Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A7
Number of page(s) 16
Published online 08 March 2017
  • Antiochos, S.K., C.R. DeVore, and J.A. Klimchuk. A model for solar coronal mass ejections. Astrophys. J., 510, 485–493, 1999, DOI: 10.1086/306563. [NASA ADS] [CrossRef]
  • Aulanier, G. The physical mechanisms that initiate and drive solar eruptions. In: B., Schmieder, J.-M. Malherbe, and S.T. Wu, Editors. IAU Symposium, vol. 300, 184–196, 2014, DOI: 10.1017/S1743921313010958.
  • Bain, H.M., S. Krucker, P. Saint-Hilaire, and C.L. Raftery. Radio imaging of a type IVM radio burst on the 14th of August 2010. Astrophys. J., 782, 43, 2014, DOI: 10.1088/0004-637X/782/1/43.2.2. [NASA ADS] [CrossRef]
  • Bain, H.M., M.L. Mays, J.G. Luhmann, Y. Li, L.K. Jian, and D. Odstrcil. Shock connectivity in the August 2010 and July 2012 solar energetic particle events inferred from observations and ENLIL modeling. Astrophys. J., 825 (1), 1, 2016. [CrossRef]
  • Bemporad, A., M. Mierla, and D. Tripathi. Rotation of an erupting filament observed by the STEREO EUVI and COR1 instruments. A&A, 531, A147, 2011, DOI: 10.1051/0004-6361/201016297. [NASA ADS] [CrossRef] [EDP Sciences]
  • Bougeret, J.-L., M.L. Kaiser, P.J. Kellogg, R. Manning, K. Goetz, et al. Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev., 71, 231–263, 1995, DOI: 10.1007/BF00751331. [NASA ADS] [CrossRef]
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al. The large angle spectroscopic coronagraph (LASCO). Sol. Phys., 162, 357–402, 1995, DOI: 10.1007/BF00733434. [NASA ADS] [CrossRef]
  • Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge. A study of solar energetic particle events of 1997–2006: their composition and associations. J. Geophys. Res. [Space Phys.], 115, A08101, 2010, DOI: 10.1029/2009JA014848. [NASA ADS] [CrossRef]
  • Chané, E., C. Jacobs, B. van der Holst, S. Poedts, and D. Kimpe. On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks. A&A, 432, 331–339, 2005, DOI: 10.1051/0004-6361:20042005. [NASA ADS] [CrossRef] [EDP Sciences]
  • Chen, J. Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J., 338, 453–470, 1989, DOI: 10.1086/167211. [NASA ADS] [CrossRef]
  • Chen, P.F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys., 8, 1, 2011, DOI: 10.12942/lrsp-2011-1.
  • D'Huys, E., D.B. Seaton, S. Poedts, and D. Berghmans. Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys. J., 795, 49, 2014, DOI: 10.1088/0004-637X/795/1/49. [CrossRef]
  • Forbes, T.G. A review on the genesis of coronal mass ejections. J. Geophys. Res., 105, 23153–23166, 2000, DOI: 10.1029/2000JA000005. [NASA ADS] [CrossRef]
  • Forbes, T.G., J.A. Linker, J. Chen, C. Cid, J. Kóta, et al. CME theory and models. Space Sci. Rev., 123, 251–302, 2006, DOI: 10.1029/2000JA000005. [NASA ADS] [CrossRef]
  • Hanser, F.A., and F.B. Sellers. Design and calibration of the GOES-8 solar x-ray sensor: the XRS. In: E.R., Washwell, Editor. GOES-8 and Beyond, vol. 2812 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 344–352, 1996.
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev., 136, 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef]
  • Huttunen, K.E.J., R. Schwenn, V. Bothmer, and H.E.J. Koskinen. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys., 662, 23625–23641, 2005, DOI: 10.5194/angeo-23-625-2005.
  • Inhester, B. Stereoscopy basics for the STEREO mission. 2006. arXiv:astro-ph/0612649.
