al. Anomalous sudden commencement on March 24, 1991. J. Geophys. Res., 102 (A7), 14075–14086, 1997, DOI: 10.1029/96JA03637. [CrossRef] [Google Scholar]
  • Arge, C.N., and V.J. Pizzo. Improvement in the prediction of solar wind conditions using near‐real time solar magnetic field updates. J. Geophys. Res. [Space Phys.], 105 (A5), 10465–10479, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Arge, C.N., J.G. Luhmann, D. Odstrcil, C.J. Schrijver, and Y. Li. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Sol. Terr. Phys., 66 (15), 1295–1309, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Arridge, C.S., C.B. Agnor, N. André, K.H. Baines, L.N. Fletcher, et al. Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Exp. Agric., 33, 753–791, 2012, DOI: 10.1007/s10686-011-9251-4. [Google Scholar]
  • Arridge, C.S., N. Achilleos, J. Agarwal, C.B. Agnor, R. Ambrosi, et al. The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets. Planet. Space Sci., 104, 122–140, 2014, DOI: 10.1016/j.pss.2014.08.009. [CrossRef] [Google Scholar]
  • Badman, S.V., E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. GeéRard, D. Grodent, and S.E. Milan. Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. [Space Phys.], 110, A11216, 2005, DOI: 10.1029/2005JA011240. [CrossRef] [Google Scholar]
  • Badman, S.V., N. Achilleos, K.H. Baines, R.H. Brown, E.J. Bunce, M.K. Dougherty, H. Melin, J.D. Nichols, and T. Stallard. Location of Saturn’s northern infrared aurora determined from Cassini VIMS images. Geophys. Res. Lett., 38, L03102, 2011, DOI: 10.1029/2010GL046193. [CrossRef] [Google Scholar]
  • Badman, S.V., N. Achilleos, C.S. Arridge, K.H. Baines, R.H. Brown, et al. Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. J. Geophys. Res. [Space Phys.], 117, A01211, 2012, DOI: 10.1029/2011JA017222. [CrossRef] [Google Scholar]
  • Badman, S.V., A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M.K. Dougherty, and A.J. Coates. Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett., 40, 1027–1031, 2013, DOI: 10.1002/grl.50199. [CrossRef] [Google Scholar]
  • Badman, S.V., C.M. Jackman, J.D. Nichols, J.T. Clarke, and J.-C. Gérard. Open flux in Saturn’s magnetosphere. Icarus, 231, 137–145, 2014, DOI: 10.1016/j.icarus.2013.12.004. [CrossRef] [Google Scholar]
  • Badman, S.V., G. Branduardi-Raymont, M. Galand, S.L.G. Hess, N. Krupp, L. Lamy, H. Melin, and C. Tao. Auroral processes at the Giant planets: energy deposition, emission mechanisms, morphology and spectra. Space Sci. Rev., 187, 99–179, 2015, DOI: 10.1007/s11214-014-0042-x. [CrossRef] [Google Scholar]
  • Bagenal, F. Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci., 20, 289–328, 1992. [NASA ADS] [CrossRef] [Google Scholar]
  • Bagenal, F. Planetary Magnetospheres. In: T.D. Oswalt, L.M. French, and P. Kalas, Editors. Planets, Stars and Stellar Systems, Springer Science+Business Media, Dordrecht, 251, ISBN: 978-94-007-5605-2, 2013. [CrossRef] [Google Scholar]
  • Bagenal, F., A. Adriani, F. Allegrini, S.J. Bolton, B. Bonfond, et al. Magnetospheric science objectives of the JUNO mission. Space Sci. Rev., 1–69, 2014, DOI: 10.1007/s11214-014-0036-8. [Google Scholar]
  • Bagenal, F., E. Sidrow, R.J. Wilson, T.A. Cassidy, V. Dols, F.J. Crary, A.J. Steffl, P.A. Delamere, W.S. Kurth, and W.R. Paterson. Plasma conditions at Europa’s orbit. Icarus, 261, 1–13, 2015, DOI: 10.1016/j.icarus.2015.07.036. [CrossRef] [Google Scholar]
  • Baker, D.N., T.I. Pulkkinen, J. Büchner, and A.J. Klimas. Substorms: a global instability of the magnetosphere-ionosphere system. J. Geophys. Res., 104, 14601–14612, 1999. [CrossRef] [Google Scholar]
  • Baker, D.N., G. Poh, D. Odstrcil, N. Arge, M. Benna, et al. Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. [Space Phys.], 118, 45–57, 2013, DOI: 10.1029/2012JA018064. [CrossRef] [Google Scholar]
  • Baker, V.R., R.G. Strom, J.M. Dohm, V.C. Gulick, J.S. Kargel, G. Komatsu, G.G. Ori, and J.W. Rice. Mars’ Oceanus Borealis, ancient glaciers, and the MEGAOUTFLO hypothesis. Lunar and Planetary Institute Science Conference Abstracts, 31, 2000. [Google Scholar]
  • Ballester, G.E. Magnetospheric interactions in the major planets. In: W. Wamsteker, R. Gonzalez Riestra, and B. Harris, Editors. Ultraviolet Astrophysics Beyond the IUE Final Archive, 413, ESA Special Publication, 21, 1998. [Google Scholar]
  • Bampasidis, G., A. Coustenis, R.K. Achterberg, S. Vinatier, P. Lavvas, et al. Thermal and chemical structure variations in Titan’s stratosphere during the Cassini mission. Astrophys. J., 760, 144, 2012, DOI: 10.1088/0004-637X/760/2/144. [NASA ADS] [CrossRef] [Google Scholar]
  • Baron, R.L., T. Owen, J.E.P. Connerney, T. Satoh, and J. Harrington. Solar wind control of Jupiter’s H+3 auroras. Icarus, 120, 437–442, 1996, DOI: 10.1006/icar.1996.0063. [CrossRef] [Google Scholar]
  • Barth, C.A., C.W. Hord, A.I.F. Stewart, W.R. Pryor, K.E. Simmons, W.E. McClintock, J.M. Ajello, K.L. Naviaux, and J.J. Aiello. Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede. Geophys. Res. Lett., 24, 2147–2150, 1997. [CrossRef] [Google Scholar]
  • Barthelemy, M., and G. Cessateur. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux. J. Space Weather Space Clim., 4 (27), A35, 2014, DOI: 10.1051/swsc/2014033. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Belcher, J.W., H.S. Bridge, B. Coppi, G.S. Gordon Jr., A.J. Lazarus, et al. Plasma observations near Neptune – initial results from Voyager 2. Science, 246, 1478–1483, 1989, DOI: 10.1126/science.246.4936.1478. [CrossRef] [Google Scholar]
  • Belov, A., E. Eroshenko, H. Mavromichalaki, C. Plainaki, and V. Yanke. Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956. Ann. Geophys., 23, 2281, 2005. [CrossRef] [Google Scholar]
  • Benkhoff, J., J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, M. Novara, P. Ferri, H.R. Middleton, and R. Ziethe. BepiColombo-Comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci., 58 (1–2), 2–20, 2010, DOI: 10.1016/j.pss.2009.09.020. [CrossRef] [Google Scholar]
  • Berezhnoy, A.A., and B.A. Klumov. Impacts as a source of the atmosphere on Mercury. Icarus, 195, 511–522, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Bertaux, J.L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, et al. Discovery of an aurora on Mars. Nature, 435 (7043), 790–794, 2005. [CrossRef] [Google Scholar]
  • Bertucci, C., D.C. Hamilton, W.S. Kurth, G.B. Hospodarsky, D.G. Mitchell, N.J.T. Edberg, N. Sergis, and M.K. Dougherty. Titan interaction with the supersonic solar wind: Cassini T96 observations. In: AGU Fall Meeting Abstracts, 4322, 2014. [Google Scholar]
  • Bertucci, C., D.C. Hamilton, W.S. Kurth, G. Hospodarsky, D. Mitchell, N. Sergis, N.J.T. Edberg, and M.K. Dougherty. Titan’s interaction with the supersonic solar wind. Geophys. Res. Lett., 42, 193–200, 2015, DOI: 10.1002/2014GL062106. [CrossRef] [Google Scholar]
  • Bishop, J., S.K. Atreya, P.N. Romani, G.S. Orton, B.R. Sandel, and R.V. Yelle. The middle and upper atmosphere of Neptune. In: D.P. Cruikshank, M.S. Matthews, and A.M. Schumann, Editors. Neptune and Triton, University of Arizona Pub., USA, 427–487, 1995. [Google Scholar]
  • Blake, J.B., H.H. Hilton, and S.H. Margolis. On the injection of cosmic ray secondaries into the inner Saturnian magnetosphere. I – Protons from the CRAND process, J. Geophys. Res. [Space Phys.], 88, 803–807, 1983, DOI: 10.1029/JA088iA02p00803. [CrossRef] [Google Scholar]
  • Blanc, M., S. Bolton, J. Bradley, M. Burton, T.E. Cravens, et al. Magnetospheric and plasma science with Cassini-Huygens. Space Sci. Rev., 104, 253–346, 2002, DOI: 10.1023/A:1023605110711. [NASA ADS] [CrossRef] [Google Scholar]
  • Blanc, M., D.J. Andrews, A.J. Coates, D.C. Hamilton, C.M. Jackman, et al. Saturn plasma sources and associated transport processes. Space Sci. Rev., 192 (1), 237–283, 2015, DOI: 10.1007/s11214-015-0172-9. [CrossRef] [Google Scholar]
  • Bolton, S.J., S. Gulkis, M.J. Klein, I. de Pater, and T.J. Thompson. Correlation studies between solar wind parameters and the decimetric radio emission from Jupiter. J. Geophys. Res. [Space Phys.], 94, 121–128, 1989, DOI: 10.1029/JA094iA01p00121. [NASA ADS] [CrossRef] [Google Scholar]
  • Bolton, S.J., M. Janssen, R. Thorne, S. Levin, M. Klein, et al. Ultra-relativistic electrons in Jupiter’s radiation belts. Nature, 415, 987–991, 2002. [NASA ADS] [CrossRef] [Google Scholar]
  • Bolton, S.J., R.M. Thorne, S. Bourdarie, I. de Pater, and B. Mauk. Jupiter’s inner radiation belts. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge Univ. Press, 671–688, 2004. [Google Scholar]
  • Bolton, S.J., F. Bagenal, M. Blanc, T. Cassidy, E. Chané, et al. Jupiter’s magnetosphere: plasma sources and transport. Space Sci. Rev., 192 (1–4), 209–236, 2015, DOI: 10.1007/s11214-015-0184-5. [CrossRef] [Google Scholar]
  • Bombardieri, D.J., M.L. Duldig, J.E. Humble, and K.J. Michael. An improved model for relativistic solar proton acceleration applied to the 2005 January 20 and earlier events. Astrophys. J., 682, 1315–1327, 2008. [CrossRef] [Google Scholar]
  • Bonfond, B., D. Grodent, J.-C. Gérard, A. Radioti, J. Saur, and S. Jacobsen. UV Io footprint leading spot: a key feature for understanding the UV Io footprint multiplicity? Geophys. Res. Lett., 35, L05107, 2008, DOI: 10.1029/2007GL032418. [NASA ADS] [CrossRef] [Google Scholar]
  • Bonfond, B., M.F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, and V. Coumans. Quasi-periodic polar flares at Jupiter: a signature of pulsed dayside reconnections? Geophys. Res. Lett., 38, L02104, 2011, DOI: 10.1029/2010GL045981. [CrossRef] [Google Scholar]
  • Borucki, W., Z. Levin, R. Whitten, and R. Keesee. Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere. Icarus, 321, 302–321, 1982. [CrossRef] [Google Scholar]
  • Borucki, W.J. Comparison of Venusian lightning observations. Icarus, 52, 354–364, 1982, DOI: 10.1016/0019-1035(82)90118-X. [CrossRef] [Google Scholar]
  • Boudjemai, A., R. Hocine, and S. Guerionne. Space Environment Effect on Earth Observation Satellite Instruments. In: Recent Advances in Space Technologies (RAST), 2015 7th International Conference on, IEEE, 627–634, ISBN: 978-1-4673-7760-7, 2015, DOI: 10.1109/RAST.2015.7208419. [Google Scholar]
  • Bougher, S.W., T.E. Cravens, J. Grebowsky, and J. Luhmann. The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev., 195, 423–456, 2015a, DOI: 10.1007/s11214-014-0053-7. [CrossRef] [Google Scholar]
  • Bougher, S.W., D.J. Pawlowski, J.M. Bell, S. Nelli, T. McDunn, J.R. Murphy, M. Chizek, and A.J. Ridley, Mars global ionosphere-thermosphere model (MGITM): solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. J. Geophys. Res. [Planets], 120, 311–342, 2015b. [CrossRef] [Google Scholar]
  • Brace, L.H., H.A. Taylor, T.I. Gombosi, A.J. Kliore, W.C. Knudsen, and A.F. Nagy. The ionosphere of Venus – observations and their interpretation in Venus. University of Arizona Press, Tucson, USA, 779–840, 1983. [Google Scholar]
  • Brain, D.A., M. Bruce, and R. Jakosky. Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res., 103, 22689–22694, 1998. [CrossRef] [Google Scholar]
  • Brain, D.A., F. Bagenal, M.H. Acuña, and J.E.P. Connerney. Martian magnetic morphology: contributions from the solar wind and crust. J. Geophys. Res., 108 (A12), 1424, 2003, DOI: 10.1029/2002JA009482. [CrossRef] [Google Scholar]
  • Brain, D.A., S.W. Bougher, S.H. Brecht, G.M. Chanteur, S. Curry, et al. Comparison of global models for the escape of Martian atmospheric plasma. In: AGU Fall Meeting Abstracts, 1969, 2012. [Google Scholar]
  • Brandt, P.C., S. Barabash, E.C. Roelof, and C.J. Chase. Energetic neutral atom imaging at low altitudes from the Swedish microsatellite Astrid: observations at low (≤10 keV) energies. J. Geophys. Res., 106, 24663–24674, 2001. [CrossRef] [Google Scholar]
  • Brecht, A.S., and S.W. Bougher. Dayside thermal structure of Venus’ upper atmosphere characterized by a global model. J. Geophys. Res., 117, E08002, 2012, DOI: 10.1029/2012JE004079. [NASA ADS] [CrossRef] [Google Scholar]
  • Brice, N., and T.R. McDonough. Jupiter’s radiation belts. Icarus, 18, 206–219, 1973, DOI: 10.1016/0019-1035(73)90204-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Broadfoot, A.L., S.K. Atreya, J.L. Bertaux, J.E. Blamont, A.J. Dessler, et al. Ultraviolet spectrometer observations of Neptune and Triton. Science, 246, 1459–1466, 1989, DOI: 10.1126/science.246.4936.1459. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Brown, R.H., R.N. Clark, B.J. Buratti, D.P. Cruikshank, J.W. Barnes, et al. Composition and physical properties of Enceladus’ surface. Science, 311, 1425–1428, 2006, DOI: 10.1126/science.1121031. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Bunce, E.J., S.W.H. Cowley, and T.K. Yeoman. Jovian cusp processes: implications for the polar aurora. J. Geophys. Res. [Space Phys.], 109, A09S13, 2004, DOI: 10.1029/2003JA010280. [CrossRef] [Google Scholar]
  • Bunce, E.J., S.W.H. Cowley, and S.E. Milan. Interplanetary magnetic field control of Saturn’s polar cusp aurora. Ann. Geophys., 23, 1405–1431, 2005, DOI: 10.5194/angeo-23-1405-2005. [CrossRef] [Google Scholar]
  • Bunce, E.J., C.S. Arridge, S.W.H. Cowley, and M.K. Dougherty. Magnetic field structure of Saturn’s dayside magnetosphere and its mapping to the ionosphere: results from ring current modeling. J. Geophys. Res. [Space Phys.], 113, A02207, 2008, DOI: 10.1029/2007JA012538. [Google Scholar]
  • Buratti, B.J., K. Soderlund, J. Bauer, J.A. Mosher, M.D. Hicks, et al. Infrared (0.83–5.1 μm) photometry of Phoebe from the Cassini visual infrared mapping spectrometer. Icarus, 193, 309–322, 2008, DOI: 10.1016/j.icarus.2007.09.014. [NASA ADS] [CrossRef] [Google Scholar]
  • Burger, M.H., R.M. Killen, W.E. McClintock, A.W. Merkel, R.J. Vervack, T.A. Cassidy, and M. Sarantos. Seasonal variations in Mercury’s dayside calcium exosphere. Icarus, 238, 51–58, 2014. [CrossRef] [Google Scholar]
  • Burke, B.F., and K.L. Franklin. Observations of a Variable radio source associated with the planet Jupiter. J. Geophys. Res. [Space Phys.], 60, 213–217, 1955, DOI: 10.1029/JZ060i002p00213. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F. Magnetic fields and plasmas in the inner heliosphere: helios results. Planet. Space Sci., 49 (14–15), 1619–1627, 2001, [CrossRef] [Google Scholar]
  • Calvin, W.M., R.N. Clark, R.H. Brown, and J.R. Spencer. Spectra of the icy Galilean satellites from 0.2 to 5 μm: a compilation, new observations, and a recent summary. J. Geophys. Res., 100, 19041–19048, 1995. [CrossRef] [Google Scholar]
  • Carlson, R.W. A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto. Science, 283, 820–821, 1999. [CrossRef] [Google Scholar]
  • Carr, M.H., and J.W. Head. Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. [Planets], 108, 5042, 2003. [CrossRef] [Google Scholar]
  • Cassidy, T.A., and R.E. Johnson. Collisional spreading of Enceladus’ neutral cloud. Icarus, 209, 696–703, 2010, DOI: 10.1016/j.icarus.2010.04.010. [NASA ADS] [CrossRef] [Google Scholar]
  • Cassidy, T.A., R.E. Johnson, P.E. Geissler, and F. Leblanc. Simulation of Na D emission near Europa during eclipse. J. Geophys. Res. [Space Phys.], 113, E02005, 2008, DOI: 10.1029/2007JE002955. [CrossRef] [Google Scholar]
  • Cassidy, T., P. Coll, F. Raulin, R.W. Carlson, R.E. Johnson, M.J. Loeffler, K.P. Hand, and R.A. Baragiola. Radiolysis and photolysis of icy satellite surfaces: experiments and theory. Space Sci. Rev., 153, 299–315, 2010, DOI: 10.1007/s11214-009-9625-3. [CrossRef] [Google Scholar]
