Open Access
Topical Review
Issue |
J. Space Weather Space Clim.
Volume 6, 2016
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
|
|
---|---|---|
Article Number | A30 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2016025 | |
Published online | 25 July 2016 |
- Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. A&A, 530, A71, 2011, DOI: 10.1051/0004-6361/201016189. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chapman, G.A., A.M. Cookson, and J.J. Dobias. Variations in total solar irradiance during solar cycle 22. J. Geophys. Res., 101, 13541–13548, 1996. [NASA ADS] [CrossRef] [Google Scholar]
- Chapman, G.A., A.M. Cookson, and D.G. Preminger. Comparison of TSI from SORCE TIM with SFO ground-based photometry. Sol. Phys., 276, 35–41, 2012, DOI: 10.1007/s11207-011-9867-6. [CrossRef] [Google Scholar]
- Chapman, G.A., A.M. Cookson, and D.G. Preminger. Modeling total solar irradiance with San Fernando observatory ground-based photometry: comparison with ACRIM, PMOD, and RMIB composites. Sol. Phys., 283, 295–305, 2013, DOI: 10.1007/s11207-013-0233-8. [NASA ADS] [CrossRef] [Google Scholar]
- Clette, F., L. Svalgaard, J.M. Vaquero, and E.W. Cliver. Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle. Space Sci. Rev., 186, 35–103, 2015, DOI: 10.1007/s11214-014-0074-2. [NASA ADS] [CrossRef] [Google Scholar]
- Coddington, O., J.L. Lean, P. Pilewskie, M. Snow, and D. Lindholm. A solar irradiance climate data record. Bull. Am. Meteorol. Soc., 2015, DOI: 10.1175/BAMS-D-14-00265.1. [Google Scholar]
- Dasi-Espuig, M., J. Jiang, N.A. Krivova, and S.K. Solanki. Modelling total solar irradiance since 1878 from simulated magnetograms. A&A, 570, A23, 2014, DOI: 10.1051/0004-6361/201424290. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Delaygue, G., and E. Bard. An Antarctic view of beryllium-10 and solar activity for the past millennium. Clim. Dyn., 36, 2201–2218, 2011, DOI: 10.1007/s00382-010-0795-1. [NASA ADS] [CrossRef] [Google Scholar]
- Dewitte, S., D. Crommelynck, S. Mekaoui, and A. Joukoff. Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys., 224, 209–216, 2004, DOI: 10.1007/s11207-005-5698-7. [NASA ADS] [CrossRef] [Google Scholar]
- Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [NASA ADS] [CrossRef] [Google Scholar]
- Eddy, J. The maunder minimum. Science, 192, 4245, 1976. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Eddy, J. The Sun, the Earth and near-Earth space: a guide to the Sun-Earth system. NASA NP-2009-1-066-GSFC, U.S, 311, ISBN: 0160838088, 2009. [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 394, 2013, DOI: 10.5194/acp-13-3945-2013. [NASA ADS] [CrossRef] [Google Scholar]
- Fligge, M., and S.K. Solanki. Properties of flux tubes and the relation with solar irradiance variability. J. Astrophys. Astron., 21, 275–282, 2000, DOI: 10.1007/BF02702409. [CrossRef] [Google Scholar]
- Foukal, P. Variations on Sun’s role in climate change. Phys. Today, 61, 10, 2008, DOI: 10.1063/1.3001852. [CrossRef] [Google Scholar]
- Fröhlich, C. Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21. Space Sci. Rev., 125, 53, 2006, DOI: 10.1007/s11214-006-9046-5. [NASA ADS] [CrossRef] [Google Scholar]
- Fröhlich, C. Evidence of a long-term trend in total solar irradiance, A&A, 501, L27–L30, 2009, DOI: 10.1051/0004-6361/200912318. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Fröhlich, C., and J. Lean. Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev., 12 (4), 273–320, 2004, DOI: 10.1007/s00159-004-0024-1. [NASA ADS] [CrossRef] [Google Scholar]
- Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al. Solar influences on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009RG000282. [NASA ADS] [CrossRef] [Google Scholar]
- Haigh, J. The Sun and the Earth’s climate. Living Rev. Sol. Phys., 4, 2, 2007, DOI: 10.12942/lrsp-2007-2 [CrossRef] [Google Scholar]
- Hays, J.D., J. Imbrie, and N.J. Shackleton. Variations in the Earth’s orbit: pacemaker of the ice ages. Science, 194 (4270), 1121–1132, 1976, DOI: 10.1126/science.194.4270.1121. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hecht, J. Science: fiery future for planet Earth, New Scientist (1919), 14, 1994. [Google Scholar]
