Open Access
Issue
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A9
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2017008
Published online 14 March 2017
  • Bendat, J.S., and A.G. Piersol. Random data analysis and measurement procedures. Wiley, London, New York, 2000.
  • BenMoussa, A., S. Gissot, U. Schühle, G. Del Zanna, and F. Auchère, et al. On-orbit degradation of solar instruments. Sol. Phys., 288, 389–434, 2013, DOI: 10.1007/s11207-013-0290-z. [NASA ADS] [CrossRef]
  • Bowman, B.R., W.K. Tobiska, F. Marcos, and C. Valladares. The JB2006 empirical thermospheric density model. J. Atmos. Sol. Terr. Phys., 70, 774–793, 2008, DOI: 10.1016/j.jastp.2007.10.002. [CrossRef]
  • Bowman, B.R., W.K. Tobiska, and F.A. Marcos. The development of new solar indices for use in thermospheric density modeling, In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (Keystone, CO). vol. AIAA 2006-6165, AAS Publications Office, San Diego, 1–13, 2006.
  • Bruinsma, S. The DTM-2013 thermosphere model. J. Space Weather Space Clim., 5 (27), A1, 2015, DOI: 10.1051/swsc/2015001. [CrossRef] [EDP Sciences]
  • Bruinsma, S., G. Thuillier, and F. Barlier. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J. Atmos. Sol. Terr. Phys., 65, 1053–1070, 2003. DOI: 10.1016/S1364-6826(03)00137-8. [CrossRef]
  • Bruinsma, S.L., E. Doornbos, and B.R. Bowman. Validation of GOCE densities and evaluation of thermosphere models. Adv. Space Res., 54, 576–585, 2014, DOI: 10.1016/j.asr.2014.04.008. [CrossRef]
  • Dudok de Wit, T., and S. Bruinsma. Determination of the most pertinent EUV proxy for use in thermosphere modeling. Geophys. Res. Lett, 38 (19), L19102, 2011, DOI: 10.1029/2011GL049028. [CrossRef]
  • Dudok de Wit, T., S. Bruinsma, and K. Shibasaki. Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim., 4 (26), A06, 2014, DOI: 10.1051/swsc/2014003. [CrossRef] [EDP Sciences]
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, 10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef]
  • Dudok de Wit, T., L. Lefèvre, and F. Clette. Uncertainties in the sunspot numbers: estimation and implications. Sol. Phys., 291 (9), 2709–2731, 2016, DOI: 10.1007/s11207-016-0970-6. [NASA ADS] [CrossRef]
  • Emmert, J.T. A long-term data set of globally averaged thermospheric total mass density. J. Geophys. Res. [Space Phys], 114, A06315, 2009, DOI: 10.1029/2009JA014102.
  • Emmert, J.T. Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag. J. Geophys. Res. [Space Phys], 120, 2940–2950, 2015a, DOI: 10.1002/2015JA021047. [CrossRef]
  • Emmert, J.T. Thermospheric mass density: a review, Adv. Space Res., 56, 773–824, 2015b, DOI: 10.1016/j.asr.2015.05.038. [CrossRef]
  • Ermolli, I., K. Shibasaki, A. Tlatov, and L. van Driel-Gesztelyi. Solar cycle indices from the photosphere to the corona: measurements and underlying physics. Space Sci. Rev., 186 (1–4), 105–135, 2014, DOI: 10.1007/s11214-014-0089-8. [NASA ADS] [CrossRef]
  • Floyd, L., J. Newmark, J. Cook, L. Herring, and D. McMullin. Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Sol. Terr. Phys., 67, 3–15, 2005, DOI: 10.1016/j.jastp.2004.07.013. [NASA ADS] [CrossRef]
  • Gary, D.E., and C.U. Keller. Solar and space weather radiophysics – current status and future developments. Astrophysics and Space Science Library, vol. 314, Kluwer Academic Publishers, Dordrecht, 2004.
  • Hedin, A.E., C.A. Reber, G.P. Newton, N.W. Spencer, J.E. Salah, J.V. Evans, D.C. Kayser, D. Alcayde, P. Bauer, and L. Cogger. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. I – N2 density and temperature. J. Geophy. Res., 82, 2139–2147, 1977, DOI: 10.1029/JA082i016p02139. [CrossRef]
  • Hovestadt, D., M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, et al. CELIAS – charge, element and isotope analysis system for SOHO. Sol. Phys., 162, 441–481, 1995, DOI: 10.1007/BF00733436. [NASA ADS] [CrossRef]
  • Kundu, M.R. Solar radio astronomy, Interscience Publication, New York, 1965.
  • Lean, J.L., J.M. Picone, J.T. Emmert, and G. Moore. Thermospheric densities derived from spacecraft orbits: application to the Starshine satellites. J. Geophys. Res. [Space Phys], 111 (A10), 4301, 2006, DOI: 10.1029/2005JA011399. [CrossRef]
  • Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère. Review on the solar spectral variability in the EUV for space weather purposes. Ann. Geophys., 26, 269–279, 2008, DOI: 10.5194/angeo-26-269-2008. [NASA ADS] [CrossRef]
  • Pick, M., and N. Vilmer. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev., 16, 1–153, 2008, DOI: 10.1007/s00159-008-0013-x. [NASA ADS] [CrossRef] [MathSciNet]
  • Schmahl, E.J., M.R. Kundu. Synoptic radio observations. In: K.S. Balasubramaniam, J. Harvey, and D. Rabin, Editors. Synoptic solar physics, vol. 140 of Astronomical Society of the Pacific Conference Series, 387–399, 1998.
  • Tanaka, H. Toyokawa observatory. Sol. Phys., 1, 295–300, 1967, DOI: 10.1007/BF00150862. [CrossRef]
  • Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather, 11 (7), 394–406, 2013, DOI: 10.1002/swe.20064. [NASA ADS] [CrossRef]
  • Tapping, K.F., and B. Detracey. The origin of the 10.7 CM flux. Sol. Phys., 127, 321–332, 1990, DOI: 10.1007/BF00152171. [NASA ADS] [CrossRef]
  • Tapping, K.F., and D.C. Morton. The next generation of canadian solar flux monitoring. J Phys.: Conf Ser, 440 (1), 012039, 2013, DOI: 10.1088/1742-6596/440/1/012039. [CrossRef]
  • Tobiska, W., S. Bouwer, and B. Bowman. The development of new solar indices for use in thermospheric density modeling. J. Atmos. Sol. Terr. Phys., 70, 803–819, 2008, DOI: 10.1016/j.jastp.2007.11.001. [NASA ADS] [CrossRef]
  • Viereck, R., L. Puga, D. McMullin, D. Judge, M. Weber, and W.K. Tobiska. The Mg II index: a proxy for solar EUV. Geophys. Res. Lett., 28, 1343–1346, 2001, DOI: 10.1029/2000GL012551. [NASA ADS] [CrossRef]
  • White, S.M., A.O. Benz, S. Christe, F. Fárnk, M.R. Kundu, et al. The relationship between solar radio and hard X-ray emission. Space Sci. Rev., 159 (1–4), 225–261, 2011, DOI: 10.1007/s11214-010-9708-1. [CrossRef]
  • White, S.M., and M.R. Kundu. Radio observations of gyroresonance emission from coronal magnetic fields. Sol. Phys., 174, 31–52, 1997, DOI: 10.1023/A:1004975528106. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.