  • Cassidy, T.A., C.P. Paranicas, J.H. Shirley, J.B. Dalton III, B.D. Teolis, R.E. Johnson, L. Kamp, and A.R. Hendrix. Magnetospheric ion sputtering and water ice grain size at Europa. Planet. Space Sci., 77, 64–73, 2013, DOI: 10.1016/j.pss.2012.07.008. [NASA ADS] [CrossRef] [Google Scholar]
  • Cassidy, T.A., A.W. Merkel, M.H. Burger, M. Sarantos, R.M. Killen, W.E. McClintock, and R.J. Vervack. Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547–559, 2015, DOI: 10.1016/j.icarus.2014.10.037. [CrossRef] [Google Scholar]
  • Chamberlain, J.W. Planetary coronae and atmospheric evaporation, Planet. Space Sci., 11, 901–960, 1963. [NASA ADS] [CrossRef] [Google Scholar]
  • Chané, E., J. Saur, and S. Poedts. Modeling Jupiter’s magnetosphere: influence of the internal sources. J. Geophys. Res. [Space Phys], 118, 2157–2172, 2013, DOI: 10.1002/jgra.50258. [CrossRef] [Google Scholar]
  • Chappell, C.R. The role of the ionosphere in providing plasma to the terrestrial magnetosphere – an historical overview. Space Sci. Rev., 192 (1–4), 5–25, 2015. [CrossRef] [Google Scholar]
  • Chassefiere, E., and F. Leblanc. Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci., 52, 1039–1058, 2004. [CrossRef] [Google Scholar]
  • Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann. Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. [Planets], 112, 9009, 2007. [CrossRef] [Google Scholar]
  • Cheng, A.F., S.M. Krimigis, B.H. Mauk, E.P. Keath, C.G. Maclennan, L.J. Lanzerotti, M.T. Paonessa, and T.P. Armstrong. Energetic ion and electron phase space densities in the magnetosphere of Uranus. J. Geophys. Res. [Space Phys.], 92, 15315–15328, 1987. [CrossRef] [Google Scholar]
  • Cheng, A.F., S.M. Krimigis, and L.J. Lanzerotti. Energetic particles at Uranus. In: J.T. Bergstralh, E.D. Miner, and M.S. Matthews, Editors. Uranus, Univ. of Arizona Press, USA, 831–893, 1991. [Google Scholar]
  • Clark, R.N., F.P. Fanale, and M.J. Gaffey. Surface composition of satellites. In: J. Burns, and M.S. Matthews, Editors. Satellites, University of Arizona Press, Tucson, 437–491, 1986. [Google Scholar]
  • Clark, R.N., R.H. Brown, R. Jaumann, D.P. Cruikshank, R.M. Nelson, et al. Compositional maps of Saturn’s moon Phoebe from imaging spectroscopy. Nature, 435, 66–69, 2005, DOI: 10.1038/nature03558. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Clark, R.N., J.M. Curchin, R. Jaumann, D.P. Cruikshank, R.H. Brown, et al. Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus, 193, 372–386, 2008, DOI: 10.1016/j.icarus.2007.08.035. [NASA ADS] [CrossRef] [Google Scholar]
  • Clark, R.N., D.P. Cruikshank, R. Jaumann, R.H. Brown, J.M. Curchin, et al. The composition of Iapetus: mapping results from Cassini VIMS. Icarus, 218, 831–860, 2012, DOI: 10.1016/j.icarus.2012.01.008. [NASA ADS] [CrossRef] [Google Scholar]
  • Clarke, J.T., M.K. Hudson, and Y.L. Yung. The excitation of the far ultraviolet electroglow emissions on Uranus, Saturn, and Jupiter. J. Geophys. Res. [Space Phys.], 92 (A13), 15139–15147, 1987. [CrossRef] [Google Scholar]
  • Clarke, J.T., J. Ajello, G. Ballester, L. Ben Jaffel, J. Connerney, et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415, 997–1000, 2002. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Clarke, J.T., J. Nichols, J.C. Gérard, D. Grodent, K.C. Hansen, et al. Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. [Space Phys.], 114, A05210, 2009, DOI: 10.1029/2008JA013694. [Google Scholar]
  • Clifford, S.M., and T.J. Parker. The evolution of the Martian hydrosphere. AGU Fall Meeting Abstracts, 2001. [Google Scholar]
  • Cliver, E.W. The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys. J., 639, 1206–1217, 2006, DOI: 10.1086/499765. [NASA ADS] [CrossRef] [Google Scholar]
  • Coates, A.J., H.J. McAndrews, A.M. Rymer, D.T. Young, F.J. Crary, et al. Plasma electrons above Saturn’s main rings: CAPS observations. Geophys. Res. Lett., 32, L14S09, 2005, DOI: 10.1029/2005GL022694. [CrossRef] [Google Scholar]
  • Coates, A.J., F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, and E.C. Sittler. Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett., 34, L22103, 2007, DOI: 10.1029/2007GL030978. [CrossRef] [Google Scholar]
  • Coates, A.J., A. Wellbrock, G.R. Lewis, G.H. Jones, D.T. Young, F.J. Crary, and J.H. Waite. Heavy negative ions in Titan’s ionosphere: altitude and latitude dependence. Planet. Space Sci., 57 (14–15), 1866–1871, 2009. [CrossRef] [Google Scholar]
  • Coates, A.J., S.M.E. Tsang, A. Wellbrock, R.A. Frahm, J.D. Winningham, S. Barabash, R. Lundin, D.T. Young, and F.J. Crary. Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan. Planet. Space Sci., 59 (10), 1019–1027, 2011. [CrossRef] [Google Scholar]
  • Coates, A.J., A. Wellbrock, R.A. Frahm, J.D. Winningham, A. Fedorov, S. Barabash, and R. Lundin. Distant ionospheric photoelectron energy peak observations at Venus. Planet. Space Sci., 113, 378–384, 2015. [CrossRef] [Google Scholar]
  • Connerney, J.E.P., M.H. Acuña, and N.F. Ness. Saturn’s ring current and inner magnetosphere. Nature, 292, 724–726, 1981. [CrossRef] [Google Scholar]
  • Connerney, J.E.P., M.H. Acuña, and N.F. Ness. Currents in Saturn’s magnetosphere, J. Geophys. Res., 88, (A11), 8779–8789, 1983. [CrossRef] [Google Scholar]
  • Connerney, J.E.P., M.H. Acuña, and N.F. Ness. The magnetic field of Neptune. J. Geophys. Res. [Space Phys.], 96, 19023–19042, 1991. [CrossRef] [Google Scholar]
  • Cooper, J.F. Nuclear cascades in Saturn’s rings – cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J. Geophys. Res. [Space Phys.], 88, 3945–3954, 1983, DOI: 10.1029/JA088iA05p03945. [CrossRef] [Google Scholar]
  • Coradini, A., F. Tosi, A.I. Gavrishin, F. Capaccioni, P. Cerroni, et al. Identification of spectral units on Phoebe. Icarus, 193, 233–251, 2008, DOI: 10.1016/j.icarus.2007.07.023. [CrossRef] [Google Scholar]
  • Coradini, A., D. Turrini, C. Federico, and G. Magni. Vesta and Ceres: crossing the history of the Solar System. Space Sci. Rev., 163, 25–40, 2011. [CrossRef] [Google Scholar]
  • Coustenis, A., and F.W. Taylor. Titan: exploring an earthlike world, 2nd edn., World Scientific Publishing Co, USA, 2008. [CrossRef] [Google Scholar]
  • Coustenis, A., A. Salama, E. Lellouch, T. Encrenaz, G.L. Bjoraker, R.E. Samuelson, T. de Graauw, H. Feuchtgruber, and M.F. Kessler. Evidence for water vapor in Titan’s atmosphere from ISO/SWS data. A&A, 336, L85–L89, 1998. [Google Scholar]
  • Coustenis, A., T. Tokano, M.H. Burger, T.A. Cassidy, R.M. Lopes, R.D. Lorenz, K.D. Retherford, and G. Schubert. Atmospheres/exospheres characteristics of icy satellites. Space Sci. Rev., 153, 155–184, 2010. [CrossRef] [Google Scholar]
  • Coustenis, A., D.E. Jennings, R.K. Achterbergh, G. Bampasidis, P. Lavvas, C.A. Nixon, N.A. Teanby, C.M. Anderson, and F.M. Flasar. Titan’s temporal evolution in stratospheric trace gases near the poles. Icarus, 270, 409–420, 2016, DOI: 10.1016/j.icarus.2015.08.027. [NASA ADS] [CrossRef] [Google Scholar]
  • Cowley, S., E. Bunce, and R. Prangé. Saturn’s polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys., 22, 1379–1394, 2004, DOI: 10.5194/angeo-22-1379-2004. [CrossRef] [Google Scholar]
  • Cowley, S.W.H. Response of Uranus’ auroras to solar wind compressions at equinox. J. Geophys. Res. [Space Phys.], 118, 2897–2902, 2013, DOI: 10.1002/jgra.50323. [CrossRef] [Google Scholar]
  • Cowley, S.W.H., and E.J. Bunce. Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci., 49, 1067–1088, 2001, DOI: 10.1016/S0032-0633(00)00167-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Cowley, S.W.H., and E.J. Bunce. Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys., 21, 1691–1707, 2003, DOI: 10.5194/angeo-21-1691-2003. [CrossRef] [Google Scholar]
  • Cowley, S.W.H., S.V. Badman, E.J. Bunce, J.T. Clarke, J.-C. GéRard, D. Grodent, C.M. Jackman, S.E. Milan, and T.K. Yeoman. Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res. [Space Phys.], 110, A02201, 2005, DOI: 10.1029/2004JA010796. [Google Scholar]
  • Cravens, T.E., I.P. Robertson, S.A. Ledvina, D. Mitchell, S.M. Krimigis, and J.H. Waite. Energetic ion precipitation at Titan. Geophys. Res. Lett., 35, L03103, 2008, DOI: 10.1029/2007GL032451. [NASA ADS] [CrossRef] [Google Scholar]
  • Cravens, T.E., R.L. McNutt, J.H. Waite, I.P. Robertson, J.G. Luhmann, W. Kasprzak, and W.-H. Ip. Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer. Geophys. Res. Lett., 36, L08106, 2009, DOI: 10.1029/2009GL037811. [CrossRef] [Google Scholar]
  • Cruikshank, D.P., E. Wegryn, C.M. Dalle Ore, R.H. Brown, J.-P. Bibring, et al. Hydrocarbons on Saturn’s satellites Iapetus and Phoebe. Icarus, 193, 334–343, 2008, DOI: 10.1016/j.icarus.2007.04.036. [NASA ADS] [CrossRef] [Google Scholar]
  • Cruikshank, D.P., A.W. Meyer, R.H. Brown, R.N. Clark, R. Jaumann, et al. Carbon dioxide on the satellites of Saturn: results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus, 206, 561–572, 2010, DOI: 10.1016/j.icarus.2009.07.012. [NASA ADS] [CrossRef] [Google Scholar]
  • Cui, J., R.V. Yelle, V. Vuitton, J.H. Waite Jr., W.T. Kasprzak, et al. Analysis of Titan’s neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus, 200, 581–615, 2009a, DOI: 10.1016/j.icarus.2008.12.005. [NASA ADS] [CrossRef] [Google Scholar]
  • Cui, J., M. Galand, R.V. Yelle, V. Vuitton, J.-E. Wahlund, et al. Diurnal variations of Titan’s ionosphere. J. Geophys. Res., 114, A06310, 2009b, DOI: 10.1029/2009JA014228. [CrossRef] [Google Scholar]
  • Cunningham, N.J., J.R. Spencer, P.D. Feldman, D.F. Strobel, K. France, and S.N. Osterman. Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope. Icarus, 254, 178–189, 2015, DOI: 10.1016/j.icarus.2015.03.021. [CrossRef] [Google Scholar]
  • Dalton, B., D. Cruikshank, K. Stephan, T. McCord, A. Coustenis, R. Carlson, and A. Coradini. Chemical composition of icy satellite surfaces. Space Sci. Rev., 153, 113–154, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Dandouras, I., P. Garnier, D.G. Mitchell, E.C. Roelof, P.C. Brandt, N. Krupp, and S.M. Krimigis. Titan’s exosphere and its interaction with Saturn’s magnetosphere. Philos. Trans. R. Soc. London: Ser. A, 367, 743–752, 2009, DOI: 10.1098/rsta.2008.0249. [CrossRef] [Google Scholar]
  • Dartnell, L.R. Ionizing radiation and life. Astrobiology, 11, 551–582, 2011, DOI: 10.1089/ast.2010.0528. [NASA ADS] [CrossRef] [Google Scholar]
  • Dartnell, L.R., L. Desorgher, J.M. Ward, and A.J. Coates. Martian sub-surface ionising radiation: biosignatures and geology. Biogeosciences, 4, 545–558, 2007a, DOI: 10.5194/bg-4-545-2007. [CrossRef] [Google Scholar]
  • Dartnell, L.R., L. Desorgher, J.M. Ward, and A.J. Coates. Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett., 34, L02207, 2007b, DOI: 10.1029/2006GL027494. [CrossRef] [Google Scholar]
  • Dartnell, L.R., S.J. Hunter, K.V. Lovell, A.J. Coates, and J.M. Ward. Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology, 10, 717–732, 2010, DOI: 10.1089/ast.2009.0439. [CrossRef] [Google Scholar]
  • Dartnell, L.R., T.A. Nordheim, M.R. Patel, J.P. Mason, A.J. Coates, and G.H. Jones. Constraints on a potential aerial biosphere on Venus: I. Cosmic rays. Icarus, 257, 396–405, 2015. [CrossRef] [Google Scholar]
  • Decker, R.B., and A.F. Cheng. A model of Triton’s role in Neptune’s magnetosphere. J. Geophys. Res. [Space Phys.], 99, 19027, 1994, DOI: 10.1029/94JE01867. [CrossRef] [Google Scholar]
  • Delamere, P.A., and F. Bagenal. Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. [Space Phys.], 118 (11), 7045–7053, 2013. [CrossRef] [Google Scholar]
  • Delamere, P.A., F. Bagenal, and A. Steffl. Radial variations in the Io plasma torus during the Cassini era. J. Geophys. Res. [Space Phys.], 110, A12223, 2005, DOI: 10.1029/2005JA011251. [CrossRef] [Google Scholar]
  • Delcourt, D.C., S. Grimald, F. Leblanc, J.-J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T.E. Moore. A quantitative model of the planetary Na+ contribution to Mercury’s magnetosphere. Ann. Geophys., 21 (8), 1723–1736, 2003. [CrossRef] [Google Scholar]
  • DiBraccio, G.A., J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, et al. MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. [Space Phys.], 118, 997–1008, 2013, DOI: 10.1002/jgra.50123. [CrossRef] [Google Scholar]
  • Dols, V.J., F. Bagenal, T.A. Cassidy, F.J. Crary, and P.A. Delamere. Europa’s atmospheric neutral escape: Importance of symmetrical O2 charge exchange. Icarus, 264, 387–397, 2016. [CrossRef] [Google Scholar]
  • Donahue, T.M., D.H. Grinspoon, R.E. Hartle, and R.R. Hodgee. Ion/neutral escape of hydrogen and deuterium: evolution of water. In: S.W. Bougher, D.M. Hunten, and R.J. Philips, Editors. Venus II – Geology, Geophysics, Atmosphere, and Solar Wind Environment, University of Arizona Press, Tuscon, 385–414, 1997. [Google Scholar]
  • Dorman, L. Cosmic Rays in Magnetospheres of the Earth and other Planets, 358, Springer Science & Business Media, Germany, 2009. [Google Scholar]
  • Dougherty, M.K., L.W. Esposito, and S.M. Krimigis. Saturn from Cassini-Huygens, Springer, Germany, 2009, DOI: 10.1007/978-1-4020-9217-6. [CrossRef] [Google Scholar]
  • Drossart, P., B. Bézard, S.K. Atreya, J. Bishop, J.H. Waite, and D. Boice. Thermal profiles in the auroral regions of Jupiter. J. Geophys. Res. [Planets], 98 (E10), 18803–18811, 1993. [CrossRef] [Google Scholar]
  • Drossart, P., G. Piccioni, J.-C. Gérard, M.A. Lopez-Valverde, A. Sanchez-Lavega, et al. A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature, 450, 641–645, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Dubach, J., R. Whitten, and J. Sims. The lower ionosphere of Venus. Planet. Space Sci., 22, 525–536, 1974, DOI: 10.1016/0032-0633(74)90087-7. [CrossRef] [Google Scholar]
  • Dubinin, E., R. Modolo, M. Fraenz, J. Woch, G. Chanteur, et al. Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations. J. Geophys. Res. [Space Phys], 113, 10217, 2008. [Google Scholar]
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, 10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef] [Google Scholar]
  • Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6, 47–48, 1961, DOI: 10.1103/PhysRevLett.6.47. [NASA ADS] [CrossRef] [Google Scholar]
  • Dušík, Š., G. Granko, J. Šafránková, Z. Němeček, and K. Jelínek. IMF cone angle control of the magnetopause location: statistical study. Geophys. Res. Lett., 37, L19103, 2010, DOI: 10.1029/2010GL044965. [Google Scholar]
  • Duvall, A.L., C.G. Justus, and V.W. Keller. Global Reference Atmospheric Models for Aeroassist Applications. In: 3rd international planetary probe workshop (Anavyssos, Attiki, Greece), 27, 20060004756 (NASA Marshall Space Flight Center, Huntsville, USA), 2005. [Google Scholar]
  • Edberg, N.J.T., J.-E. Wahlund, K. Ågren, M.W. Morooka, R. Modolo, C. Bertucci, and M.K. Dougherty. Electron density and temperature measurements in the cold plasma environment of Titan: implications for atmospheric escape. Geophys. Res. Lett., 37, L20105, 2010, DOI: 10.1029/2010GL044544. [Google Scholar]
  • Elsner, R.F., N. Lugaz, J.H. Waite, T.E. Cravens, G.R. Gladstone, et al. Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. J. Geophys. Res. [Space Phys.], 110, A01207, 2005, DOI: 10.1029/2004JA010717. [NASA ADS] [CrossRef] [Google Scholar]
  • Eviatar, A., V.M. Vasyliunas, and D.A. Gurnett. The ionosphere of Ganymede. Planet. Space Sci., 49, 327–336, 2001, DOI: 10.1016/S00320633(00)00154-9. [CrossRef] [Google Scholar]
  • Fairfield, D.H. Average and unusual locations of the Earth’s magnetopause and bow shock. J. Geophys. Res., 76 (28), 6700, 1971. [CrossRef] [Google Scholar]