- Hoyt, D.V., and K.H. Schatten. Group sunspot numbers: a new solar activity reconstruction. Sol. Phys., 181, 491, 1998, DOI: 10.1023/A:1005056326158. [NASA ADS] [CrossRef] [Google Scholar]
- Ineson, S., A.A. Scaife, J.R. Knight, J.C. Manners, N.J. Dunstone, L.J. Gray, and J.D. Haigh. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, 2011, DOI: 10.1038/NGEO1282. [CrossRef] [Google Scholar]
- IPCC, Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, R.K. Pachauri, and A. Reisinger, Editors. IPCC, Geneva, Switzerland, ISBN: 92-9169-122-4, 2007. [Google Scholar]
- Judge, P.G., G.W. Lockwood, R.R. Radick, G.W. Henry, A.I. Shapiro, W. Schmutz, and C. Lindsey. Confronting a solar irradiance reconstruction with solar and stellar data. A&A, 544, A88, 2012, DOI: 10.1051/0004-6361/201218903. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 4, A14, 2014, DOI: 10.1051/swsc/2014012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp, G., N. Krivova, J. Lean, C.J Wu The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions. Sol. Phys., 2016, DOI: 10.1007/s11207-016-0853-x. [Google Scholar]
- Kopp, G., and J.L. Lean. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [NASA ADS] [CrossRef] [Google Scholar]
- Kopp, G., and A. Ward. SORCE/TIM views the 2012 transit of Venus. The Earth Observer, 24 (4), 36–37, 2012. [Google Scholar]
- Kopp, G., G. Lawrence, and G. Rottman. The Total Irradiance Monitor (TIM): science results. Sol. Phys., 230 (1), 129–140, 2005, DOI: 10.1007/s11207-005-7433-9. [NASA ADS] [CrossRef] [Google Scholar]
- Kren, A.C. Investigating the role of the Sun, the quasi-biennial oscillation, and the pacific decadal oscillation on decadal climate variability of the stratosphere. Thesis, University of Colorado at Boulder, 2015. [Google Scholar]
- Krivova, N.A., S.K. Solanki, M. Fligge, and Y.C. Unruh. Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? A&A, 399, L1–L4, 2003, DOI: 10.1051/0004-6361:20030029. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Krivova, N.A., L.E.A. Vieira, and S.K. Solanki. Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res., 115, A12112, 2010, DOI: 10.1029/2010JA015431. [NASA ADS] [CrossRef] [Google Scholar]
- Krivova, N.A., S.K. Solanki, and Y.C. Unruh. Towards a long-term record of solar total and spectral irradiance. J. Atmos. Sol. Terr. Phys., 73, 223, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J. Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett., 27, 2425, 2000. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J., G. Rottman, J. Harder, and G. Kopp. SORCE contributions to new understanding of global change and solar variability. Sol. Phys., 230, 27, 2005, Doi: 10.1007/s11207-005-1527-2. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J.L. Cycles and trends in solar irradiance and climate. WIREs Clim. Change, 1, 111–122, 2010, DOI: 10.1002/wcc.018. [CrossRef] [Google Scholar]
- Lean, J.L., and D.H. Rind. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, 2008, DOI: 10.1029/2008GL034864. [CrossRef] [Google Scholar]
- Lee, III, M.A., Gibson, R.B., R.S. Wilson, and S. Thomas. Longterm total solar irradiance variability during sunspot cycle 22. J. Geophys. Res., 100 (A2), 1667–1675, 1995. [NASA ADS] [CrossRef] [Google Scholar]
- Livio, M., K. Sahu, and J. Valenti, Editors. A Decade of Extrasolar Planets Around Normal Stars, Proceedings of the Space Telescope Science Institute symposium held in Baltimore, MD, 2–5 May 2005, Cambridge University Press, ISBN: 9780521897846, 2008. [CrossRef] [Google Scholar]
- Lockwood, M., M.J. Owens, L. Barnard, and I.G. Usoskin. An assessment of sunspot number data composites over 1845–2014. Astrophys. J., 824, 54–70, 2016, DOI: 10.3847/0004-637X/824/1/54. [NASA ADS] [CrossRef] [Google Scholar]
- Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, et al. Anthropogenic and natural radiative forcing. In: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, Editors. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. [Google Scholar]