  • Isavnin, A., A. Vourlidas, and E.K.J. Kilpua. Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Sol. Phys., 289, 2141–2156, 2014, DOI: 10.1007/s11207-013-0468-4. [CrossRef]
  • Karpen, J.T., S.K. Antiochos, and C.R. DeVore. The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J., 760, 81, 2012.DOI: 10.1088/0004-637X/760/1/81. [NASA ADS] [CrossRef]
  • Kay, C., M. Opher, R.C. Colaninno, and A. Vourlidas. Using ForeCAT deflections and rotations to constrain the early evolution of CMEs. Astrophys. J., 827 (1), 70, 2016. [CrossRef]
  • Kilpua, E.K.J., M. Mierla, A.N. Zhukov, L. Rodriguez, A. Vourlidas, and B. Wood. Solar sources of interplanetary coronal mass ejections during the solar cycle 23/24 minimum. Sol. Phys., 289, 3773–3797, 2014, DOI: 10.1007/s11207-014-0552-4. [CrossRef]
  • Kliem, B., and T. Török. Torus instability. Phys. Rev. Lett., 96 (25), 255002, 2006, DOI: 10.1103/PhysRevLett.96.255002. [NASA ADS] [CrossRef] [PubMed]
  • Kraaikamp, E., and C. Verbeeck. Solar demon – an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J. Space Weather Space Clim., 5 (27), A18, 2015, DOI: 10.1051/swsc/2015019. [CrossRef] [EDP Sciences]
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys., 275, 17–40, 2012, DOI: 10.1007/s11207-011-9776-8. [NASA ADS] [CrossRef]
  • Lin, J., and T.G. Forbes. Effects of reconnection on the coronal mass ejection process. J. Geophys. Res., 105, 2375–2392, 2000, DOI: 10.1029/1999JA900477. [NASA ADS] [CrossRef]
  • Long, D.M., E.E. DeLuca, and P.T. Gallagher. The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J., 741, L21, 2011, DOI: 10.1088/2041-8205/741/1/L21. [NASA ADS] [CrossRef]
  • Lynch, B.J., S.K. Antiochos, Y. Li, J.G. Luhmann, and C.R. DeVore. Rotation of coronal mass ejections during eruption. Astrophys. J., 697 (2), 1918, 2009. [NASA ADS] [CrossRef]
  • Lynch, B.J., S.K. Antiochos, P.J. MacNeice, T.H. Zurbuchen, and L.A. Fisk. Observable properties of the breakout model for coronal mass ejections. Astrophys. J., 617, 589–599, 2004, DOI: 10.1086/424564. [NASA ADS] [CrossRef]
  • Mason, J.P., T.N. Woods, D. Webb, B.J. Thompson, R.C. Colaninno, and A. Vourlidas. Relationship of coronal dimming slope and depth to coronal mass ejection velocity and mass. Astrophys. J., 830, 20, 2016, DOI: 10.3847/0004-637X/830/1/20. [CrossRef]
  • Priest, E.R., and T.G. Forbes. The magnetic nature of solar flares. Astron. Astrophys. Rev., 10, 313–377, 2002, DOI: 10.1007/s001590100013. [NASA ADS] [CrossRef]
  • Robbrecht, E., D. Berghmans, and R.A.M. VanderLinden. Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? Astrophys. J., 691, 1222–1234, 2009a, DOI: 10.1088/0004-637X/691/2/1222. [NASA ADS] [CrossRef]
  • Robbrecht, E., S. Patsourakos, and A. Vourlidas. No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J., 701, 283–291, 2009b, DOI: 10.1088/0004-702 637X/701/1/283. [NASA ADS] [CrossRef]
  • Savani, N.P., A. Vourlidas, A. Szabo, M.L. Mays, I.G. Richardson, B.J. Thompson, A. Pulkkinen, R. Evans, and T. Nieves-Chinchilla. Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 13, 374–385, 2015, DOI: 10.1002/2015SW001171. [NASA ADS] [CrossRef]
  • Schmieder, B., P. Démoulin, and G. Aulanier. Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res., 51, 1967–1980, 2013, DOI: 10.1016/j.asr.2012.12.026. [NASA ADS] [CrossRef]
  • Schrijver, C.J., C. Elmore, B. Kliem, T. Török, and A.M. Title. Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys. J., 674, 586–595, 2008, DOI: 10.1086/524294. [NASA ADS] [CrossRef]
  • Seaton, D.B., D. Berghmans, B. Nicula, J.-P. Halain, A. DeGroof, et al. The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Sol. Phys., 286, 43–65, 2013, DOI: 10.1007/s11207-012-7140114-6. [NASA ADS] [CrossRef]
  • Seaton, D.B., M. Mierla, D. Berghmans, A.N. Zhukov, and L. Dolla. SWAP-SECCHI observations of a mass-loading type solar eruption. Astrophys. J., 727, L10, 2011, DOI: 10.1088/2041-8205/727/1/L10. [NASA ADS] [CrossRef]
  • Steed, K., and G. Lapenta. Investigating the origins and heliospheric evolution of homologous CMEs originating from NOAA AR11093 on 7 and 14 August 2010. AGU Fall Meeting Abstracts, C1974, 2011.