  • Famà, M., J. Shi, and R.A. Baragiola. Sputtering of ice by low-energy ions. Surf. Sci., 602, 156–161, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Fasel, G.J., L.C. Lee, and R.W. Smith. A mechanism for the multiple brightenings of dayside poleward-moving auroral forms. Geophys. Res. Lett., 20, 2247–2250, 1993, DOI: 10.1029/93GL02487. [CrossRef] [Google Scholar]
  • Fedorova, A., O. Korablev, A.-C. Vandaele, J.-L. Bertaux, D. Belyaev, et al. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by solar occultation at infrared spectrometer on board Venus Express. J. Geophys. Res., 113, E00B22, 2008, DOI: 10.1029/2008JE003146. [CrossRef] [Google Scholar]
  • Feuchtgruber, H., E. Lellouch, T. de Graauw, B. Bézard, T. Encrenaz, and M. Griffin. External supply of oxygen to the atmospheres of the giant planets. Nature, 389 (6647), 159–162, 1997. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Fichtner, H., B. Heber, and M. Leipold. The science with the interstellar heliopause probe. Astrophys. Space Sci. Trans., 2, 33–43, 2006. [CrossRef] [Google Scholar]
  • Fleshman, B.L., P.A. Delamere, and F. Bagenal. Modeling the Enceladus plume–plasma interaction. Geophys. Res. Lett., 37, L03202, 2010, DOI: 10.1029/2009GL041613. [CrossRef] [Google Scholar]
  • Forbes, J.M., S. Bruinsma, and F.G. Lemoine. Solar rotation effects on the thermospheres of Mars and Earth. Science, 312, 1366–1368, 2006, DOI: 10.1126/science.1126389. [CrossRef] [Google Scholar]
  • Forget, F., F. Montmessin, J.-L. Bertaux, F. Gonzalez-Galindo, S. Lebonnois, E. Quemerais, A. Reberac, E. Dimarellis, and M.A. Lopez-Valverde. Density and temperatures of the upper Mar atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. [Planets], 114, 1004, 2009. [CrossRef] [Google Scholar]
  • Fox, J.L. Near-terminator Venus ionosphere: how Chapman-esque? J. Geophys. Res., 112, E04S02, 2007, DOI: 10.1029/2006JE002736. [CrossRef] [Google Scholar]
  • Fox, J.L. The chemistry of protonated species in the martian ionosphere. Icarus, 252, 366–392, 2015, DOI: 10.1016/j.icarus.2015.01.010. [CrossRef] [Google Scholar]
  • Fox, J.L., and S.W. Bougher. Structure, luminosity, and dynamics of the Venus thermosphere. In: Venus Aeronomy, Springer, Netherlands, 357–489, 1991. [CrossRef] [Google Scholar]
  • Fox, J.L., P. Zhou, and S.W. Bougher. The Martian thermosphere/ionosphere at high and low solar activities. Adv. Space Res., 17 (11), 203–218, 1996, DOI: 10.1016/0273-1177(95)00751-Y. [CrossRef] [Google Scholar]
  • Frank, L.A., J.D. Craven, J.L. Burch, and J.D. Winningham. Polar views of the earth’s aurora with Dynamics Explorer. Geophys. Res. Lett., 9, 1001–1004, 1982, DOI: 10.1029/GL009i009p01001. [CrossRef] [Google Scholar]
  • Frank, L.A., W.R. Paterson, K.L. Ackerson, and S.J. Bolton. Outflow of hydrogen ions from Ganymede. Geophys. Res. Lett., 24 (17), 2151–2154, 1997. [CrossRef] [Google Scholar]
  • Fulchignoni, M., F. Ferri, F. Angrilli, A.J. Ball, A. Bar-Nun, et al. In situ measurements of the physical characteristics of Titan’s environment. Nature, 438, 785–791, 2005, DOI: 10.1038/nature04314. [NASA ADS] [CrossRef] [Google Scholar]
  • Funsten, H.O., F. Allegrini, G.B. Crew, R. DeMajistre, P.C. Frisch, et al. Structures and spectral variations of the outer heliosphere in IBEX energetic neutral atom maps. Science, 326, 5955–5964, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Fuselier, S.A., H.L. Collin, A.G. Ghielmetti, E.S. Claflin, T.E. Moore, et al. Localized ion outflow in response to a solar wind pressure pulse. J. Geophys. Res. [Space Phys.], 107, 1203, 2002, DOI: 10.1029/2001JA000297. [Google Scholar]
  • Futaana, Y., S. Barabash, M. Yamauchi, S. McKenna-Lawlor, R. Lundin, et al. Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci., 6, 873–880, 2008. [CrossRef] [Google Scholar]
  • Futaana, Y., S. Barabash, X.-D. Wang, M. Wieser, G.S. Wieser, P. Wurz, N. Krupp, and P.C. Brandt. Low-energy energetic neutral atom imaging of Io plasma and neutral tori. Planet. Space Sci., 108, 41–53, 2015. [CrossRef] [Google Scholar]
  • Gagné, M.-È., J.-L. Bertaux, F. González-Galindo, S.M.L. Melo, F. Montmessin, and K. Strong. New nitric oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMD-MGCM model prediction: evidence for asymmetric hemispheres. J. Geophys. Res. [Planets], 118, 2172–2179, 2013, DOI: 10.1002/jgre.20165. [CrossRef] [Google Scholar]
  • Galand, M., J. Lilensten, D. Toublanc, and S. Maurice. The ionosphere of Titan: ideal diurnal and nocturnal cases. Icarus, 140, 92–105, 1999, DOI: 10.1006/icar.1999.6113. [NASA ADS] [CrossRef] [Google Scholar]
  • Galand, M., L. Moore, B. Charnay, I. Mueller-Wodarg, and M. Mendillo. Solar primary and secondary ionization at Saturn. J. Geophys. Res., 114 (A6), A06313, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Gannon, J.L., X. Li, and M. Temerin. Parametric study of shock-induced transport and energization of relativistic electrons in the magnetosphere. J. Geophys. Res., 110, A12206, 2005, DOI: 10.1029/2004JA010679. [CrossRef] [Google Scholar]
  • Garnier, P., J.-E. Wahlund, L. Rosenqvist, R. Modolo, K. Agren, et al. Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys., 27, 4257–4272, 2009, DOI: 10.5194/angeo-27-4257-2009. [CrossRef] [Google Scholar]
  • Garnier, P., I. Dandouras, D. Toublanc, E.C. Roelof, P.C. Brandt, et al. Statistical analysis of the energetic ion and ENA data for the Titan environment. Planet. Space Sci., 58, 1811–1822, 2010, DOI: 10.1016/j.pss.2010.08.009. [CrossRef] [Google Scholar]
  • Gérard, J.-C., D. Grodent, J. Gustin, A. Saglam, J.T. Clarke, and J.T. Trauger. Characteristics of Saturn’s FUV aurora observed with the Space Telescope Imaging Spectrograph. J. Geophys. Res. [Space Phys.], 109, A09207, 2004, DOI: 10.1029/2004JA010513. [Google Scholar]
  • Gérard, J.-C., E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, and S.V. Badman. Signature of Saturn’s auroral cusp: simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. [Space Phys.], 110, A11201, 2005, DOI: 10.1029/2005JA011094. [NASA ADS] [CrossRef] [Google Scholar]
  • Gérard, J.C., L. Soret, L. Libert, R. Lundin, A. Stiepen, A. Radioti, and J.L. Bertaux. Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. J. Geophys. Res. [Space Phys.], 120 (8), 6749–6765, 2015. [CrossRef] [Google Scholar]
  • Gershman, D.J., J.A. Slavin, J.M. Raines, T. Zurbuchen, B. Anderson, H. Korth, D. Baker, and S. Solomon. Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res., 118, 7181, 2013. [CrossRef] [Google Scholar]
  • Gillmann, C., P. Lognonné, E. Chassefiere, and M. Moreira. The present-day atmosphere of Mars: where does it come from? Earth Planet. Sci. Lett., 277, 384–393, 2009. [CrossRef] [Google Scholar]
  • Gladstone, G.R., J.H. Waite, D. Grodent, W.S. Lewis, F.J. Crary, et al. A pulsating auroral X-ray hot spot on Jupiter. Nature, 415, 1000–1003, 2002. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Glassmeier, K.-H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach. Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev., 132, 511–527, 2007, DOI: 10. 1007/s11214-007-9244-9. [CrossRef] [Google Scholar]
  • Gombosi, T.I., T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, and M.F. Thomsen. Saturn’s Magnetospheric Configuration. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis, Editors. Saturn from Cassini-Huygens, Springer Science+Business Media B.V, Heidelberg, 203, 2009. [CrossRef] [Google Scholar]
  • Gopalswamy, N., H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, and I.G. Usoskin. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev., 171, 23–60, 2012, DOI: 10.1007/s11214-012-9890-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Gray, C.L., N.J. Chanover, T.G. Slanger, and K. Molaverdikhani. The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577Å oxygen green line. Icarus, 233, 342–347, 2014. [CrossRef] [Google Scholar]
  • Grasset, O., M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, et al. JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci., 78, 1–21, 2013, DOI: 10.1016/j.pss.2012.12.002 [NASA ADS] [CrossRef] [Google Scholar]
  • Grodent, D., J.H. Waite, and J.C. Gérard. A self‐consistent model of the Jovian auroral thermal structure. J. Geophys. Res. [Space Phys.], 106 (A7), 12933–12952, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Grodent, D., J.T. Clarke, J. Kim, J.H. Waite, and S.W.H. Cowley. Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. [Space Phys.], 108, 1389, 2003a, DOI: 10.1029/2003JA009921. [CrossRef] [Google Scholar]
  • Grodent, D., J.T. Clarke, J.H. Waite, S.W.H. Cowley, J.-C. Gérard, and J. Kim. Jupiter’s polar auroral emissions. J. Geophys. Res. [Space Phys.], 108, 1366, 2003b, DOI: 10.1029/2003JA010017. [CrossRef] [Google Scholar]
  • Grodent, D., J.-C. Gérard, J.T. Clarke, G.R. Gladstone, and J.H. Waite. A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. [Space Phys.], 109, A05201, 2004, DOI: 10.1029/2003JA010341. [CrossRef] [Google Scholar]
  • Grodent, D., J.-C. Gérard, S.W.H. Cowley, E.J. Bunce, and J.T. Clarke. Variable morphology of Saturn’s southern ultraviolet aurora. J. Geophys. Res. [Space Phys.], 110, A07215, 2005, DOI: 10.1029/2004JA010983. [CrossRef] [Google Scholar]
  • Grodent, D., B. Bonfond, A. Radioti, J.-C. Gerard, X. Jia, J.D. Nichols, and J.T. Clarke. Auroral footprint of Ganymede. J. Geophys. Res. [Space Phys.], 114, A07212, 2009, DOI: 10.1029/2009JA014289. [CrossRef] [Google Scholar]
  • Grodent, D., J. Gustin, J.-C. Gerard, A. Radioti, B. Bonfond, and W.R. Pryor. Small-scale structures in Saturn’s ultraviolet aurora. J. Geophys. Res. [Space Phys.], 116, A09225, 2011, DOI: 10.1029/2011JA016818. [CrossRef] [Google Scholar]
  • Grodent, D.A. Brief review of ultraviolet auroral emissions on giant planets. Space Sci. Rev., 187, 23–50, 2015, DOI: 10.1007/s11214-014-0052-8. [CrossRef] [Google Scholar]
  • Gronoff, G., J. Lilensten, C. Simon, M. Barthélemy, and F. Leblanc. Modelling the Venusian airglow. A&A, 482, 1015–1029, 2008, DOI: 10.1051/0004-6361:20077503. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Gronoff, G., J. Lilensten, L. Desorgher, and E. Flückiger. Ionization processes in the atmosphere of Titan. I. Ionization in the whole atmosphere. A&A, 506, 955–964, 2009a, DOI: 10.1051/0004-6361/200912371. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Gronoff, G., J. Lilensten, and R. Modolo. Ionization processes in the atmosphere of Titan. II. Electron precipitation along magnetic field lines. A&A, 506, 965–970, 2009b, DOI: 10.1051/0004-6361/200912125. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Gronoff, G., C. Mertens, J. Lilensten, L. Desorgher, E. Flückiger, and P. Velinov. Ionization processes in the atmosphere of Titan. III. Ionization by high-Z nuclei cosmic rays. A&A, 529, A143, 2011, DOI: 10.1051/0004-6361/201015675. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gronoff, G., R.B. Norman, and C.J. Mertens. Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles. Adv. Space Res., 55, 1799–1805, 2015, DOI: 10.1016/j.asr.2015.01.028. [CrossRef] [Google Scholar]
  • Grott, M., A. Morschhauser, D. Breuer, and E. Hauber. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett., 308, 391–400, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Guervilly, C., P. Cardin, and N. Schaeffer. A dynamo driven by zonal jets at the upper surface: applications to giant planets. Icarus, 218, 100–114, 2012, DOI: 10.1016/j.icarus.2011.11.014. [CrossRef] [Google Scholar]
  • Guinan, E.F., and I. Ribas. Our changing Sun: the role of solar nuclear evolution and magnetic activity on Easrth’s atmosphere and climate. ASP Conference Series, 269, 86–106, 2002. [Google Scholar]
  • Gurnett, D.A., W.S. Kurth, A. Roux, S.J. Bolton, and C.F. Kennel. Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature, 384, 535–537, 1996, DOI: 10.1038/384535a0. [CrossRef] [Google Scholar]
  • Gurnett, D.A., P. Zarka, R. Manning, W.S. Kurth, G.B. Hospodarsky, T.F. Averkamp, M.L. Kaiser, and W.M. Farrell. Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature, 409, 313–315, 2001, DOI: 10.1038/35053009. [CrossRef] [Google Scholar]
  • Gurnett, D.A., W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, P. Zarka, et al. Control of Jupiter’s radio emission and aurorae by the solar wind. Nature, 415 (6875), 985–987, 2002. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gurtner, M., L. Desorgher, E.O. Flückiger, and M.R. Moser. A Geant4 application to simulate the interaction of space radiation with the Mercurian environment. Adv. Space Res., 37, 1759–1763, 2006, DOI: 10.1016/j.asr.2004.12.015. [CrossRef] [Google Scholar]
  • Hall, D.T., D.F. Strobel, P.D. Feldman, M.A. McGrath, and H.A. Weaver. Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature, 373 (6516), 677–681, 1995. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hall, D.T., P.D. Feldman, M.A. McGrath, and D.F. Strobel. The far ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J., 499, 475–481, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Hallinan, G., S.P. Littlefair, G. Cotter, S. Bourke, L.K. Harding, et al. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence. Nature, 523 (7562), 568–571, 2015. [NASA ADS] [CrossRef] [Google Scholar]
  • Hamelin, M., C. Béghin, R. Grard, J.J. López-Moreno, K. Schwingenschuh, et al. Electron conductivity and density profiles derived from the mutual impedance probe measurements performed during the descent of Huygens through the atmosphere of Titan. Planet. Space Sci., 55, 1964–1977, 2007, DOI: 10.1016/j.pss.2007.04.008. [NASA ADS] [CrossRef] [Google Scholar]
  • Hanel, R., B. Conrath, F.M. Flasar, V. Kunde, W. Maguire, et al. Infrared observations of the Uranian system. Science, 233 (4759), 70–74, 1986. [NASA ADS] [CrossRef] [Google Scholar]
  • Hanlon, P.G., M.K. Dougherty, R.J. Forsyth, M.J. Owens, K.C. Hansen, G. Tóth, F.J. Crary, and D.T. Young. On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region. J. Geophys. Res. [Space Phys.], 109 (A9), A09S03, 2004. [Google Scholar]
  • Hansen, C.J., D.E. Shemansky, and A.R. Hendrix. Cassini UVIS observations of Europa’s oxygen atmosphere and torus. Icarus, 176, 305–315, 2005. [CrossRef] [Google Scholar]
  • Hartogh, P., E. Lellouch, J. Crovisier, M. Banaszkiewicz, F. Bensch, et al. Water and related chemistry in the Solar System. A guaranteed time key programme for Herschel. Planet. Space Sci., 57 (13), 1596–1606, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Hartogh, P., D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, and N. Biver. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature, 478 (7368), 218–220, 2011. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hasegawa, H., M. Fujimoto, Y. Saito, and T. Mukai. Dense and stagnant ions in the low-latitude boundary region under northward interplanetary magnetic field. Geophys. Res. Lett., 31, L06802, 2004a, DOI: 10.1029/2003GL019120. [Google Scholar]
  • Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Reme, A. Balogh, M.W. Dunlop, C. Hashimoto, and R. TanDokoro. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature, 430, 755–758, 2004b. [NASA ADS] [CrossRef] [Google Scholar]
  • Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, S. Böttcher, C. Martin, et al. The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev., 170, 503–558, 2012, DOI: 10.1007/s11214-012-9913-1. [NASA ADS] [CrossRef] [Google Scholar]
  • Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, B. Ehresmann, S. Rafkin, et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science, 343, 1244797, 2014, DOI: 10.1126/science.1244797. [CrossRef] [Google Scholar]
  • Herbert, F. Aurora and magnetic field of Uranus. J. Geophys. Res. [Space Phys], 114, A11, 2009, DOI: 10.1029/2009JA014394. [Google Scholar]
  • Herbert, F., B.R. Sandel, R.V. Yelle, J.B. Holberg, A.L. Broadfoot, D.E. Shemansky, S.K. Atreya, and P.N. Romani. The upper atmosphere of Uranus - EUV occultations observed by Voyager 2. J. Geophys. Res., 92, 15093–15109, 1987. [CrossRef] [Google Scholar]
  • Hill, T.W. The Jovian auroral oval. J. Geophys. Res. [Space Phys.], 106, 8101–8108, 2001, DOI: 10.1029/2000JA000302. [NASA ADS] [CrossRef] [Google Scholar]
  • Ho, G.C., S.M. Krimigis, R.E. Gold, D.N. Baker, B.J. Anderson, et al. Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res., 117, A00M04, 2012. [Google Scholar]
  • Hood, L.L. Radial diffusion in Saturn’s radiation belts – a modeling analysis assuming satellite and ring E absorption. J. Geophys. Res. [Space Phys.], 88, 808–818, 1983, DOI: 10.1029/JA088iA02p00808. [CrossRef] [Google Scholar]
  • Hood, L.L., and G. Schubert. Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res., 84, 2641–2647, 1979. [CrossRef] [Google Scholar]
  • Huddleston, D.E., C.T. Russell, G. Le, and A. Szabo. Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. [Space Phys.], 102, 24289–24302, 1997, DOI: 10.1029/97JA02416. [CrossRef] [Google Scholar]
  • Hunt, G.J., S.W.H. Cowley, G. Provan, E.J. Bunce, I.I. Alexeev, E.S. Belenkaya, V.V. Kalegaev, M.K. Dougherty, and A.J. Coates. Field-aligned currents in Saturn’s southern nightside magnetosphere: subcorotation and planetary period oscillation components. J. Geophys. Res. [Space Phys.], 119, 9847–9899, 2014, DOI: 10.1002/2014JA020506. [CrossRef] [Google Scholar]
  • Ip, W.-H. Europa’s oxygen exosphere and its magnetospheric interaction. Icarus, 120, 317–325, 1996, DOI: 10.1006/icar.1996.0052. [CrossRef] [Google Scholar]
  • Jackman, C.M., N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, and E.J. Smith. Interplanetary magnetic field at ~9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res., 109, A11203, 2004, DOI: 10.1029/2004JA010614. [CrossRef] [Google Scholar]
  • Jackman, C.M., R.J. Forsyth, and M.K. Dougherty. The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res., 113, A08114, 2008, DOI: 10.1029/2008JA013083. [Google Scholar]
  • Jackman, C.M., L. Lamy, M.P. Freeman, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, and M.K. Dougherty. On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res., 114, A08211, 2009, DOI: 10.1029/2008JA013997. [Google Scholar]
  • Jackman, C.M., N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, and W. Pryor. Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci., 82, 34–42, 2013, DOI: 10.1016/j.pss.2013.03.010. [CrossRef] [Google Scholar]
  • Jakosky, B.M., J.M. Grebowsky, J.G. Luhmann, J. Connerney, F. Eparvier, et al. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 350 (6261), 1–7, 2015. [CrossRef] [Google Scholar]
  • Jasinski, J.M., C.S. Arridge, L. Lamy, J.S. Leisner, M.F. Thomsen, et al. Cusp observation at Saturn’s high-latitude magnetosphere by the Cassini spacecraft. Geophys. Res. Lett., 41, 1382–1388, 2014, DOI: 10.1002/2014GL059319. [CrossRef] [Google Scholar]
  • Jaumann, R., R.H. Brown, K. Stephan, J.W. Barnes, and L.A. Soderblom. Fluvial erosion and post-erosional processes on Titan. Icarus, 197, 526–538, 2008, DOI: 10.1016/j.icarus.2008.06.002. [CrossRef] [Google Scholar]
  • Jia, X., R.J. Walker, M.G. Kivelson, K.K. Khurana, and J.A. Linker. Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. [Space Phys.], 114, A09209, 2009, DOI: 10.1029/2009JA014375. [CrossRef] [Google Scholar]
  • Jia, X., R.J. Walker, M.G. Kivelson, K.K. Khurana, and J.A. Linker. Dynamics of Ganymede’s magnetopause: intermittent reconnection under steady external conditions. J. Geophys. Res., 115, A12202, 2010, DOI: 10.1029/ 2010JA015771. [Google Scholar]
  • Jia, X., K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, and A.J. Ridley. Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. [Space Phys.], 117, A05225, 2012, DOI: 10.1029/2012JA017575. [CrossRef] [Google Scholar]
  • Jia, X., J.A. Slavin, T.I. Gombosi, L.K.S. Daldorff, G. Toth, and B. van der Holst. Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. [Space Phys.], 120, 4763–4775, 2015, DOI: 10.1002/2015JA021143. [CrossRef] [Google Scholar]
  • Johnson, R.E. Plasma-induced sputtering of an atmosphere. Space Sci. Rev., 69, 215–253, 1994. [CrossRef] [Google Scholar]
  • Johnson, R.E. Polar caps on Ganymede and Io revisited. Icarus, 128, 469–471, 1997, DOI: 10.1006/icar.1997.5746. [CrossRef] [Google Scholar]
  • Johnson, R.E. Surface chemistry in the Jovian magnetosphere radiation environment. In: R. Dessler, Editor. Chemical Dynamics in Extreme Environments, Adv. Ser. Phys. Chem. World Scientific, Singapore 11, 390–419 (Chapter 8), 2001. [CrossRef] [Google Scholar]
  • Johnson, R.E., R.W. Carlson, J.F. Cooper, C. Paranicas, M.H. Moore, and M.C. Wong. Radiation effects on the surface of the Galilean satellites. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge Univ. Press, 485–512, (Chapter 20), 2004. [Google Scholar]
  • Johnson, R.E., J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, et al. Production ionization and redistribution of O2 in Saturn’s ring atmosphere. Icarus, 180, 393–402, 2006, DOI: 10.1016/j.icarus.2005.08.021. [NASA ADS] [CrossRef] [Google Scholar]
  • Johnson, R.E., M.H. Burger, T.A. Cassidy, F. Leblanc, M. Marconi, and W.H. Smyth. Composition and Detection of Europa’s Sputter-Induced Atmosphere. In: R.T. Pappalardo, W.B. McKinnon, K. Khurana, and K. Khurana, Editors. Europa, University of Arizona Press, Tucson, 507–527, 2009. [Google Scholar]
  • Kabin, K., T.I. Gombosi, D.L. Dezeeuw, and K.G. Powell. Interaction of Mercury with the solar wind. Icarus, 143 (2), 397, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler, S.W., N.R. Sheeley Jr., R.A. Howard, D.J. Michels, M.J. Koomen, R.E. McGuire, T.T. von Rosenvinge, and D.V. Reames. Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res., 89, 9683–9693, 1984, DOI: 10.1029/JA089iA11p09683. [NASA ADS] [CrossRef] [Google Scholar]
  • Kallio, E., and P. Janhunen. Solar wind and magnetospheric ion impact on Mercury’s surface. Geophys. Res. Lett., 30 (17), 1877, 2003, DOI: 10.1029/2003GL017842. [CrossRef] [Google Scholar]
  • Kallio, E., and P. Janhunen. The response of the Hermean magnetosphere to the interplanetary magnetic field. Adv. Space Res., 33 (12), 2176–2181, 2004. [CrossRef] [Google Scholar]
  • Kameda, S., I. Yoshikawa, M. Kagitani, and S. Okano. Interplanetary dust distribution and temporal variability of Mercury’s atmospheric Na. Geophys. Res. Lett., 36, L15201, 2009, DOI: 10.1029/2009GL039036. [CrossRef] [Google Scholar]
  • Keating, G.M., J.L. Bertaux, S.W. Bougher, R.E. Dickinson, T.E. Cravens, et al. Models of Venus neutral upper atmosphere: Structure and composition. Adv. Space Res., 5 (11), 117–171, 1985, DOI: 10.1016/0273-1177(85)90200-5. [NASA ADS] [CrossRef] [Google Scholar]
  • Khurana, K.K., M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, and C. Polanskey. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777–780, 1998, DOI: 10.1038/27394. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Khurana, K.K., M.G. Kivelson, V.M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B.H. Mauk, and W.S. Kurth. The configuration of Jupiter’s magnetosphere. In: F. Bagenal, T. Dowlingand, and W. McKinnon, Editors. Jupiter: The Planet, Satellites, Magnetosphere, Cambridge University Press, UK, 593–616, 2004. [Google Scholar]
  • Khurana, K.K., R.T. Pappalardo, N. Murphy, and T. Denk. The origin of Ganymede’s polar caps. Icarus, 191, 193–202, 2007. [CrossRef] [Google Scholar]
  • Khurana, K.K., C.T. Russell, and M.K. Dougherty. Magnetic portraits of Tethys and Rhea. Icarus, 193, 465–474, 2008, DOI: 10.1016/j.icarus.2007.08.005. [CrossRef] [Google Scholar]
  • Khurana, K.K., M.G. Kivelson, K.P. Hand, and C.T. Russel. Electromagnetic induction from Europa’s ocean and the deep interior. In: Robert.T. Pappalardo, William.B. McKinnon, and K. Khurana, Editors. Europa, University of Arizona Press, Tucson, 572–586, 2009. [Google Scholar]
  • Killen, R., G. Cremonese, H. Lammer, S. Orsini, A.E. Potter, et al. Processes that Promote and Deplete the Exosphere of Mercury. Space Sci. Rev., 132 (2–4), 433–509, 2007, DOI: 10.1007/s11214-007-9232-0. [NASA ADS] [CrossRef] [Google Scholar]
  • Killen, R.M., and W.-H. Ip. The surface-bounded atmospheres of Mercury and the Moon. Rev. Geophys., 37 (i.3), 361–406, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Killen, R.M., A.E. Potter, P. Reiff, M. Sarantos, B.V. Jackson, P. Hick, and B. Giles. Evidence of space weather at Mercury. J. Geophys. Res., 106 (E9), 20509–20525, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Killen, R.M., T.A. Bida, and T.H. Morgan. The calcium exosphere of Mercury. Icarus, 173 (2), 300–311, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Killen, R.M., and J.M. Hahn. Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus, 250, 230–237, 2015. [NASA ADS] [CrossRef] [Google Scholar]
  • Kim, M.-H.Y., F.A. Cucinotta, H.N. Nounu, C. Zeitlin, D.M. Hassler, et al. Comparison of Martian surface ionizing radiation measurements from MSL-RAD with Badhwar-O’Neill 2011/HZETRN model calculations. J. Geophys. Res. [Planets], 119, 1311–1321, 2014, DOI: 10.1002/2013JE004549. [CrossRef] [Google Scholar]
  • Kivelson, M.G., and C.T. Russell. Introduction to space physics, Cambridge University Press, Cambridge, ISBN: 0-521-45104-3, 1995. [Google Scholar]
  • Kivelson, M.G., K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, and G. Schubert. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384, 537–541, 1996. [NASA ADS] [CrossRef] [Google Scholar]
  • Kivelson, M.G., K.K. Khurana, F.V. Coroniti, S. Joy, C.T. Russell, R.J. Walker, J. Warnecke, L. Bennett, and C. Polanskey. Magnetic field and magnetosphere of Ganymede. Geophys. Res. Lett., 24, 2155, 1997, DOI: 10.1029/97GL02201. [CrossRef] [Google Scholar]
  • Kivelson, M.G., F. Bagenal, W.S. Kurth, F.M. Neubauer, C. Paranicas, and J. Saur. Magnetospheric interactions with satellites. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, UK, 513–536, 2004. [Google Scholar]
  • Kivelson, M.G., and F. Bagenal. Planetary Magnetospheres. In: Encyclopedia of the Solar System, Academic Press-Elsevier, ISBN-13: 978-0-12-088589-3/ISBN-10: 0-12-088589-1, (Chapter 28), 2007. [Google Scholar]
  • Kminek, G., and J.L. Bada. The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Lett., 245, 1–5, 2006, DOI: 10.1016/j.epsl.2006.03.008. [CrossRef] [Google Scholar]
  • Kollmann, P., E. Roussos, C. Paranicas, N. Krupp, and D.K. Haggerty. Processes forming and sustaining Saturn’s proton radiation belts. Icarus, 222, 323–341, 2013, DOI: 10.1016/j.icarus.2012.10.033. [CrossRef] [Google Scholar]
  • Kotova, A., E. Roussos, N. Krupp, and I. Dandouras. Simulation of the galactic cosmic rays interaction with Saturn’s atmosphere and rings, in: COSPAR communication, Moscow, 2014. [Google Scholar]
  • Kotova, A., E. Roussos, N. Krupp, and I. Dandouras. Modeling of the energetic ion observations in the vicinity of Rhea and Dione. Icarus, 258, 402–417, 2015, DOI: 10.1016/j.icarus.2015.06.031. [CrossRef] [Google Scholar]
  • Kriegel, H., S. Simon, J. Müller, U. Motschmann, J. Saur, K.-H. Glassmeier, and M.K. Dougherty. The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data. Planet. Space Sci., 57, 2113–2122, 2009, DOI: 10.1016/j.pss.2009.09.025. [NASA ADS] [CrossRef] [Google Scholar]
  • Krimigis, S.M., C.O. Bostrom, A.F. Cheng, T.P. Armstrong, and W.I. Axford. Hot plasma and energetic particles in Neptune’s magnetosphere. Science, 246, 1483–1489, 1989, DOI: 10.1126/science.246.4936.1483. [CrossRef] [Google Scholar]
  • Krimigis, S.M., D.G. Mitchell, D.C. Hamilton, N. Krupp, S. Livi, et al. Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion. Science, 307, 1270–1273, 2005, DOI: 10.1126/science.1105978. [NASA ADS] [CrossRef] [Google Scholar]
  • Krimigis, S.M., N. Sergis, D.G. Mitchell, D.C. Hamilton, and N. Krupp. A dynamic, rotating ring current around Saturn. Nature, 450, 1050–1053, 2007, DOI: 10.1038/nature06425. [CrossRef] [Google Scholar]
  • Krimigis, S.M., D.G. Mitchell, E.C. Roelof, K.C. Hsieh, and D.J. McComas. Imaging the interaction of the heliosphere with the interstellar medium from Saturn with Cassini. Science, 326 (5955), 971, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Kronberg, E.A., J. Woch, N. Krupp, A. Lagg, K.K. Khurana, and K.-H. Glassmeier. Mass release at Jupiter: substorm-like processes in the Jovian magnetotail. J. Geophys. Res., 110, A03211, 2005, DOI: 10.1029/2004JA010777. [CrossRef] [Google Scholar]
  • Krupp, N. Comparison of plasma sources in Solar System magnetospheres. Space Sci. Rev., 192, 285–295, 2015, DOI: 10.1007/s11214-015-0176-5. [CrossRef] [Google Scholar]
  • Ksanfomaliti, L.V., N.M. Vasilchikov, O.F. Ganpantserova, E.V. Petrova, A.P. Suvorov, G.F. Filippov, O.V. Iablonskaia, and L.V. Iabrova. Electrical discharges in the atmosphere of Venus. Sov. Astron. Lett., 5, 122–126, 1979. [Google Scholar]
  • Laakso, H., D.H. Fairfield, M.R. Collier, H. Opgenoorth, T.-D. Phan, et al. Oscillations of magnetospheric boundaries driven by IMF rotations. Geophys. Res. Lett., 25 (15), 3007–3010, 1998. [CrossRef] [Google Scholar]
  • Lai, H.R., H.Y. Wei, C.T. Russell, C.S. Arridge, and M.K. Dougherty. Reconnection at the magnetopause of Saturn: perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. [Space Phys.], 117, A05222, 2012, DOI: 10.1029/2011JA017263. [CrossRef] [Google Scholar]
  • Lamy, L., P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, et al. Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett., 37, L12104, 2010, DOI: 10.1029/2010GL043415. [NASA ADS] [CrossRef] [Google Scholar]
  • Lamy, L., B. Cecconi, P. Zarka, P. Canu, P. Schippers, et al. Emission and propagation of Saturn kilometric radiation: magnetoionic modes, beaming pattern, and polarization state. J. Geophys. Res. [Space Phys.], 116, A04212, 2011, DOI: 10.1029/2010JA016195. [NASA ADS] [CrossRef] [Google Scholar]
  • Lamy, L., R. Prangé, K.C. Hansen, J.T. Clarke, P. Zarka, et al. Earth-based detection of Uranus’ aurorae. Geophys. Res. Lett., 39, L07105, 2012, DOI: 10.1029/2012GL051312. [CrossRef] [Google Scholar]
  • Landgraf, M., J.-C. Liou, H.A. Zook, and E. Grun. Origins of Solar System dust beyond Jupiter. Astroph. J., 123, 2857–2861, 2002. [Google Scholar]
  • Landis, G.A., S.G. Bailey, and R. Tischler. Causes of Power-Related Satellite Failures. In: IEEE 4th World conference on photovoltaic energy conversion, 2, 1943, 2006, DOI: 10.1109/WCPEC.2006.279878. [Google Scholar]
  • Larson, E.J.L., O.B. Toon, R.A. West, and A.J. Friedson. Microphysical modeling of Titan’s detached haze layer in a 3D GCM. Icarus, 254, 122–134, 2015, DOI: 10.1016/j.icarus.2015.03.010. [CrossRef] [Google Scholar]
  • Laurenza, M., E.W. Cliver, J. Hewitt, M. Storini, A.G. Ling, C.C. Balch, and M.L. Kaiser. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather, 7, S04008, 2009, DOI: 10.1029/2007SW000379. [NASA ADS] [CrossRef] [Google Scholar]