- Ohring, G., Editor. Achieving Satellite Instrument Calibration for Climate Change (ASIC3), Workshop Report, 2007. [Google Scholar]
- O’Malley-James, J.T., J.S. Greavesa, J.A. Ravena, and C.S. Cockell. Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol., 12 (2), 99–112, 2013, DOI: 10.1017/S147355041200047X. [CrossRef] [Google Scholar]
- Pacini, A.A., and I.G. Usoskin. An unusual pattern of cosmic-ray modulation during solar cycles 23 and 24. Sol. Phys., 290, 943–950, 2015, DOI: 10.1007/s11207K014K0645K0. [CrossRef] [Google Scholar]
- Scafetta, N., and B.J. West. Is climate sensitive to solar variability? Phys. Today, 61 (3), 50–51, 2008, DOI: 10.1063/1.2897951. [CrossRef] [Google Scholar]
- Schmidt, D. Variations on Sun’s role in climate change. Phys. Today, 61, 10, 2008, DOI: 10.1063/1.3001852. [CrossRef] [Google Scholar]
- Solanki, S.K., N.A. Krivova, and T. Wenzler. Irradiance models. Adv. Space Res., 35, 376, 2005, DOI: 10.1016/j.asr.2004.12.077. [NASA ADS] [CrossRef] [Google Scholar]
- Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys., 51, 311–351, 2013, DOI: 1056-8700/97/0610-00. [NASA ADS] [CrossRef] [Google Scholar]
- Solomon, S.C., L. Qian, L.V. Didkovsky, R.A. Viereck, and T.N. Woods. Causes of low thermospheric density during the 2007–2009 solar minimum. J. Geophys. Res., 116, A00H07, 2011, DOI: 10.1029/2011JA016508. [CrossRef] [Google Scholar]
- Steinhilber, F., J. Beer, and C. Fröhlich. Total solar irradiance during the Holocene. Geophys. Res. Lett., 36, L19704, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Steinhilber, F., J.A. Abreu, J. Beer, I. Brunner, M. Christl, et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Nat. Acad. Sci. U.S.A., 109 (16), 5967–5971, 2012, DOI: 10.1073/pnas.1118965109. [NASA ADS] [CrossRef] [Google Scholar]
- Tapping, K.F., D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette. Solar magnetic activity and total irradiance since the Maunder minimum. Sol. Phys., 246, 309–326, 2007, DOI: 10.1007/s11207-007-9047. [NASA ADS] [CrossRef] [Google Scholar]
- Unruh, Y.C., S.K. Solanki, and M. Fligge. The spectral dependence of facular contrast and solar irradiance variations. A&A, 345, 635–642, 1999. [Google Scholar]
- Usoskin, I.G. A history of solar activity over millennia. Living Rev. Sol. Phys., 10, 1, 2013, DOI: 10.12942/lrsp-2013-1. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin, I.G., G.A. Kovaltsov, M. Lockwood, K. Mursula, M. Owens, and S.K. Solanki. A new calibrated sunspot group series since 1749: statistics of active day fractions. Sol. Phys., 1–24, 2016, DOI: 10.1007/s11207-015-0838-1. [Google Scholar]
- Vieira, L.E.A., S.K. Solanki, N.A. Krivova, and I. Usoskin. Evolution of the solar irradiance during the Holocene. A&A, 531, A6, 2011, DOI: 10.1051/0004-6361/201015843. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wang, Y.M., J.L. Lean, and N.R. Sheeley Jr. Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J., 625, 522, 2005, DOI: 10.1086/429689. [NASA ADS] [CrossRef] [Google Scholar]
- Willson, R.C. Active cavity radiometer type IV. Appl. Opt., 18 (2), 179–188, 1979. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Willson, R.C., and H.S. Hudson. The Sun’s luminosity over a complete solar cycle. Nature, 351, 42–44, 1991, DOI: 10.1038/351042a0. [NASA ADS] [CrossRef] [Google Scholar]
- Willson, R.C., A.V. Mordvinov. Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett., 30 (5), 1199–1202, 2003, DOI: 10.1029/2002GL016038. [NASA ADS] [CrossRef] [Google Scholar]
- Woods, T.N., F.G. Eparvier, J. Fontenla, J. Harder, G. Kopp, W.E. McClintock, G. Rottman, B. Smiley, and M. Snow. Solar irradiance variability during the October 2003 solar storm. Geophys. Res. Lett., 31 (10), L10802, 2003, DOI: 10.1029/2004GL019571. [Google Scholar]
- Woods, T.N., G. Kopp, and P.C. Chamberlin. Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares. J. Geophys. Res., 111, A10S14, 2006, DOI: 10.1029/2005JA011507. [CrossRef] [PubMed] [Google Scholar]
- Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI and SDO/HMI observations. A&A, 570, A85, 2014, DOI: 10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.