Open Access
Issue |
J. Space Weather Space Clim.
Volume 7, 2017
|
|
---|---|---|
Article Number | A9 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2017008 | |
Published online | 14 March 2017 |
- Bendat, J.S., and A.G. Piersol. Random data analysis and measurement procedures. Wiley, London, New York, 2000. [Google Scholar]
- BenMoussa, A., S. Gissot, U. Schühle, G. Del Zanna, and F. Auchère, et al. On-orbit degradation of solar instruments. Sol. Phys., 288, 389–434, 2013, DOI: 10.1007/s11207-013-0290-z. [Google Scholar]
- Bowman, B.R., W.K. Tobiska, F. Marcos, and C. Valladares. The JB2006 empirical thermospheric density model. J. Atmos. Sol. Terr. Phys., 70, 774–793, 2008, DOI: 10.1016/j.jastp.2007.10.002. [CrossRef] [Google Scholar]
- Bowman, B.R., W.K. Tobiska, and F.A. Marcos. The development of new solar indices for use in thermospheric density modeling, In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (Keystone, CO). vol. AIAA 2006-6165, AAS Publications Office, San Diego, 1–13, 2006. [Google Scholar]
- Bruinsma, S. The DTM-2013 thermosphere model. J. Space Weather Space Clim., 5 (27), A1, 2015, DOI: 10.1051/swsc/2015001. [CrossRef] [EDP Sciences] [Google Scholar]
- Bruinsma, S., G. Thuillier, and F. Barlier. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J. Atmos. Sol. Terr. Phys., 65, 1053–1070, 2003. DOI: 10.1016/S1364-6826(03)00137-8. [CrossRef] [Google Scholar]
- Bruinsma, S.L., E. Doornbos, and B.R. Bowman. Validation of GOCE densities and evaluation of thermosphere models. Adv. Space Res., 54, 576–585, 2014, DOI: 10.1016/j.asr.2014.04.008. [Google Scholar]
- Dudok de Wit, T., and S. Bruinsma. Determination of the most pertinent EUV proxy for use in thermosphere modeling. Geophys. Res. Lett, 38 (19), L19102, 2011, DOI: 10.1029/2011GL049028. [CrossRef] [Google Scholar]
- Dudok de Wit, T., S. Bruinsma, and K. Shibasaki. Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim., 4 (26), A06, 2014, DOI: 10.1051/swsc/2014003. [CrossRef] [EDP Sciences] [Google Scholar]
- Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, 10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef] [Google Scholar]
- Dudok de Wit, T., L. Lefèvre, and F. Clette. Uncertainties in the sunspot numbers: estimation and implications. Sol. Phys., 291 (9), 2709–2731, 2016, DOI: 10.1007/s11207-016-0970-6. [NASA ADS] [CrossRef] [Google Scholar]
- Emmert, J.T. A long-term data set of globally averaged thermospheric total mass density. J. Geophys. Res. [Space Phys], 114, A06315, 2009, DOI: 10.1029/2009JA014102. [Google Scholar]
- Emmert, J.T. Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag. J. Geophys. Res. [Space Phys], 120, 2940–2950, 2015a, DOI: 10.1002/2015JA021047. [CrossRef] [Google Scholar]
- Emmert, J.T. Thermospheric mass density: a review, Adv. Space Res., 56, 773–824, 2015b, DOI: 10.1016/j.asr.2015.05.038. [CrossRef] [Google Scholar]
- Ermolli, I., K. Shibasaki, A. Tlatov, and L. van Driel-Gesztelyi. Solar cycle indices from the photosphere to the corona: measurements and underlying physics. Space Sci. Rev., 186 (1–4), 105–135, 2014, DOI: 10.1007/s11214-014-0089-8. [Google Scholar]
- Floyd, L., J. Newmark, J. Cook, L. Herring, and D. McMullin. Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Sol. Terr. Phys., 67, 3–15, 2005, DOI: 10.1016/j.jastp.2004.07.013. [NASA ADS] [CrossRef] [Google Scholar]