  • Lavraud, B., E. Larroque, E. Budnik, V. Génot, J.E. Borovsky, et al. Asymmetry of magnetosheath flows and magnetopause shape during low Alfven Mach number solar wind. J. Geophys. Res., 118, 1089, 2013, DOI: 10.1002/jgra.50145. [CrossRef] [Google Scholar]
  • Lavvas, P., R.A. West, G. Gronoff, and P. Rannou. Titan’s emission processes during eclipse. Icarus, 241, 397–408, 2014. [CrossRef] [Google Scholar]
  • Leblanc, F., and R.E. Johnson. Mercury’s sodium exosphere. Icarus, 164, 261–281, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Leblanc, F., A.E. Potter, R.M. Killen, and R.E. Johnson. Origins of Europa Na cloud and torus. Icarus, 178, 367–385, 2005, DOI: 10.1016/j.icarus.2005.03.027. [CrossRef] [Google Scholar]
  • Leblanc, F., J.G. Luhmann, R.E. Johnson, and M. Liu. Solar Energetic particle event at Mercury. Planet. Space Sci., 51, 339–352, 2003. [CrossRef] [Google Scholar]
  • Leblanc, F., J.Y. Chaufray, J. Lilensten, O. Witasse, and J.L. Bertaux. Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. [Planets], 111, E09S11, 2006a, DOI: 10.1029/2005JE002664. [CrossRef] [Google Scholar]
  • Leblanc, F., O. Witasse, J. Winningham, D. Brain, J. Lilensten, P.L. Blelly, R.A. Frahm, J.S. Halekas, and J.L. Bertaux. Origins of the Martian aurora observed by Spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) on board Mars Express. J. Geophys. Res. [Space Phys.], 111, A09313, 2006b, DOI: 10.1029/2006JA011763. [CrossRef] [Google Scholar]
  • Leblanc, F., A. Doressoundiram, N. Schneider, V. Mangano, A. López Ariste, C. Lemen, B. Gelly, C. Barbieri, and G. Cremonese. High latitude peaks in Mercury’s sodium exosphere: spectral signature using THEMIS solar telescope. Geophys. Res. Lett., 35, L18204, 2008, DOI: 10.1029/2008GL035322. [CrossRef] [Google Scholar]
  • Lilensten, J., and A. Belehaki. Developing the scientific basis for monitoring, modelling and predicting space weather. Acta. Geophys, 57, 1–14, 2009, DOI: 10.2478/s11600-008-0081-3. [CrossRef] [Google Scholar]
  • Lilensten, J., C. Simon, O. Witasse, O. Dutuit, R. Thissen, and C. Alcarez. A fast comparison of the diurnal secondary ion production in the ionosphere of Titan. Icarus, 174, 285, 2005a. [NASA ADS] [CrossRef] [Google Scholar]
  • Lilensten, J., O. Witasse, C. Simon, H. Soldi-Lose, O. Dutuit, R. Thissen, and C. Alcaraz. Prediction of a N2++ layer in the upper atmosphere of Titan. Geophys. Res. Lett., 32, L03203, 2005b, DOI: 10.1029/2004GL021432. [NASA ADS] [CrossRef] [Google Scholar]
  • Lilensten, J., C. Simon Wedlund, M. Barthélémy, R. Thissen, D. Ehrenreich, G. Gronoff, and O. Witasse. Dications and thermal ions in planetary atmospheric escape. Icarus, 222, 169–187, 2013, DOI: 10.1016/j.icarus.2012.09.034. [CrossRef] [Google Scholar]
  • Lilensten, J., A.J. Coates, V. Dehant, T. Dudok de Wit, R.B. Horne, F. Leblanc, J. Luhmann, E. Woodfield, and M. Barthélemy. What characterizes planetary space weather? Astron. Astrophys. Rev., 22–79, 2014, DOI: 10.1007/s00159-014-0079-6. [Google Scholar]
  • Lilensten, J., D. Bernard, M. Barthélémy, G. Gronoff, C. Simon Wedlund, and A. Opitz. The blue, red and green aurorae at the Red planet. Planet. Space Sci., 2015. [Google Scholar]
  • Lollo, A., P. Withers, K. Fallows, Z. Girazian, M. Matta, and P.C. Chamberlin. Numerical simulations of the ionosphere of Mars during a solar flare. J. Geophys. Res., 117 (A5), A05314, 2012. [CrossRef] [Google Scholar]
  • Lopes, R.M.C., and D.A. Williams. Io after Galileo. Rep. Prog. Phys., 68, 303–340, 2005, DOI: 10.1088/0034-4885/68/2/R02. [NASA ADS] [CrossRef] [Google Scholar]
  • López-Moreno, J.J., G.J. Molina-Cuberos, M. Hamelin, R. Grard, F. Simões, et al. Structure of Titan’s low altitude ionized layer from the Relaxation Probe onboard HUYGENS. Geophys. Res. Lett., 35, L22104, 2008, DOI: 10.1029/2008GL035338. [NASA ADS] [CrossRef] [Google Scholar]
  • Lorenzato, L., A. Sicard, and S. Bourdarie. A physical model for electron radiation belts of Saturn. J. Geophys. Res. [Space Phys.], 117, A08214, 2012, DOI: 10.1029/2012JA017560. [CrossRef] [Google Scholar]
  • Louarn, P., A. Roux, S. Perraut, W. Kurth, and D. Gurnett. A study of the large-scale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett., 25, 2905–2908, 1998. [CrossRef] [Google Scholar]
  • Lucchetti, A., C. Plainaki, G. Cremonese, A. Milillo, T. Cassidy, X. Jia, and V. Shematovich. Loss rates of Europa’s exosphere. Planet. Space Sci., 2016, in press, DOI: 10.1016/j.pss.2016.01.009. [Google Scholar]
  • Luhmann, J.G., R.J. Warniers, C.T. Russell, J.R. Spreiter, and S.S. Stahara. A gas dynamic magnetosheath field model for unsteady interplanetary fields - Application to the solar wind interaction with Venus. J. Geophys. Res., 91, 3001–3010, 1986, DOI: 10.1029/JA091iA03p03001. [CrossRef] [Google Scholar]
  • Luhmann, J.G., C.T. Russell, F.L. Scarf, L.H. Brace, and W.C. Knudsen. Characteristics of the marslike limit of the venus-solar wind interaction. J. Geophys. Res., 92, 8545–8557, 1987. [CrossRef] [Google Scholar]
  • Luhmann, J.G., W.T. Kasprzak, and C.T. Russell. Space weather at Venus and its potential consequences for atmosphere evolution. J. Geophys. Res. [Planets], 112, E04S10, 2007, DOI: 10.1029/2006JE002820. [CrossRef] [Google Scholar]
  • Luhmann, J.G., A. Fedorov, S. Barabash, E. Carlsson, Y. Futaana, et al. Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass éjections. J. Geophys. Res., 113 (52), E00B04, 2008, DOI: 10.1029/2008JE003092. [CrossRef] [Google Scholar]
  • Lundin, R., A. Zakharov, R. Pellinen, S.W. Barabash, H. Borg, et al. ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere. Geophys. Res. Lett., 17, 873–876, 1990. [CrossRef] [Google Scholar]
  • Lundin, R., H. Lammer, and I. Ribas. Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev., 129, 245–278, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Lundin, R., S. Barabash, A. Fedorov, M. Holmstrom, H. Nilsson, J. Sauvaud, and M. Yamauchi. Solar forcing and planetary ion escape from Mars. Geophys. Res. Let., 35, 9203, 2008. [CrossRef] [Google Scholar]
  • Majeed, T., and J.C. McConnell. The upper ionospheres of Jupiter and Saturn. Planet. Space Sci., 39, 1715–1732, 1991. [CrossRef] [Google Scholar]
  • Mandt, K.E., D.A. Gell, M. Perry, J.H. Waite Jr., F.A. Crary, et al. Ion densities and composition of Titan’s upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: analysis methods and comparison of measured ion densities to photochemical model simulations. J. Geophys. Res., 117, E10006, 2012, DOI: 10.1029/2012JE004139. [CrossRef] [Google Scholar]
  • Mangano, V., S. Massetti, A. Milillo, C. Plainaki, S. Orsini, and F. Leblanc. THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planet. Space Sci., 115, 102–109, 2015. [CrossRef] [Google Scholar]
  • Marconi, M.L. A kinetic model of Ganymede’s atmosphere. Icarus, 190, 155–174, 2007. [CrossRef] [Google Scholar]
  • Massetti, S., S. Orsini, A. Milillo, A. Mura, E. de Angelis, H. Lammer, and P. Wurz. Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 166 (i.2), 229–237, 2003. [CrossRef] [Google Scholar]
  • Masters, A. Magnetic reconnection at Uranus’ magnetopause. J. Geophys. Res. [Space Phys.], 119, 5520–5538, 2014, DOI: 10.1002/2014JA020077. [CrossRef] [Google Scholar]
  • Masters, A., S.J. Schwartz, E.M. Henley, M.F. Thomsen, B. Zieger, et al. Electron heating at Saturn’s bow shock. J. Geophys. Res. [Space Phys.], 116, A10107, 2011. [CrossRef] [Google Scholar]
  • Masters, A., N. Achilleos, J.C. Cutler, A.J. Coates, M.K. Dougherty, and G.H. Jones. Surface waves on Saturn’s magnetopause. Planet. Space Sci., 65, 109–121, 2012, DOI: 10.1016/j.pss.2012.02.007. [CrossRef] [Google Scholar]
  • Masunaga, K., Y. Futaana, G. Stenberg, S. Barabash, T.L. Zhang, A. Fedorov, S. Okano, and N. Terada. Dependence of O+ escape rate from the Venusian upper atmosphere on IMF directions. Geophys. Res. Lett., 40 (9), 1682–1685, 2014, DOI: 10.1002/grl.50392. [CrossRef] [Google Scholar]
  • Mauk, B.H. Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the Solar System. J. Geophys. Res. [Space Phys.], 119 (12), 9729–9746, 2014. [CrossRef] [Google Scholar]
  • Mauk, B.H., and N.J. Fox. Electron radiation belts of the Solar System. J. Geophys. Res., 115, A12220, 2010, DOI: 10.1029/2010JA015660. [CrossRef] [Google Scholar]
  • Mauk, B.H., S.M. Krimigis, E.P. Keath, A.F. Cheng, and T.P. Armstrong. The hot plasma and radiation environment of the Uranian magnetosphere. J. Geophys. Res., 92, 15283–15308, 1987, DOI: 10.1029/ JA092iA13p15283. [CrossRef] [Google Scholar]
  • Mauk, B.H., E.P. Keath, M. Kane, M. Krimigis, A.F. Cheng, M.H. Acuna, T.P. Armstrong, and N.F. Ness. The magnetosphere of Neptune – hot plasmas and energetic particles. J. Geophys. Res. [Space Phys.], 96, 19061, 1991. [CrossRef] [Google Scholar]
  • Mauk, B.H., S.M. Krimigis, A.F. Cheng, and R.S. Selesnick. Energetic particles and hot plasmas of Neptune. In: D.P. Cruikshank, M.S. Matthews, and A.M. Schumann, Editors. Neptune and Triton, Astronomisches Rechen-Institut Publisher, Germany, 169–232, 1995. [Google Scholar]
  • Mauk, B.H., S.A. Gary, M. Kane, E.P. Keath, S.M. Krimigis, and T.P. Armstrong. Hot plasma parameters of Jupiter’s inner magnetosphere. J. Geophys. Res. [Space Phys.], 101, 7685–7696, 1996, DOI: 10.1029/96JA00006. [NASA ADS] [CrossRef] [Google Scholar]
  • Mauk, B.H., D.G. Mitchell, S.M. Krimigis, E.C. Roelof, and C.P. Paranicas. Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature, 421, 920–922, 2003, DOI: 10.1038/nature01431. [CrossRef] [Google Scholar]
  • Mauk, B.H., D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, et al. Fundamental plasma processes in Saturn’s magnetosphere. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis, Editors. Saturn from Cassini-Huygens, Springer Science+Business Media B.V, Heidelberg, 281, 2009. [CrossRef] [Google Scholar]
  • Mavromichalaki, H., A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, et al. Applications and usage of the real-time Neutron Monitor Database. Adv. Space Res., 47 (12), 2210–2222, 2011, DOI: 10.1016/j.asr.2010.02.019. [CrossRef] [Google Scholar]
  • Mays, M.L., N.P. Savani, G. Collinson, A. Taktakishvili, P.J. MacNeice, and Y. Zheng. Propagation of the 2014 January 7 CME and resulting geomagnetic non-event. Astrophys. J., 812, 145, 2015. [NASA ADS] [CrossRef] [Google Scholar]
  • McAndrews, H.J., C.J. Owen, M.F. Thomsen, B. Lavraud, A.J. Coates, M.K. Dougherty, and D.T. Young. Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. [Space Phys.], 113, A04210, 2008, DOI: 10.1029/2007JA012581. [CrossRef] [Google Scholar]
  • McClintock, W.E., and M.R. Lankton. The Mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev., 131 (1–4), 481–521, 2007. [CrossRef] [Google Scholar]
  • McComas, D.J., F. Allegrini, P. Bochsler, M. Bzowski, E.R. Christian, et al. Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX). Science, 326 (5955), 959, 2009. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • McEwen, A.S. Exogenic and endogenic albedo and color patterns on Europa. J. Geophys. Res., 91, 8077–8097, 1986. [CrossRef] [Google Scholar]
  • McGrath, M.A., E. Lellouch, D.F. Strobel, P.D. Feldman, and R.E. Johnson. Satellite atmospheres. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, UK, 457–483, 2004. [Google Scholar]
  • McGrath, M.A., X. Jia, K. Retherford, P.D. Feldman, D.F. Strobel, and J. Saur. Aurora on Ganymede. J. Geophys. Res. [Space Phys.], 118, 2043–2054, 2013, DOI: 10.1002/jgra.50122. [CrossRef] [Google Scholar]
  • McKinnon, W.B., and R.L. Kirk. In: L.-A. McFadden, P.R. Weissman, and T.V. Weissman, Editors. Encyclopedia of the Solar System, Academic Press, Elsevier Ed., UK, 483–502, ISBN: 978-0-12-088589-3, Chapter 26, 2007. [CrossRef] [Google Scholar]
  • McNutt, R.L., J.W. Belcher, and H.S. Bridge. Positive ion observations in the middle magnetosphere of Jupiter. J. Geophys. Res. [Space Phys.], 86, 8319–8342, 1981, DOI: 10.1029/JA086iA10p08319. [CrossRef] [Google Scholar]
  • Melin, H., D.E. Shemansky, and X. Liu. The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn. Planet. Space Sci., 57, 1743–1753, 2009, DOI: 10.1016/j.pss.2009.04.014. [NASA ADS] [CrossRef] [Google Scholar]
  • Meredith, C.J., S.W.H. Cowley, and J.D. Nichols. Survey of Saturn auroral storms observed by the Hubble Space Telescope: implications for storm time scales. J. Geophys. Res. [Space Phys.], 119, 9624–9642, 2014, DOI: 10.1002/2014JA020601. [CrossRef] [Google Scholar]
  • Merka, J., A. Szabo, J. Šafránková, and Z. Němeček. Earth’s bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison. J. Geophys. Res. [Space Phys.], 108 (A7), SMP 2-1, 2007, DOI: 10.1029/2002JA009697. [Google Scholar]
  • Michael, M., S.N. Tripathi, W.J. Borucki, and R.C. Whitten. Highly charged cloud particles in the atmosphere of Venus. J. Geophys. Res., 114, E04008, 2009, DOI: 10.1029/2008JE003258. [CrossRef] [Google Scholar]
  • Milan, S.E., B. Hubert, and A. Grocott. Formation and motion of a transpolar arc in response to dayside and nightside reconnection. J. Geophys. Res. [Space Phys.], 110, A01212, 2005, DOI: 10.1029/2004JA010835. [Google Scholar]
  • Mileikowsky, C., F.A. Cucinotta, J.W. Wilson, B. Gladman, G. Horneck, et al. Natural transfer of viable microbes in space. Icarus, 145, 391–427, 2000, DOI: 10.1006/icar.1999.6317. [CrossRef] [Google Scholar]
  • Milillo, A., P. Wurz, S. Orsini, D. Delcourt, E. Kallio, et al. Surface-exosphere-magnetosphere system of Mercury. Space Sci. Rev., 117 (3–4), 397–443, 2005. [CrossRef] [Google Scholar]
  • Milillo, A., M. Fujimoto, E. Kallio, S. Kameda, F. Leblanc, et al. The BepiColombo mission: an outstanding tool for investigating the Hermean environment. Planet. Space Sci., 58 (1), 40–60, 2010, DOI: 10.1016/j.pss.2008.06.005. [CrossRef] [Google Scholar]
  • Milillo, A., C. Plainaki, E. De Angelis, V. Mangano, S. Massetti, A. Mura, S. Orsini, and R. Rispoli. Analytical model of Europa’s O2 exosphere. Planet. Space Sci., 2015, in press, DOI: 10.1016/j.pss.2015.10.011. [Google Scholar]
  • Miller, S., A. Aylward, and G. Millward. Giant planet ionospheres and thermospheres: the importance of ion-neutral coupling. Space Sci. Rev., 116 (1), 319–343, 2005. [CrossRef] [Google Scholar]
  • Mitchell, D.G., F. Kutchko, D.J. Williams, T.E. Eastman, L.A. Frank, and C.T. Russell. An extended study of the low‐latitude boundary layer on the dawn and dusk flanks of the magnetosphere. J. Geophys. Res. [Space Phys.], 92 (A7), 7394–7404, 1987. [CrossRef] [Google Scholar]
  • Mitchell, D.G., S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, et al. Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci., 57, 1732–1742, 2009, DOI: 10.1016/j.pss.2009.04.002. [CrossRef] [Google Scholar]
  • Miyasaka, H., K. Nagata, T. Doke, J. Kikuchi, K. Maezawa, et al. Solar energetic particles events observed with EIS onboard NOZOMI spacecraft. 28th International Cosmic Ray Conference, 1, 3265, 2003. [Google Scholar]
  • Miyoshi, Y., H. Misawa, A. Morioka, T. Kondo, Y. Koyama, and J. Nakajima. Observation of short-term variation of Jupiter’s synchrotron radiation. Geophys. Res. Lett., 26, 9–12, 1999, DOI: 10.1029/1998GL900244. [NASA ADS] [CrossRef] [Google Scholar]
  • Molina-Cuberos, G. Cosmic ray and UV radiation models on the ancient Martian surface. Icarus, 154, 216–222, 2001, DOI: 10.1006/icar.2001.6658. [CrossRef] [Google Scholar]
  • Molina-Cuberos, G.J., J.J. López-Moreno, R. Rodrigo, H. Lichtenegger, and K. Schwingenschuh. A model of the Martian ionosphere below 70 km. Adv. Space Res., 27, 1801–1806, 2001, DOI: 10.1016/S0273-1177(01)00342-8. [CrossRef] [Google Scholar]