  • Steed, K., D.M. Long, J.A. Davies, A.P. Walsh, and G. Lapenta. The origins and heliospheric evolution of CMEs on 7 and 14 August 2010 originating from the same solar source region. Poster at Solar Orbiter 5 Workshop, 2012.
  • Su, Y., and A. van Ballegooijen. Rotating motions and modeling of the erupting solar polar-crown prominence on 2010 December 6. Astrophys. J., 764 (1), 91, 2013. [NASA ADS] [CrossRef]
  • Török, T., and B. Kliem. Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J., 630, L97–L100, 2005, DOI: 10.1086/462412. [NASA ADS] [CrossRef]
  • Török, T., B. Kliem, and V.S. Titov. Ideal kink instability of a magnetic loop equilibrium. A&A, 413, L27–L30, 2004, DOI: 10.1051/0004-6361:20031691. [NASA ADS] [CrossRef] [EDP Sciences]
  • Tun, S.D., and A. Vourlidas. Derivation of the magnetic field in a coronal mass ejection core via multi-frequency radio imaging. Astrophys. J., 766, 130, 2013, DOI: 10.1088/0004-637X/766/2/130. [NASA ADS] [CrossRef]
  • Vemareddy, P., R.A. Maurya, and A. Ambastha. Filament eruption in NOAA 11093 leading to a two-ribbon M1.0 class flare and CME. Sol. Phys., 277, 337–354, 2012, DOI: 10.1007/s11207-011-9903-6. [CrossRef]
  • Vourlidas, A., R. Colaninno, T. Nieves-Chinchilla, and G. Stenborg. The first observation of a rapidly rotating coronal mass ejection in the middle corona. Astrophys. J., 733, L23, 2011, DOI: 10.1088/2041-8205/733/2/L23. [CrossRef]
  • Webb, D.F., D.A. Biesecker, N. Gopalswamy, O.C. St. Cyr, J.M. Davila, C.J. Eyles, B.J. Thompson, K.D.C. Simunac, and J.C. Johnston. Using STEREO-B as an L5 space weather pathfinder mission. Space Res. Today, 178, 10–16, 2010, DOI: 10.1016/ [CrossRef]
  • Webb, D.F., M.M. Bisi, C.A. de Koning, C.J. Farrugia, B.V. Jackson, et al. An ensemble study of a January 2010 coronal mass ejection (CME): connecting a non-obvious solar source with its ICME/magnetic cloud. Sol. Phys., 289 (11), 4173–4208, 2014, DOI: 10.1007/s11207-014-0571-1. [CrossRef]
  • Zhang, Y., M. Zhang, and H. Zhang. On the relationship between flux emergence and CME initiation. Sol. Phys., 250, 75–88, 2008, DOI: 10.1088/0004-637X/744/1/66. [NASA ADS] [CrossRef]
  • Zuccarello, F.P., A. Bemporad, C. Jacobs, M. Mierla, S. Poedts, and F. Zuccarello. The role of streamers in the deflection of coronal mass ejections: comparison between STEREO three-dimensional reconstructions and numerical simulations. Astrophys. J., 744, 66, 2012, DOI: 10.1088/0004-637X/744/1/66. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.