J. Space Weather Space Clim.
Volume 7, 2017
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
Article Number A6
Number of page(s) 8
Published online 02 March 2017
  • Andrews, D.G. An introduction to atmospheric physics, Cambridge University Press, Cambridge, UK; New York, USA, 2000.
  • Ball, W.T., J.D. Haigh, E.V. Rozanov, A. Kuchar, T. Sukhodolov, F. Tummon, A.V. Shapiro, and W. Schmutz. High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nat. Geosci., 9, 206–209, 2016, DOI: 10.1038/ngeo2640. [CrossRef]
  • Bessel, M.S. Standard photometric systems. Ann. Rev. Astr. Astrophys., 43, 293–336, 2005, DOI: 10.1146/annurev.astro.41.082801.100251. [NASA ADS] [CrossRef]
  • Bordi, I., F. Berrilli, and E. Pietropaolo. Long-term response of stratospheric ozone and temperature to solar variability, Ann. Geophys., 33, 267, 2015, DOI: 10.5194/angeo-33-267-2015. [CrossRef]
  • Brueckner, G.E., K.L. Edlow, L.E. Floyd, J.L. Lean, and M.E. VanHoosier. The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res., 98, 10695, 1993, DOI: 10.1029/93JD00410. [NASA ADS] [CrossRef]
  • Bruevich, E.A., and G.V. Yakunina. Correlation study of six solar activity indices in the cycles 21–23. SunGe, 8, 83–90, 2013.
  • DeLand, M.T., and R.P. Cebula. Solar UV variations during the decline of Cycle 23. J. Atmos. Sol. Terr. Phys., 77, 225–234, 2012, DOI: 10.1016/j.jastp.2012.01.007. [NASA ADS] [CrossRef]
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, L10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [NASA ADS] [CrossRef]
  • Floyd, L.E., J.W. Cook, L.C. Herring, and P.C. Crane. SUSIMS 11-year observational record of the solar UV irradiance. Adv. Space Res., 31, 2111–2120, 2003, DOI: 10.1016/S0273-1177(03)00148-0. [NASA ADS] [CrossRef]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., 116 (D20), D20108, 2011, DOI: 10.1029/2011JD016032. [NASA ADS] [CrossRef]
  • Foukal, P., C. Fröhlich, H. Spruit, and T.M.L. Wigley. Variations in solar luminosity and their effect on the Earth’s climate. Nature, 443, 161–166, 2006, DOI: 10.1038/nature05072. [NASA ADS] [CrossRef] [PubMed]
  • Goldbaum, N., M.P. Rast, I. Ermolli, J.S. Sands, and F. Berrilli. The intensity profile of the solar supergranulation. Astrophys. J., 707, 67–73, 2009, DOI: 10.1088/0004-637X/707/1/67. [NASA ADS] [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al. Solar influences on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009RG000282. [NASA ADS] [CrossRef]
  • Haigh, J.D. The Sun and the Earth’s Climate. Living Rev. Sol. Phys., 4, A00, 2007, DOI: 10.12942/lrsp-2007-2, [CrossRef]
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [NASA ADS] [CrossRef]
  • Hathaway, D.H., The solar cycle, Living Rev. Sol. Phys., 7, A00, 2010, DOI: 10.12942/lrsp-2010-1, [NASA ADS] [CrossRef]
  • Heath, D.F., and B.M. Schlesinger. The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res., 91, 8672–8682, 1986, DOI: 10.1029/JD091iD08p08672. [NASA ADS] [CrossRef]
  • Herman, J.R., and R.A. Goldberg. Sun weather and climate. NASA Special Publications, 426, Dover Publications, Inc., New York, NY, 360, 1978.
  • Houghton, J.T. The physics of atmospheres, Cambridge, UK; New York, USA, Cambridge University Press, 1977.
  • Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N. Yen, C. Tung, and H.H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. RSPSA, 454, 903–995, 1998, DOI: 10.1098/rspa.1998.0193. [NASA ADS] [CrossRef] [MathSciNet]
  • Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 4, A14, 2014, DOI: 10.1051/swsc/2014012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Krivova, N.A., L.E.A. Vieira, and S.K. Solanki. Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res. [Space Phys], 115, 12112, 2010, DOI: 10.1029/2010JA015431. [CrossRef]
  • Kuhn, J.R., K.G. Libbrecht, and R.H. Dicke. The surface temperature of the sun and changes in the solar constant. Science, 242, 908–911, 1988, DOI: 10.1126/science.242.4880.908. [NASA ADS] [CrossRef]
  • Lean, J., and M. DeLand. How does the Sun’s spectrum vary? J. Climate, 25 (7), 2555–2560,2012, DOI: 10.1175/JCLI-D-11-00571.1. [NASA ADS] [CrossRef]
  • Léna, P. Observational astrophysics. Astronomy and Astrophysics Library, Springer-Verlag, Berlin, F.R. Germany, ISBN 3-540-18433-3, 1988. [CrossRef]
  • Li, K.J., J.C. Xu, N.B. Xiang, and W. Feng. Phase relations between total solar irradiance and the Mg II index. Adv. Space Res., 57, 408–417, 2016, DOI: 10.1016/j.asr.2015.10.020. [CrossRef]
  • Lockwood, M. Solar influence on global and regional climates. Surv. Geophys., 33, 503–534, 2012, DOI: 10.1007/s10712-012-9181-3. [NASA ADS] [CrossRef]
  • Lockwood, G.W., B.A. Skiff, G.W. Henry, S. Henry, R.R. Radick, S.L. Baliunas, R.A. Donahue, and W. Soon. Patterns of photometric and chromospheric variation among Sun-like stars: a 20 year perspective. Astrophys. Suppl. J., 171, 260, 2007, DOI: 10.1086/516752. [NASA ADS] [CrossRef]
  • Lovric, M. Solar cycle effects in stratospheric ozone, Master thesis, University of Innsbruck, 2015.