  • Montmessin, F., J.-L. Bertaux, F. Lefèvre, E. Marcq, D. Belyaev, et al. A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus, 216 (1), 82–85, 2011, DOI: 10.1016/j.icarus.2011.08.010. [NASA ADS] [CrossRef] [Google Scholar]
  • Moore, M.H. Studies of proton-irradiated SO2 at low temperatures implications for Io. Icarus, 59, 114–128, 1984, DOI: 10.1016/0019-1035(84)90059-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Moses, J.I., B. Bézard, E. Lellouch, G.R. Gladstone, H. Feuchtgruber, and M. Allen. Photochemistry of Saturn’s atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus, 143 (2), 244–298, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Mura, A., S. Orsini, A. Milillo, A.M. Di Lellis, and E. De Angelis. Neutral atom imaging at Mercury. Planet. Space Sci., 54, 144–152, 2006. [CrossRef] [Google Scholar]
  • Mura, A., P. Wurz, H.I.M. Lichtenegger, H. Schleicher, H. Lammer, et al. The sodium exosphere of Mercury: comparison between observations during Mercury’s transit and model results. Icarus, 200 (1), 1–11, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Müller-Wodarg, I.C.F., L. Moore, M. Galand, S. Miller, and M. Mendillo. Magnetosphere-atmosphere coupling at Saturn: 1 – Response of thermosphere and ionosphere to steady state polar forcing. Icarus, 221 (2), 481–494, 2012, DOI: 10.1016/j.icarus.2012.08.034. [CrossRef] [Google Scholar]
  • Nagy, A.F., A.J. Kliore, M. Mendillo, S. Miller, L. Moore, J.I. Moses, I. Müller-Wodarg, D. Shemansky, and M.K. Dougherty. Upper Atmosphere and Ionosphere of Saturn. In: M.K. Dougherty, et al., Editors. Saturn from Cassini-Huygens, Springer Science + Business Media B.V., Germany, 2009, DOI: 10.1007/978-1-4020-9217-6_8. [Google Scholar]
  • Ness, N.F., M.H. Acuña, L.F. Burlaga, J.E.P. Connerney, and R.P. Lepping. Magnetic fields at Neptune. Science, 233, 85–89, 1986. [CrossRef] [PubMed] [Google Scholar]
  • Ness, N., M.H. Acuna, L.F. Burlaga, J.E.P. Connerney, R.P. Lepping, and F.N. Neubauer. Magnetic fields at Neptune. Science, 246 (4936), 1473–1478, 1989. [NASA ADS] [CrossRef] [Google Scholar]
  • Nichols, J.D., S.W.H. Cowley, and D.J. McComas. Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at 5AU. Ann. Geophys., 24 (1), 393–406, 2006, DOI: 10.5194/angeo-24-393-2006. [CrossRef] [Google Scholar]
  • Nichols, J.D., E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, and W.R. Pryor. Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. [Space Phys.], 112, A02203, 2007, DOI: 10.1029/2006JA012005. [Google Scholar]
  • Nichols, J.D., J.T. Clarke, S.W.H. Cowley, J. Duval, A.J. Farmer, J.C. Gérard, D. Grodent, and S. Wannawichian. Oscillation of Saturn’s southern auroral oval. J. Geophys. Res. [Space Phys.], 113, A11205, 2008, DOI: 10.1029/2008JA013444. [CrossRef] [Google Scholar]
  • Nichols, J.D., J.T. Clarke, J.C. Gerard, and D. Grodent. Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, L08101, 2009a, DOI: 10.1029/2009GL037578. [Google Scholar]
  • Nichols, J.D., J.T. Clarke, J.C. Gérard, D. Grodent, and K.C. Hansen. Variation of different components of Jupiter’s auroral emission. J. Geophys. Res. [Space Phys.], 114, A06210, 2009b, DOI: 10.1029/2009JA014051. [Google Scholar]
  • Nichols, J.D., B. Cecconi, J.T. Clarke, S.W.H. Cowley, J.C. Gérard, A. Grocott, D. Grodent, L. Lamy, and P. Zarka. Variation of Saturn’s UV aurora with SKR phase. Geophys. Res. Lett., 37, L15102, 2010a, DOI: 10.1029/2010GL044057. [Google Scholar]
  • Nichols, J.D., S.W.H. Cowley, and L. Lamy. Dawn‐dusk oscillation of Saturn’s conjugate auroral ovals. Geophys. Res. Lett., 37, L24102, 2010b, DOI: 10.1029/2010GL045818. [Google Scholar]
  • Nichols, J.D., M.R. Burleigh, S.L. Casewell, S.W. Cowley, G.A. Wynn, J.T. Clarke, and A.A. West. Origin of electron cyclotron maser induced radio emissions at ultracool dwarfs: magnetosphere-ionosphere coupling currents. Astrophys. J., 760 (1), 59, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Nichols, J.D., S.V. Badman, K.H. Baines, R.H. Brown, E.J. Bunce, et al. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. Geophys. Res. Lett., 41, 3323–3330, 2014, DOI: 10.1002/2014GL060186. [CrossRef] [Google Scholar]
  • Nilsson, H., N.J.T. Edberg, G. Stenberg, S. Barabash, M. Holmstrom, Y. Futaana, R. Lundin, and A. Fedorov. Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 215, 475–484, 2011. [CrossRef] [Google Scholar]
  • Nishida, A. Reconnection in the Jovian magnetosphere. Geophys. Res. Lett., 10, 451–454, 1983. [CrossRef] [Google Scholar]
  • Nordheim, T.A., L.R. Dartnell, L. Desorgher, A.J. Coates, and G.H. Jones. Ionization of the Venusian atmosphere from solar and galactic cosmic rays. Icarus, 245, 80–86, 2015, DOI: 10.1016/j.icarus.2014.09.032. [CrossRef] [Google Scholar]
  • Norman, R.B., G. Gronoff, and C.J. Mertens. Influence of dust loading on atmospheric ionizing radiation on Mars. J. Geophys. Res. [Space Phys.], 119 (1), 452–461, 2014, DOI: 10.1002/2013JA019351. [CrossRef] [Google Scholar]
  • Ockert-Bell, M.E., J.A. Burns, I.J. Daubar, P.C. Thomas, J. Veverka, M.J.S. Belton, and K.P. Klaasen. The structure of Jupiter’s ring system as revealed by the Galileo imaging experiment. Icarus, 138, 188–213, 1999, DOI: 10.1006/icar.1998.6072. [NASA ADS] [CrossRef] [Google Scholar]
  • Odstrčil, D. Modeling 3-D solar wind structure. Adv. Space Res., 32 (4), 497–506, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Odstrčil, D., and V.J. Pizzo. Three‐dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. [Space Phys.], 104 (A1), 483–492, 1999a. [NASA ADS] [CrossRef] [Google Scholar]
  • Odstrčil, D., and V.J. Pizzo. Distortion of the interplanetary magnetic field by three‐dimensional propagation of coronal mass ejections in a structured solar wind. J. Geophys. Res. [Space Phys.], 104, 28225–28239, 1999b. [NASA ADS] [CrossRef] [Google Scholar]
  • Odstrčil, D., M. Dryer, and Z. Smith. Propagation of an interplanetary shock along the heliospheric plasma sheet. J. Geophys. Res. [Space Phys.], 101 (A9), 19973–19986, 1996. [CrossRef] [Google Scholar]
  • Odstrčil, D., P. Riley, and X.P. Zhao. Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. [Space Phys.], 109, A02116, 2004, DOI: 10.1029/2003JA010135. [Google Scholar]
  • Ogilvie, K.W., and M.D. Desch. The wind spacecraft and its early scientific results. Adv. Space Res., 20 (4–5), 559–568, 1977. [CrossRef] [Google Scholar]
  • Orsini, S., S. Livi, K. Torkar, S. Barabash, A. Milillo, P. Wurz, A.M. Di Lellis, E. Kallio, and The SERENA team. SERENA: a suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment. Planet. Space Sci., 58, 166–181, 2010. [CrossRef] [Google Scholar]
  • Orsini, S., V. Mangano, A. Mura, D. Turrini, S. Massetti, A. Milillo, and C. Plainaki. The influence of space environment on the evolution of Mercury. Icarus, 239, 281–290, 2014. [CrossRef] [Google Scholar]
  • Paranicas, C., W.R. Paterson, A.F. Cheng, B.H. Mauk, R.W. McEntire, L.A. Frank, and D.J. Williams. Energetic particle observations near Ganymede. J. Geophys. Res. [Space Phys.], 104, 17459–17470, 1999, DOI: 10.1029/1999JA900199. [CrossRef] [Google Scholar]
  • Parker, T.J. Channels and Valley networks associated with Argyre Planitia, Mars. Lunar and Planetary Institute Science Conference Abstracts, 20, 826, 1989. [Google Scholar]
  • Parker, T.J., D.S. Gorsline, R.S. Saunders, D.C. Pieri, and D.M. Schneeberger. Coastal geomorphology of the Martian northern plains. J. Geophys. Res., 98, 11061, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Paschmann, G., S. Haaland, and R. Treumann. Auroral plasma physics. Space Sci. Rev., 103, 1–4, 2002, DOI: 10.1023/A:1023030716698. [CrossRef] [Google Scholar]
  • Pätzold, M., B. Häusler, M.K. Bird, S. Tellmann, R. Mattei, et al. The structure of Venus’ middle atmosphere and ionosphere. Nature, 450, 657–660, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Pätzold, M., F.M. Neubauer, L. Carone, A. Hagermann, C. Stanzel, et al. MaRS: Mars express radio science experiment. In: K. Fletcher, Editor. Mars Express, ESA Communication Production Office, Noordwijk, The Netherlands, 217–245, 2009. [Google Scholar]
  • Pavlov, A.K., A.V. Blinov, and A.N. Konstantinov. Sterilization of Martian surface by cosmic radiation. Planet. Space Sci., 50, 669–673, 2002, DOI: 10.1016/S0032-0633(01)00113-1. [CrossRef] [Google Scholar]
  • Pavlov, A.A., G. Vasilyev, V.M. Ostryakov, A.K. Pavlov, and P. Mahaffy. Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays. Geophys. Res. Lett., 39, L13203, 2012, DOI: 10.1029/2012GL052166. [CrossRef] [Google Scholar]
  • Perry, M.E., B. Teolis, H.T. Smith, R.L. McNutt, G. Fletcher, W. Kasprzak, B. Magee, D.G. Mitchell, and J.H. Waite. Cassini INMS observations of neutral molecules in Saturn’s E-ring. J. Geophys. Res. [Space Phys.], 115, A10206, 2010, DOI: 10.1029/2010JA015248. [NASA ADS] [CrossRef] [Google Scholar]
  • Peter, K., M. Pätzold, G. Molina-Cuberos, O. Witasse, F. González-Galindo, et al. The dayside ionospheres of Mars and Venus: comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus, 233, 66–82, 2014, DOI: 10.1016/j.icarus.2014.01.028. [CrossRef] [Google Scholar]
  • Phillips, J.L., A.I.F. Stewart, and J.G. Luhmann. The Venus ultraviolet aurora: observations at 130.4 nm. Geophys. Res. Lett., 13 (10), 1047–1050, 1986. [CrossRef] [Google Scholar]
  • Piccialli, A., F. Montmessin, D. Belyaev, A. Mahieux, A. Fedorova, et al. Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci., 113–114, 321–335, 2015, DOI: 10.1016/j.pss.2014.12.009. [NASA ADS] [CrossRef] [Google Scholar]
  • Pinilla-Alonso, N., T.L. Roush, G.A. Marzo, D.P. Cruikshank, and C.M. Dalle Ore. Iapetus surface variability revealed from statistical clustering of a VIMS mosaic: the distribution of CO2. Icarus, 215, 75–82, 2011, DOI: 10.1016/j.icarus.2011.07.004. [CrossRef] [Google Scholar]
  • Plainaki, C., A. Belov, E. Eroshenko, H. Mavromichalaki, and V. Yanke. Modeling ground level enhancements: event of 20 January 2005. J. Geophys. Res., 112, 4102, 2007. [CrossRef] [Google Scholar]
  • Plainaki, C., A. Milillo, A. Mura, S. Orsini, and T. Cassidy. Neutral particle release from Europa’s surface. Icarus, 210, 385–395, 2010a, DOI: 10.1016/j.icarus.2010.06.041. [CrossRef] [Google Scholar]
  • Plainaki, C., H. Mavromichalaki, A. Belov, E. Eroshenko, M. Andriopoulou, and V. Yanke. A new version of the Neutron monitor based anisotropic GLE model: application to GLE60. Sol. Phys., 264 (1), 239–254, 2010b, DOI: 10.1007/s11207-010-9576-6. [CrossRef] [Google Scholar]
  • Plainaki, C., A. Milillo, A. Mura, S. Orsini, S. Massetti, and T. Cassidy. The role of sputtering and radiolysis in the generation of Europa exosphere. Icarus, 218 (2), 956–966, 2012, DOI: 10.1016/j.icarus.2012.01.0232012. [CrossRef] [Google Scholar]
  • Plainaki, C., A. Milillo, A. Mura, J. Saur, S. Orsini, and S. Massetti. Exospheric O2 densities at Europa during different orbital phases. Planet. Space Sci., 88, 42–52, 2013. [CrossRef] [Google Scholar]
  • Plainaki, C., H. Mavromichalaki, M. Laurenza, M. Gerontidou, A. Kanellakopoulos, and M. Storini. The ground-level enhancement of 2012 may 17: derivation of solar proton event properties through the application of the NMBANGLE PPOLA model. Astrophys. J., 785, 160, 2014, DOI: 10.1088/0004-637X/785/2/160. [CrossRef] [Google Scholar]
  • Plainaki, C., A. Milillo, S. Massetti, A. Mura, X. Jia, S. Orsini, V. Mangano, E. De Angelis, and R. Rispoli. The H2O and O2 exospheres of Ganymede: the result of a complex interaction between the Jovian magnetospheric ions and the icy moon. Icarus, 245, 306–319, 2015, DOI: 10.1016/j.icarus.2014.09.018. [CrossRef] [Google Scholar]
  • Plainaki, C., P. Paschalis, D. Grassi, H. Mavromichalaki, and M. Andriopoulou. Solar energetic particle interactions with the Venusian atmosphere. Ann. Geophys., 34, 595–608, 2016, DOI: 10.5194/angeo-34-595-2016. [CrossRef] [Google Scholar]
  • Porco, C., D. DiNino, and F. Nimmo. How the geysers, tidal stresses, and thermal emission across the South polar terrain of Enceladus are related. Astrophys. J., 148, 45, 2014, DOI: 10.1088/0004-6256/148/3/45. [Google Scholar]
  • Porco, C.C., E. Baker, J. Barbara, K. Beurle, A. Brahic, et al. Imaging of Titan from the Cassini spacecraft. Nature, 434 (7030), 159–168, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Potter, A.E., C.M. Anderson, R.M. Killen, and T.H. Morgan. Ratio of sodium to potassium in the Mercury exosphere. J. Geophys. Res., 107, 6, 2002, DOI: 10.1029/2000JE001493. [Google Scholar]
  • Pudovkin, M.I., B.P. Besser, and S.A. Zaitsev. Magnetopause stand-off distance in dependence on the magnetosheath and solar wind parameters. Ann. Geophys., 16, 388–396, 1998. [CrossRef] [Google Scholar]
  • Radioti, A., J.-C. Gérard, D. Grodent, B. Bonfond, N. Krupp, and J. Woch. Discontinuity in Jupiter’s main auroral oval. J. Geophys. Res. [Space Phys.], 113, A01215, 2008a, DOI: 10.1029/2007JA012610. [CrossRef] [Google Scholar]
  • Radioti, A., D. Grodent, J.-C. Gérard, B. Bonfond, and J.T. Clarke. Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett., 35, L03104, 2008b, DOI: 10.1029/2007GL032460. [CrossRef] [Google Scholar]
  • Radioti, A., D. Grodent, J.-C. Gérard, E. Roussos, C. Paranicas, et al. Transient auroral features at Saturn: signatures of energetic particle injections in the magnetosphere. J. Geophys. Res., 114, A03210, 2009a, DOI: 10.1029/2008JA013632. [CrossRef] [Google Scholar]
  • Radioti, A., A.T. Tomás, D. Grodent, J.-C. Gérard, J. Gustin, B. Bonford, N. Krupp, J. Woch, and J.D. Menietti. Equatorward diffuse auroral emissions at Jupiter: simultaneous HST and Galileo observations. Geophys. Res. Lett., 36, L07101, 2009b, DOI: 10.1029/2009GL037857. [Google Scholar]
  • Radioti, A., D. Grodent, J.-C. Gérard, and B. Bonfond. Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. [Space Phys.], 115, A07214, 2010, DOI: 10.1029/2009JA014844. [CrossRef] [Google Scholar]
  • Radioti, A., D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, and B. Bonfond. Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. [Space Phys.], 116, A03221, 2011a, DOI: 10.1029/2010JA016200. [CrossRef] [Google Scholar]
  • Radioti, A., D. Grodent, J.-C. Gérard, S.E. Milan, B. Bonfond, J. Gustin, and W. Pryor. Bifurcations of the main auroral ring at Saturn: ionospheric signatures of consecutive reconnection events at the magnetopause. J. Geophys. Res. [Space Phys.], 116, A11209, 2011b, DOI: 10.1029/2011JA016661. [CrossRef] [Google Scholar]
  • Radioti, A., E. Roussos, D. Grodent, J.-C. Gérard, N. Krupp, D.G. Mitchell, J. Gustin, B. Bonfond, and W. Pryor. Signatures of magnetospheric injections in Saturn’s aurora. J. Geophys. Res. [Space Phys.], 118, 1922–1933, 2013a, DOI: 10.1002/jgra.50161. [CrossRef] [Google Scholar]
  • Radioti, A., D. Grodent, J.-C. Gérard, B. Bonfond, J. Gustin, W. Pryor, J.M. Jasinski, and C.S. Arridge. Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett., 40, 4498–4502, 2013b, DOI: 10.1002/grl.50889. [CrossRef] [Google Scholar]
  • Radioti, A., D. Grodent, J.-C. Gérard, S.E. Milan, R.C. Fear, C.M. Jackman, B. Bonfond, and W. Pryor. Saturn’s elusive nightside polar arc. Geophys. Res. Lett., 41, 6321–6328, 2014, DOI: 10.1002/2014GL061081. [CrossRef] [Google Scholar]
  • Radioti, A., D. Grodent, X. Jia, J.C. Gerard, B. Bonfond, W. Pryor, J. Gustin, D.G. Mitchell, and C.M. Jackman. A multi-scale magnetotail reconnection event at Saturn and associated flows: Cassini/UVIS observations. Icarus, 263 (1), 75–82, 2016, DOI: 10.1016/j.icarus.2014.12.016. [CrossRef] [Google Scholar]