- Gary, D.E., and C.U. Keller. Solar and space weather radiophysics – current status and future developments. Astrophysics and Space Science Library, vol. 314, Kluwer Academic Publishers, Dordrecht, 2004. [Google Scholar]
- Hedin, A.E., C.A. Reber, G.P. Newton, N.W. Spencer, J.E. Salah, J.V. Evans, D.C. Kayser, D. Alcayde, P. Bauer, and L. Cogger. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. I – N2 density and temperature. J. Geophy. Res., 82, 2139–2147, 1977, DOI: 10.1029/JA082i016p02139. [CrossRef] [Google Scholar]
- Hovestadt, D., M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, et al. CELIAS – charge, element and isotope analysis system for SOHO. Sol. Phys., 162, 441–481, 1995, DOI: 10.1007/BF00733436. [NASA ADS] [CrossRef] [Google Scholar]
- Kundu, M.R. Solar radio astronomy, Interscience Publication, New York, 1965. [Google Scholar]
- Lean, J.L., J.M. Picone, J.T. Emmert, and G. Moore. Thermospheric densities derived from spacecraft orbits: application to the Starshine satellites. J. Geophys. Res. [Space Phys], 111 (A10), 4301, 2006, DOI: 10.1029/2005JA011399. [CrossRef] [Google Scholar]
- Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère. Review on the solar spectral variability in the EUV for space weather purposes. Ann. Geophys., 26, 269–279, 2008, DOI: 10.5194/angeo-26-269-2008. [NASA ADS] [CrossRef] [Google Scholar]
- Pick, M., and N. Vilmer. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev., 16, 1–153, 2008, DOI: 10.1007/s00159-008-0013-x. [CrossRef] [Google Scholar]
- Schmahl, E.J., M.R. Kundu. Synoptic radio observations. In: K.S. Balasubramaniam, J. Harvey, and D. Rabin, Editors. Synoptic solar physics, vol. 140 of Astronomical Society of the Pacific Conference Series, 387–399, 1998. [Google Scholar]
- Tanaka, H. Toyokawa observatory. Sol. Phys., 1, 295–300, 1967, DOI: 10.1007/BF00150862. [CrossRef] [Google Scholar]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather, 11 (7), 394–406, 2013, DOI: 10.1002/swe.20064. [NASA ADS] [CrossRef] [Google Scholar]
- Tapping, K.F., and B. Detracey. The origin of the 10.7 CM flux. Sol. Phys., 127, 321–332, 1990, DOI: 10.1007/BF00152171. [Google Scholar]
- Tapping, K.F., and D.C. Morton. The next generation of canadian solar flux monitoring. J Phys.: Conf Ser, 440 (1), 012039, 2013, DOI: 10.1088/1742-6596/440/1/012039. [CrossRef] [Google Scholar]
- Tobiska, W., S. Bouwer, and B. Bowman. The development of new solar indices for use in thermospheric density modeling. J. Atmos. Sol. Terr. Phys., 70, 803–819, 2008, DOI: 10.1016/j.jastp.2007.11.001. [NASA ADS] [CrossRef] [Google Scholar]
- Viereck, R., L. Puga, D. McMullin, D. Judge, M. Weber, and W.K. Tobiska. The Mg II index: a proxy for solar EUV. Geophys. Res. Lett., 28, 1343–1346, 2001, DOI: 10.1029/2000GL012551. [NASA ADS] [CrossRef] [Google Scholar]
- White, S.M., A.O. Benz, S. Christe, F. Fárnk, M.R. Kundu, et al. The relationship between solar radio and hard X-ray emission. Space Sci. Rev., 159 (1–4), 225–261, 2011, DOI: 10.1007/s11214-010-9708-1. [NASA ADS] [CrossRef] [Google Scholar]
- White, S.M., and M.R. Kundu. Radio observations of gyroresonance emission from coronal magnetic fields. Sol. Phys., 174, 31–52, 1997, DOI: 10.1023/A:1004975528106. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.