  • Maunder, E.W. Note on the distribution of sun-spots in heliographic latitude, 1874–1902. Mon. Notic. Roy. Astron. Soc., 64, 747–761, 1904. [CrossRef]
  • McClintock, W.E., G.J. Rottman, and T.N. Woods. Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design. Sol. Phys., 230, 225–258, 2005a. [NASA ADS] [CrossRef]
  • McClintock, W.E., M. Snow, and T.N. Woods. Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): pre-launch and on-orbit calibrations. Sol. Phys., 230, 259–294, 2005b. [NASA ADS] [CrossRef]
  • Meier, R.R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev., 58, 1–185, 1991, DOI: 10.1007/BF01206000. [CrossRef]
  • Meunier, N. Statistical properties of magnetic structures: their dependence on scale and solar activity. A&A, 405, 1107, 2003, DOI: 10.1051/0004-6361:20030713. [NASA ADS] [CrossRef] [EDP Sciences]
  • Penza, V., E. Pietropaolo, and W. Livingston. Modeling the cyclic modulation of photospheric lines. A&A, 454, 349–358, 2006, DOI: 10.1051/0004-6361:20053405. [NASA ADS] [CrossRef] [EDP Sciences]
  • Rilling, G., P. Flandrin, and P. Gonçalves. On empirical mode decomposition and its algorithms, IEEE-EURASIP workshop on nonlinear signal and image processing, 3, NSIP-03, Grado, Italy, 2003.
  • Rottman, G.J., T.N. Woods, and T.P. Sparn. Solar-Stellar Irradiance Comparison Experiment 1. I – instrument design and operation. J. Geophy. Res., 98 (10), 10, 1993, DOI: 10.1029/93JD00462. [NASA ADS] [CrossRef]
  • Rottman, G.J. The SORCE Mission. Sol. Phys., 230, 7–25, 2005. [NASA ADS] [CrossRef]
  • Schöll, M., T. Dudok de Wit, M. Kretzschmar, and M. Haberreiter. Making of a solar spectral irradiance dataset I: observations, uncertainties, and methods. J. Space Weather Space Clim., 6, A14, 2016, DOI: 10.1051/swsc/2016007. [NASA ADS] [CrossRef] [EDP Sciences]
  • Skupin, J., S. Noyel, M.W. Wuttke, M. Gottwald, H. Bovensmann, M. Weber, and J.P. Burrows. GOME and SCIAMACHY solar spectral irradiance and Mg II solar activity proxy indicator. Memorie della Societa Astronomica Italiana, 76, 1038–1041, 2005.
  • Snow, M., M. Weber, J. Machol, R. Viereck, and E. Richard. Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24. J. Space Weather Space Clim., 28, A04, 2014.DOI: 10.1051/swsc/2014001. [CrossRef] [EDP Sciences]
  • Tapping, K. F. The 10.7 cm solar radio flux (F10.7). Space Weather, 11, 394–406, 2013, DOI: 10.1002/swe.20064. [NASA ADS] [CrossRef]
  • Tapping, K.F. Recent solar radio astronomy at centimeter wavelengths: the variability of the 10.7 cm flux. J. Geophys. Res., 92, 829–838, 1987, DOI: 10.1029/JD092iD01p00829. [NASA ADS] [CrossRef]
  • Thuillier, G., M. Deland, A. Shapiro, W. Schmutz, D. Bolse, and S.M.L. Melo. The solar spectral irradiance as a function of the Mg II index for atmosphere and climate modelling, Solar Physics, 277, 245, 2012, DOI: 10.1007/s11207-011-9912-5. [NASA ADS] [CrossRef]
  • Viereck, R., and L. Puga. The NOAA Mg II core-to-wing solar index: Construction of a 20-year time series of chromospheric variability from multiple satellites. J. Geophys. Res., 104, 9995–10005, 1999, DOI: 10.1029/1998JA900163. [NASA ADS] [CrossRef]
  • Viereck, R., L. Puga, D. McMullin, D. Judge, M. Weber, and W.K. Tobiska. The Mg II index: a proxy for solar EUV. Geophys. Res. Lett., 4, 1343–1346, 2001, DOI: 10.1029/2000GL012551. [NASA ADS] [CrossRef]
  • Woods, T., G. Rottman, J. Harder, G. Lawrence, B. McClintock, G. Kopp, and C. Pankratz. Overview of the EOS SORCE mission. SPIE Proc., 4135, 192, 2000, DOI: 10.1117/12.494229. [CrossRef]
  • Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI and SDO/HMI observations. A&A, 570, A85, 2014, DOI: 10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.