  • Raines, J.M., D.J. Gershman, T.H. Zurbuchen, M. Sarantos, and J.A. Slavin. Distribution and compositional variations of plasma ions in Mercury’s space environment: the first three Mercury years of MESSENGER observations. J. Geophys. Res., 118 (4), 1604–1619, 2013. [CrossRef] [Google Scholar]
  • Raines, J.M., D.J. Gershman, J.A. Slavin, T.H. Zurbuchen, H. Korth, B.J. Anderson, and S.C. Solomon. Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. J. Geophys. Res. [Space Phys.], 119, 6587–6602, 2014, DOI: 10.1002/2014JA020120. [CrossRef] [Google Scholar]
  • Rairden, R.L., L.A. Frank, and J.D. Craven. Geocoronal imaging with Dynamics Explorer. J. Geophys. Res., 91 (A12), 13613–13630, 1986, DOI: 10.1029/JA091iA12p13613. [CrossRef] [Google Scholar]
  • Reames, D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90, 413, 1999, DOI: 10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
  • Richard, M.S., T.E. Cravens, C. Wylie, D. Webb, Q. Chediak, et al. An empirical approach to modeling ion production rates in Titan’s ionosphere II: ion production rates on the nightside. J. Geophys. Res. [Space Phys.], 120, 1281–1298, 2015a, DOI: 10.1002/2014JA020343. [CrossRef] [Google Scholar]
  • Richard, M.S., T.E. Cravens, C. Wylie, D. Webb, Q. Chediak, et al. An empirical approach to modeling ion production rates in Titan’s ionosphere I: ion production rates on the dayside and globally. J. Geophys. Res. [Space Phys.], 120, 1264–1280, 2015b, DOI: 10.1002/2013JA019706. [CrossRef] [Google Scholar]
  • Richardson, J.D. The solar wind and its interaction with the interstellar medium. In: N. Gopalswamy, et al., Editors. Heliophysical Processes, Springer-Verlag Berlin Heidelberg, Germany, Astrophysics and Space Science, 83 Proceedings, 83, 2010, DOI: 10.1007/978-3-642-11341-3_6. [CrossRef] [Google Scholar]
  • Richardson, J.D., J.W. Belcher, M. Zhang, and R.L. McNutt Jr. Low-energy ions near Neptune. J. Geophys. Res. [Space Phys.], 96 (18), 993, 1991. [Google Scholar]
  • Richardson, J.D., C. Wang, and L.F. Burlaga. The solar wind in the outer heliosphere. Adv. Space Res., 34 (1), 150–156, 2004, DOI: 10.1016/j.asr.2003.03.066. [NASA ADS] [CrossRef] [Google Scholar]
  • Richer, E., R. Modolo, G.M. Chanteur, S. Hess, and F. Leblanc. A global jybrid model for Mercury’s interaction with the solar wind: case study of the dipole representation. J. Geophys. Res., 117, A10228, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Rostoker, G., S.-I. Akasofu, J. Foster, R.A. Greenwald, Y. Kamide, K. Kawasaki, A.T.Y. Lui, R.L. Mcpherron, and C.T. Russell. Magnetospheric substorms – definition and signatures. J. Geophys. Res., 85 (A4), 1663–1668, 1980. [CrossRef] [Google Scholar]
  • Roth, L., J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, and F. Nimmo. Transient water vapor at Europa’s south pole. Science, 343, 171–174, 2014a, DOI: 10.1126/science.1247051. [NASA ADS] [CrossRef] [Google Scholar]
  • Roth, L., K.D. Retherford, J. Saur, D.F. Strobel, P.D. Feldman, M.A. McGrath, and F. Nimmo. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora. Proc. Nat. Acad. Sci. U.S.A., 111 (48), E5123–E5132, 2014b. [CrossRef] [Google Scholar]
  • Roth, L., J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, J.R. Spencer, A. Blöcker, and N. Ivchenko. Europa’s far ultraviolet oxygen aurora from a comprehensive set of HST observations. J. Geophys. Res. [Space Phys.], 121, 2143–2170, 2016, DOI: 10.1002/2015JA022073. [CrossRef] [Google Scholar]
  • Roussos, E., G.H. Jones, N. Krupp, C. Paranicas, D.G. Mitchell, et al. Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons. J. Geophys. Res. [Space Phys.], 112, 6214, 2007, DOI: 10.1029/2006JA012027. [CrossRef] [Google Scholar]
  • Roussos, E., N. Krupp, T.P. Armstrong, C. Paranicas, D.G. Mitchell, et al. Discovery of a transient radiation belt at Saturn. Geophys. Res. Lett., 35, L22106, 2008, DOI: 10.1029/2008GL035767. [NASA ADS] [CrossRef] [Google Scholar]
  • Roussos, E., N. Krupp, C. Paranicas, J.F. Carbary, P. Kollmann, S.M. Krimigis, and D.G. Mitchell. The variable extension of Saturn’s electron radiation belts. Planet. Space Sci., 104, 3–17, 2014, DOI: 10.1016/j.pss.2014.03.021. [CrossRef] [Google Scholar]
  • Russell, C.T., and R.C. Elphic. ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett., 6, 33–36, 1979, DOI: 10.1029/GL006i001p00033. [CrossRef] [Google Scholar]
  • Russell, C.T., and F.L. Scarf. Evidence for lightning on Venus. Adv. Space Res., 10, 125–136, 1990, DOI: 10.1016/0273-1177(90)90173-W. [CrossRef] [Google Scholar]
  • Russell, C.T., K.K. Khurana, M.G. Kivelson, and D.E. Huddleston. Substorms at Jupiter: Galileo observations of transient reconnection in the near tail. Adv. Space Sci., 261 (10), 1499–1504, 2000. [CrossRef] [Google Scholar]
  • Russell, C.T., T.L. Zhang, M. Delva, W. Magnes, R.J. Strangeway, and H.Y. Wei. Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature, 450, 661–662, 2007, DOI: 10.1038/nature05930. [CrossRef] [PubMed] [Google Scholar]
  • Sack, N.J., R.E. Johnson, J.W. Boring, and R.A. Baragiola. The effect of magnetospheric ion bombardment on the reflectance of Europa’s surface. Icarus, 100, 534–540, 1992. [CrossRef] [Google Scholar]
  • Saganti, P.B., F.A. Cucinotta, J.W. Wilson, L.C. Simonsen, and C. Zeitlin. Radiation climate map for analyzing risks to astronauts on the mars surface from galactic cosmic rays. Space Sci. Rev., 110, 14–156, 2004. [CrossRef] [Google Scholar]
  • Samsonov, A.A., Z. Němeček, J. Šafránková, and K. Jelínek. Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field? J. Geophys. Res., 117, A05221, 2012. [CrossRef] [Google Scholar]
  • Santos-Costa, D., and S.A. Bourdarie. Modeling the inner Jovian electron radiation belt including non-equatorial particles. Planet. Space Sci., 49, 303–312, 2001, DOI: 10.1016/S0032-0633(00)00151-3. [CrossRef] [Google Scholar]
  • Santos-Costa, D., R. Sault, S. Bourdarie, D. Boscher, S. Bolton, et al. Synchrotron emission images from three-dimensional modeling of the Jovian electron radiation belts. Adv. Space Res., 28, 915–918, 2001, DOI: 10.1016/S0273-1177(01)00527-0. [NASA ADS] [CrossRef] [Google Scholar]
  • Santos-Costa, D., M. Blanc, S. Maurice, and J.S. Bolton. Modelling the electron and proton radiation belts of Saturn. Geophys. Res. Lett., 30, 2059, 2003, DOI: 10.1029/2003GL017972. [CrossRef] [Google Scholar]
  • Sarantos, M., J.A. Slavin, M. Benna, S.A. Boardsen, R.M. Killen, D. Schriver, and P. Trávníček. Sodium-ion pickup observed above the magnetopause during MESSENGER’s first Mercury flyby: constraints on neutral exospheric models. Geophys. Res. Lett., 36 (4), L04106, 2009. [Google Scholar]
  • Saur, J., D.F. Strobel, and F.M. Neubauer. Interaction of the Jovian magnetosphere with Europa: constraints on the neutral atmosphere. J. Geophys. Res. [Space Phys.], 103, 19947–19962, 1998, DOI: 10.1029/97JE03556. [NASA ADS] [CrossRef] [Google Scholar]
  • Saur, J., N. Schilling, F.M. Neubauer, D.F. Strobel, S. Simon, M.K. Dougherty, C.T. Russell, and R.T. Pappalardo. Evidence for temporal variability of Enceladus’ gas jets: modeling of Cassini observations. Geophys. Res. Lett., 35, L20105, 2008, DOI: 10.1029/2008GL035811. [NASA ADS] [CrossRef] [Google Scholar]
  • Saur, J., P.D. Feldman, L. Roth, F. Nimmo, D.F. Strobel, et al. Hubble Space Telescope/advanced camera for surveys observations of Europa’s atmospheric ultraviolet emission at eastern elongation. Astrophys. J., 738, 153, 2011, DOI: 10.1088/0004-637X/738/2/153. [CrossRef] [Google Scholar]
  • Saur, J., S. Duling, L. Roth, X. Jia, D.F. Strobel, et al. The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. [Space Phys.], 120, 1715–1737, 2015, DOI: 10.1002/2014JA020778. [CrossRef] [Google Scholar]
  • Schardt, A.W., and C.K. Goertz. High-energy particles. In: A.J. Dessler, Editor. Physics of the Jovian magnetosphere, Cambridge University Press, A83-26611 10-91 Cambridge and New York, 157–196, 1983. [CrossRef] [Google Scholar]
  • Schilling, N., F.M. Neubauer, and J. Saur. Time-varying interaction of Europa with the Jovian magnetosphere: constraints on the conductivity of Europa’s subsurface ocean. Icarus, 192, 41–55, 2007. [CrossRef] [Google Scholar]
  • Schippers, P., N. André, R.E. Johnson, M. Blanc, I. Dandouras, A.J. Coates, S.M. Krimigis, and D.T. Young. Identification of photoelectron energy peaks in Saturn’s inner neutral torus. J. Geophys. Res., 114 (A12), A12212, 2009. [CrossRef] [Google Scholar]
  • Schmidt, C.A., J.K. Wilson, J. Baumgardner, and M. Mendillo. Orbital effects on Mercury’s escaping sodium exosphere. Icarus, 207 (1), 9–16, 2010, DOI: 10.1016/j.icarus.2009.10.017 [CrossRef] [Google Scholar]
  • Schrijver, C.J. On a transition from solar-like coronae to rotation-dominated Jovian-like magnetospheres in ultracool main-sequence stars. Astrophys. J. Lett., 699 (2), L148–L152, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Schunk, R., and A. Nagy. Ionospheres: Physics, Plasma Physics, and Chemistry. In: A.J. Dessler, J.R. Houghton, and M.J. Rycroft, Editors. 2nd edn., Cambridge Univ. Press, Cambridge, 2009. [CrossRef] [Google Scholar]
  • Scudder, J.D., E.C. Sittler, and H.S. Bridge. A survey of the plasma electron environment of Jupiter – a view from Voyager. J. Geophys. Res. [Space Phys.], 86, 8157–8179, 1981, DOI: 10.1029/JA086iA10p08157. [CrossRef] [Google Scholar]
  • Seki, K., N. Terada, M. Yagi, D.C. Delcourt, F. Leblanc, and T. Ogino. Effects of the surface conductivity and the IMF strength on the dynamics of planetary ions in Mercury’s magnetosphere. J. Geophys. Res. [Space Phys.], 118 (6), 3233–3242, 2013. [CrossRef] [Google Scholar]
  • Seki, K., A. Nagy, C.M. Jackman, F. Crary, D. Fontaine, et al. A review of general physical and chemical processes related to plasma sources and losses for Solar System magnetospheres. Space Sci. Rev., 192 (1–4), 27–89, 2015. [CrossRef] [Google Scholar]
  • Selesnick, R.S. Micro-and macro-signatures of energetic charged particles in planetary magnetospheres. Adv. Space Res., 13 (10), 221–230, 1993. [CrossRef] [Google Scholar]
  • Selesnick, R.S., and J.D. Richardson. Plasmasphere formation in arbitrarily oriented magnetospheres. Geophys. Res. Lett., 13, 624–627, 1986, DOI: 10.1029/GL013i007p00624. [CrossRef] [Google Scholar]
  • Sheel, V., S.A. Haider, P. Withers, K. Kozarev, I. Jun, S. Kang, G. Gronoff, and C. Simon Wedlund. Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars. J. Geophys. Res., 117, A05312, 2012, DOI: 10.1029/2011JA017455 [CrossRef] [Google Scholar]
  • Shemansky, D.E., X. Liu, and H. Melin. The Saturn hydrogen plume. Planet. Space Sci., 57, 1659–1670, 2009, DOI: 10.1016/j.pss.2009.05.002. [CrossRef] [Google Scholar]
  • Shematovich, V.I., and R.E. Johnson. Near-surface oxygen atmosphere at Europa. Adv. Space Res., 27, 1881–1888, 2001, DOI: 10.1016/S0273-1177(01)00299-X. [CrossRef] [Google Scholar]
  • Shematovich, V.I., R.E. Johnson, J.F. Cooper, and M.C. Wong. Surface-bounded atmosphere of Europa. Icarus, 173, 480–498, 2005, DOI: 10.1016/j.icarus.2004.08.013. [CrossRef] [Google Scholar]
  • Showalter, M.R., J.A. Burns, J.N. Cuzzi, and J.B. Pollack. Jupiter’s ring system – new results on structure and particle properties. Icarus, 69, 458–498, 1987, DOI: 10.1016/0019-1035(87)90018-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Sicard-Piet, A., S. Bourdarie, and N. Krupp. JOSE: a new Jovian specification environment model. IEEE Trans. Nucl. Sci., 58, 923–931, 2011, DOI: 10.1109/TNS.2010.2097276. [CrossRef] [Google Scholar]
  • Simon, S., H. Kriegel, J. Saur, and A. Wennmacher. Energetic aspects of Enceladus’ magnetospheric interaction. J. Geophys. Res. [Space Phys.], 118, 3430–3445, 2013a, DOI: 10.1002/jgra.50380. [CrossRef] [Google Scholar]
  • Simon, S., S.C. van Treeck, A. Wennmacher, J. Saur, F.M. Neubauer, C.L. Bertucci, and M.K. Dougherty. Structure of Titan’s induced magnetosphere under varying background magnetic field conditions: survey of Cassini magnetometer data from flybys TA-T85. J. Geophys. Res., 118, 1679–1699, 2013b, DOI: 10.1002/jgra.50096. [CrossRef] [Google Scholar]
  • Simon, S., J. Saur, S.C. Treeck, H. Kriegel, and M.K. Dougherty. Discontinuities in the magnetic field near Enceladus. Geophys. Res. Lett., 41, 3359–3366, 2014, DOI: 10.1002/2014GL060081. [CrossRef] [Google Scholar]
  • Simonsen, L.C., and J.E. Nealy. Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events. NASA Technical Paper 3300, 1993. [Google Scholar]
  • Singer, S.F. Trapped albedo theory of the radiation belt. Phys. Rev. Lett., 1, 181–183, 1958, DOI: 10.1103/PhysRevLett.1.181. [CrossRef] [Google Scholar]
  • Sittler Jr., K.W. Ogilvie, E.C., and R. Selesnick. Survey of electrons in the Uranian magnetosphere – Voyager 2 observations. J. Geophys. Res. [Space Phys.], 92, 15263–15281, 1987, DOI: 10.1029/JA092iA13p15263. [CrossRef] [Google Scholar]
  • Sittler Jr., M. Thomsen, E.C., R.E. Johnson, R.E. Hartle, M. Burger, et al. Cassini observations of Saturn’s inner plasmasphere: saturn orbit insertion results. Planet. Space Sci., 541 (12), 1197–1210, 2006, DOI: 10.1016/j.pss.2006.05.038. [CrossRef] [Google Scholar]
  • Sittler, E., R.P. Hartle, C. Bertucci, A. Coates, A. Cravens, I. Dandouras, and D. Shemansky. Energy deposition processes in Titans upper atmosphere and its induced magnetosphere. In: R.H. Brown, et al., Editors. Titan from Cassini-Huygens, Springer Science+Business Media B.V, Heidelberg, 393–453, 2009. [CrossRef] [Google Scholar]
  • Sittler, E.C., J.F. Cooper, R.E. Hartle, W.R. Paterson, E.R. Christian, et al. Plasma ion composition measurements for Europa. Planet. Space Sci., 88, 26–41, 2013, DOI: 10.1016/j.pss.2013.01.013. [CrossRef] [Google Scholar]
  • Slanger, T.G., P.C. Cosby, D.L. Huestis, and T.A. Bida. Discovery of the atomic oxygen green line in the Venus night airglow. Science, 291 (5503), 463–465, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Slanger, T.G., P.C. Cosby, D.L. Huestis, and R.R. Meier. Oxygen atom Rydberg emission in the equatorial ionosphere from radiative recombination. J. Geophys. Res. [Space Phys.], 109, A10309, 2004, DOI: 10.1029/2004JA010556. [CrossRef] [Google Scholar]
  • Slavin, J.A., and R.E. Holzer. The effect of erosion on the solar wind stand‐off distance at Mercury. J. Geophys. Res. [Space Phys.], 84 (A5), 2076–2082, 1979. [NASA ADS] [CrossRef] [Google Scholar]
  • Slavin, J.A., and R.E. Holzer. Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. J. Geophys. Res., 86 (A13), 11401–11418, 1981, DOI: 10.1029/JA086iA13p11401. [NASA ADS] [CrossRef] [Google Scholar]
  • Slavin, J.A., R.E. Holzer, J.R. Spreiter, and S.S. Stahara. Planetary mach cones: theory and observation. J. Geophys. Res., 89, 2708, 1984. [NASA ADS] [CrossRef] [Google Scholar]
  • Slavin, J.A., B.J. Anderson, T.H. Zurbuchen, D.N. Baker, S.M. Krimigis, et al. MESSENGER observations of Mercury’s magnetosphere during northward IMF. Geophys. Res. Lett., 36, L02101, 2009, DOI: 10.1029/2008GL036158. [CrossRef] [Google Scholar]
  • Slavin, J.A., B.J. Anderson, D.N. Baker, M. Benna, S.A. Boardsen, et al. MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 (5992), 665, 2010, DOI: 10.1126/science.1188067. [CrossRef] [Google Scholar]
  • Slavin, J.A., P.C. Frisch, H.-R. Müller, J. Heerikhuisen, N.V. Pogorelov, W.T. Reach, and G. Zank. Trajectories and distribution of interstellar dust grains in the heliosphere. Astrophys. J., 760 (1), 46, 2012a. [NASA ADS] [CrossRef] [Google Scholar]
  • Slavin, J.A., S.M. Imber, S.A. Boardsen, G.A. DiBraccio, and T. Sundberg. MESSENGER observations of a flux-transfer-event shower at Mercury. J. Geophys. Res., 117, A00M06, 2012b, DOI: 10.1029/2012JA017926. [CrossRef] [Google Scholar]
  • Slavin, J.A., G.A. DiBraccio, D.J. Gershman, S.M. Imber, G.K. Poh, et al. MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res., 119, 8087–8116, 2014. [CrossRef] [Google Scholar]
  • Smith, B.A., L.A. Soderblom, R. Beebe, J. Boyce, G. Briggs, et al. Galilean satellites and Jupiter – Voyager 2 imaging science results. Science, 206, 927–950, 1979. [CrossRef] [Google Scholar]
  • Smith, D.E., M.T. Zuber, R.J. Phillips, S.C. Solomon, S.A. Hauck II, et al. Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214–271, 2012, DOI: 10.1126/science.1218809. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith, E.J., L. Davis, D.E. Jones, P.J. Coleman, D.S. Colburn, P. Dyal, and C.P. Sonett. Saturn’s magnetic field and magnetosphere. Science, 25, 407–410, 1980. [CrossRef] [Google Scholar]
  • Smith, G.R., D.E. Shemansky, J.B. Holberg, A.L. Broadfoot, B.R. Sandel, and J.C. McConnell. Saturn’s upper atmosphere from the Voyager 2 Euv solar and stellar occultations. J. Geophys. Res., 88 (A11), 8667–8678, 1983, DOI: 10.1029/JA088iA11p08667. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith, H.T., R.E. Johnson, M.E. Perry, D.G. Mitchell, R.L. McNutt, and D.T. Young. Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res. [Space Phys.], 115, A10252, 2010, DOI: 10.1029/2009JA015184. [CrossRef] [Google Scholar]
  • Smyth, W.H., and M.L. Marconi. Europa’s atmosphere, gas tori, and magnetospheric implications. Icarus, 181, 510–526, 2006, DOI: 10.1016/j.icarus.2005.10.019. [CrossRef] [Google Scholar]
  • Snowden, D., and R.V. Yelle. The global precipitation of magnetospheric electrons into Titan’s upper atmosphere. Icarus, 243, 1–15, 2014, DOI: 10.1016/j.icarus.2014.08.027. [CrossRef] [Google Scholar]
  • Solomon, S.C., R.L. McNutt Jr., R.E. Gold, and D.L. Domingue. MESSENGER mission overview. Space Sci. Rev., 131, 3–39, 2007, DOI: 10.1007/s11214-007-9247-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Sonnerup, B.U.O. Magnetopause reconnection rate. J. Geophys. Res., 79 (10), 1546–1549, 1974, DOI: 10.1029/JA079i010p01546. [CrossRef] [Google Scholar]
  • Southwood, D.J., and M.G. Kivelson. A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. [Space Phys.], 106, 6123–6130, 2001, DOI: 10.1029/2000JA000236. [NASA ADS] [CrossRef] [Google Scholar]
  • Southwood, D.J., and K.G. Kivelson. The source of Saturn’s periodic radio emission. J. Geophys. Res. [Space Phys.], 114, A09201, 2009, DOI: 10.1029/2008JA013800 [CrossRef] [Google Scholar]
  • Stallard, T.S., S. Miller, S.W.H. Cowley, and E.J. Bunce. Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett., 30, 1221, 2003, DOI: 10.1029/2002GL016031. [CrossRef] [Google Scholar]
  • Steffl, A.J., P.A. Delamere, and F. Bagenal. Cassini UVIS observations of the Io plasma torus. IV. Observations of temporal and azimuthal variability. Icarus, 194, 153–165, 2008. [CrossRef] [Google Scholar]
  • Stephan, K., R. Jaumann, R. Wagner, R.N. Clark, D.P. Cruikshank, et al. Dione’s spectral and geological properties. Icarus, 206, 631–652, 2010, DOI: 10.1016/j.icarus.2009.07.036. [NASA ADS] [CrossRef] [Google Scholar]
  • Stephan, K., R. Jaumann, R. Wagner, R.N. Clark, D.P. Cruikshank, et al. The Saturnian satellite Rhea as seen by Cassini VIMS. Planet. Space Sci., 61, 142–160, 2012, DOI: 10.1016/j.pss.2011.07.019. [NASA ADS] [CrossRef] [Google Scholar]
  • Stiepen, A., J.-C. Gérard, M. Dumont, C. Cox, and J.-L. Bertaux. Venus nitric oxide nightglow mapping from SPICAV nadir observations. Icarus, 226 (1), 428–436, 2013, DOI: 10.1016/j.icarus.2013.05.031. [CrossRef] [Google Scholar]
  • Stiepen, A., J.-C. Gérard, S. Bougher, F. Montmessin, B. Hubert, and J.-L. Bertaux. Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express. Icarus, 245 (1), 295–305, 2015, DOI: 10.1016/j.icarus.2014.09.051. [CrossRef] [Google Scholar]
  • Storini, M., K. Kudela, E.G. Cordaro, and S. Massetti. Ground-level enhancements during solar cycle 23: results from SVIRCO, LOMNICKY STIT and LARC neutron monitors. Adv. Space Res., 35 (3), 416–420, 2005, DOI: 10.1016/j.asr.2004.12.020. [CrossRef] [Google Scholar]
  • Suess, S.T., and B.E. Goldstein. Compression of the Hermean magnetosphere by the solar wind. J. Geophys. Res., 84, 3306–3312, 1979. [CrossRef] [Google Scholar]
  • Sundberg, T., J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, et al. MESSENGER observations of dipolarization events in Mercury’s magnetotail. J. Geophys. Res., 117, A00M03, 2012, DOI: 10.1029/2012JA017756. [Google Scholar]
  • Taylor, W.W.L., F.L. Scarf, C.T. Russell, and L.H. Brace. Evidence for lightning on Venus. Nature, 279, 614–616, 1979, DOI: 10.1038/279614a0. [CrossRef] [Google Scholar]
  • Teolis, B.D., and J.H. Waite. Cassini measurements show seasonal O2–CO2 exospheres and possible seasonal CO2 frosts at Rhea and Dione. 43rd Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, Texas, 2923, 2012. [Google Scholar]
  • Teolis, B.D., and J.H. Waite. Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS. Icarus, 272, 277–289, 2016, DOI: 10.1016/j.icarus.2016.02.031. [CrossRef] [Google Scholar]
  • Teolis, B.D., G.H. Jones, P.F. Miles, R.L. Tokar, B.A. Magee, et al. Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s Icy Moon Rhea. Science, 330, 1813, 2010, DOI: 10.1126/science.1198366. [NASA ADS] [CrossRef] [Google Scholar]
  • Tokar, R.L., R.E. Johnson, T.W. Hill, D.H. Pontius, W.S. Kurth, et al. The interaction of the atmosphere of Enceladus with Saturn’s plasma. Science, 311, 1409–1412, 2006, DOI: 10.1126/science.1121061. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Tokar, R.L., R.E. Johnson, M.F. Thomsen, E.C. Sittler, A.J. Coates, R.J. Wilson, F.J. Crary, D.T. Young, and G.H. Jones. Detection of exospheric O2+ at Saturn’s moon Dione. Geophys. Res. Lett., 39, L03105, 2012, DOI: 10.1029/2011GL050452. [CrossRef] [Google Scholar]
  • Trafton, L.M., S. Miller, T.R. Geballe, J. Tennyson, and G.E. Ballester. H2 Quadrupole and H3+ emission from Uranus: the uranian thermosphere, ionosphere, and auror. Astrophys. J., 524, 1059–1083, 1999, DOI: 10.1086/307838. [NASA ADS] [CrossRef] [Google Scholar]
  • Turc, L., L. Leclercq, F. Leblanc, R. Modolo, and J.Y. Chaufray. Modelling Ganymede’s neutral environment: a 3D test-particle simulation. Icarus, 229, 157–169, 2014. [CrossRef] [Google Scholar]
  • Turrini, D., R. Politi, R. Peron, D. Grassi, C. Plainaki, et al. The comparative exploration of the ice giant planets with twin spacecraft: unveiling the history of our Solar System. Planet. Space Sci., 104, 93–107, 2014, DOI: 10.1016/j.pss.2014.09.005. [CrossRef] [Google Scholar]
  • Van Allen, J.A. Absorption of energetic protons by Saturn’s Ring G. J. Geophys. Res. [Space Phys.], 88, 6911–6918, 1983, DOI: 10.1029/JA088iA09p06911. [CrossRef] [Google Scholar]
  • Van Allen, J.A. Energetic particles in the inner magnetosphere of Saturn. In: T. Gehrels, and M.S. Matthews, Editors. Saturn, The University of Arizona Press, Tucson, Arizona, 281–317, 1984. [Google Scholar]
  • Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. [Space Phys.], 73, 2839–2884, 1968, DOI: 10.1029/JA073i009p02839. [NASA ADS] [CrossRef] [Google Scholar]
  • Vasyliunas, V.M. Plasma distribution and flow. In: A.J. Dessler, Editor. Physics of the Jovian magnetosphere, Cambridge University Press, A83-26611 10-91, Cambridge and New York, 395–453, 1983. [CrossRef] [Google Scholar]
  • Vasyliunas, V.M. The convection-dominated magnetosphere of Uranus. Geophys. Res. Lett., 13, 621–623, 1986, DOI: 10.1029/GL013i007p00621. [CrossRef] [Google Scholar]
  • Vervack, R.J., W.E. McClintock, R.M. Killen, A.L. Sprague, B.J. Anderson, et al. Mercury’s complex exosphere: results from MESSENGER’s third flyby. Science, 329 (5992), 672, 2010, [CrossRef] [PubMed] [Google Scholar]
  • Vidal-Madjar, A., A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature, 422, 143–146, 2003. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Vigren, E., M. Galand, R.V. Yelle, J. Cui, J.-E. Wahlund, et al. On the thermal electron balance in Titan’s sunlit upper atmosphere. Icarus, 223, 234–251, 2013, DOI: 10.1016/j.icarus.2012.12.010. [CrossRef] [Google Scholar]
  • Vilas, F., C.R. Chapman, and M. Mathews. Mercury. Univ. Arizon Press, Tucson, Arizona, USA, 1988. [Google Scholar]
  • Vogt, M.F., M.G. Kivelson, K.K. Khurana, S.P. Joy, and R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res., 115 (A6), A06219, 2010, DOI: 10.1029/2009JA015098 [Google Scholar]
  • Voigt, G.-H., T.W. Hill, and A.J. Dessler. The magnetosphere of Uranus – plasma sources, convection, and field configuration. Astrophys. J., 266, 390–401, 1983, DOI: 10.1086/160787. [CrossRef] [Google Scholar]
  • Volwerk, M., X. Jia, C. Paranicas, W.S. Kurth, M.G. Kivelson, and K.K. Khurana. ULF waves in Ganymede’s upstream magnetosphere. Ann. Geophys., 31, 45–59, 2013. [CrossRef] [Google Scholar]
  • Von Zahn, U., S. Kumar, H. Niemann, and R. Prinn. Composition of the Venus atmosphere. In: D.M. Hunten, L. Colin, T.M. Donahue, and V. I. Moroz, Editors. Venus, University of Arizona Press, Tucson, USA, 779–840, 1983. [Google Scholar]
  • Vorburger, A., P. Wurz, H. Lammer, S. Barabash, and O. Mousis. Monte-Carlo simulation of Callisto’s exosphere. Icarus, 262, 14–29, 2015, DOI: 10.1016/j.icarus.2015.07.035. [CrossRef] [Google Scholar]
  • Waite Jr., J.H., and T.E. Cravens. Current review of the Jupiter, Saturn, and Uranus ionospheres. Adv. Space Res., 7 (12), 119–134, 1987, DOI: 10.1016/0273-1177(87)90210-9. [CrossRef] [Google Scholar]
  • Waite Jr., T.E. Cravens, J.H., J. Kozyra, A.F. Nagy, S.K. Atreya, and R.H. Chen. Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res., 88 (8), 6143–6163, 1983, DOI: 10.1029/JA088iA08p06143. [NASA ADS] [CrossRef] [Google Scholar]
  • Waite, J.H., G.R. Gladstone, W.S. Lewis, R. Goldstein, D.J. McComas, et al. An auroral flare at Jupiter. Nature, 410, 787–789, 2001. [CrossRef] [Google Scholar]
  • Waite, J.H., W.S. Lewis, W.T. Kasprzak, V.G. Anicich, B.P. Block, et al., The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation, Space Sci. Rev., 114, 113–231, 2004, DOI: 10.1007/s11214-004-1408-2. [CrossRef] [Google Scholar]
  • Waite, J.H., H. Niemann, R.V. Yelle, W.T. Kasprzak, T.E. Cravens, et al. Ion Neutral Mass Spectrometer results from the first flyby of Titan. Science, 308, 982–986, 2005, DOI: 10.1126/science.1110652. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Waite Jr., M.R. Combi, J.H., W.H. Ip, T.E. Cravens, R.L. McNutt Jr., et al. Cassini ion and neutral mass spectrometer: enceladus plume composition and structure. Science, 311, 1419–1422, 2006. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Waite, J.H., D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, and J. Westlake. The process of tholin formation in Titan’s upper atmosphere. Science, 316, 870–875, 2007. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • West, R.A., J.M. Ajello, M.H. Stevens, D.F. Strobel, G.R. Gladstone, J.S. Evans, and E.T. Bradley. Titan airglow during eclipse. Geophys. Res. Lett., 39 (1), 18204, 2012. [CrossRef] [Google Scholar]
  • Whitten, R.C., I.G. Poppoff, and J.S. Sims. The ionosphere of mars below 80 km altitude – I quiescent conditions. Planet. Space Sci., 19, 243–250, 1971, DOI: 10.1016/0032-0633(71)90203-0. [CrossRef] [Google Scholar]
  • Winslow, R.M., B.J. Anderson, C.L. Johnson, J.A. Slavin, H. Korth, M.E. Purucker, D.N. Baker, and S.C. Solomon. Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. J. Geophys. Res. [Space Phys.], 118 (5), 2213–2227, 2013, DOI: 10.1002/jgra.50237. [CrossRef] [Google Scholar]
  • Withers, P. Attenuation of radio signals by the ionosphere of Mars: theoretical development and application to MARSIS observations. Radio Sci., 46, RS2004, 2011, DOI: 10.1029/2010RS004450. [CrossRef] [Google Scholar]
  • Woch, J., N. Krupp, A. Lagg, B. Wilken, S. Livi, and D.J. Williams. Quasi-periodic modulations of the Jovian magnetotail. Geophys. Res. Lett, 25, 1253–1256, 1998. [CrossRef] [Google Scholar]
  • Woch, J., N. Krupp, K.K. Khurana, M.G. Kivelson, and A. Roux. Plasma sheet dynamics in the Jovian magnetotail: signatures for substorm-like processes? Geophys. Res. Lett., 26, 2137–2140, 1999. [CrossRef] [Google Scholar]
  • Woch, J., N. Krupp, and A. Lagg. Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett., 29 (7), 1138, 2002, DOI: 10.1029/2001GL014080. [CrossRef] [Google Scholar]
  • Wong, M.C., and R.E. Johnson. A three-dimensional azimuthally symmetric model atmosphere for Io 1. Photochemistry and the accumulation of a nightside atmosphere. J. Geophys. Res. [Space Phys.], 101, 23243–23254, 1996, DOI: 10.1029/96JE02510. [NASA ADS] [CrossRef] [Google Scholar]
  • Woodfield, E.E., R.B. Horne, S.A. Glauert, J.D. Menietti, and Y.Y. Shprits. The origin of Jupiter’s outer radiation belt. J. Geophys. Res. [Space Phys.], 119, 3490–3502, 2014, DOI: 10.1002/2014JA019891. [CrossRef] [Google Scholar]
  • Wu, X.-Y., J.L. Horwitz, and J.-N. Tu. Dynamic fluid kinetic (DyFK) simulation of auroral ion transport: synergistic effects of parallel potentials, transverse ion heating, and soft electron precipitation, J. Geophys. Res., 107 (A10), 1283–2002, DOI: 10.1029/2000JA000190. [CrossRef] [Google Scholar]
  • Wurz, P., and H. Lammer. Monte-Carlo simulation of Mercury’s exosphere. Icarus, 164, 1–13, 2003. [NASA ADS] [CrossRef] [Google Scholar]
  • Wurz, P., J.A. Whitby, U. Rohner, J.A. Martín-Fernández, H. Lammer, and C. Kolb. Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci., 58 (12), 1599–1616, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Yair, Y. New results on planetary lightning. Adv. Space Res., 50, 293–310, 2012, DOI: 10.1016/j.asr.2012.04.013. [NASA ADS] [CrossRef] [Google Scholar]
  • Yair, Y., G. Fischer, F. Simões, N. Renno, and P. Zarka. Updated review of planetary atmospheric electricity. Space Sci. Rev., 137, 29–49, 2008, DOI: 10.1007/s11214-008-9349-9. [CrossRef] [Google Scholar]
  • Yamauchi, M., and J.-E. Wahlund. Role of the ionosphere for the atmospheric evolution of planets. Astrobiology, 7 (5), 783–800, 2007, DOI: 10.1089/ast.2007.0140. [CrossRef] [Google Scholar]
  • Young, L.A., R.V. Yelle, R. Young, A. Seiff, and D.B. Kirk. Gravity waves in Jupiter’s thermosphere. Science, 276 (5309), 108–111, 1997. [CrossRef] [Google Scholar]
  • Zarka, P. Auroral radio emissions at the outer planets: observations and theories, J. Geophys. Res. [Planets], 103 (E9), 20159–20194, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Zarka, P., B.M. Pedersen, A. Lecacheux, M.L. Kaiser, M.D. Desch, W.M. Farrell, and W.S. Kurth. Radio emissions from Neptune. In: D.P. Cruikshank, M.S. Matthews, and A.M. Schumann, Editors. Neptune and Triton, Astronomisches Rechen-Institut Publisher, Germany, 341–387, 1995. [Google Scholar]
  • Zurbuchen, T.H., J.M. Raines, G. Gloeckler, S.M. Krimigis, J.A. Slavin, et al. MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science, 321 (5885), 90, 2008. [CrossRef] [Google Scholar]
  • Zurbuchen, T.H., J.M. Raines, J.A. Slavin, D.J. Gershman, J.A. Gilbert, et al. MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333 (6051), 1862, 2011. [CrossRef] [Google Scholar]
  • Zwan, B.J., and R.A. Wolf. Depletion of solar-wind plasma near a planetary boundary. J. Geophys. Res., 81, 1636, 1976. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.