Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A16
Number of page(s) 11
Published online 01 August 2017
  • Anno, G.H., S.J. Baum, H.R. Withers, R.W. Young, R.W. Young, and R.W. Young. Symptomatology of acute radiation effects in humans after exposure to doses of 0.5–30 Gy. Health Phys., 56, 821–838, 1989. [CrossRef] [PubMed] [Google Scholar]
  • Chin, G., S. Brylow, M. Foote, J. Garvin, J. Kasper, et al. Lunar reconnaissance orbiter overview: the instrument suite and mission. Space Sci. Rev., 129, 391–419, 2007, DOI: 10.1007/s11214-007-9153-y. [CrossRef] [Google Scholar]
  • Cucinotta, F.A., M. Alp, B. Rowedder, and M.-H.Y. Kim. Safe days in space with acceptable uncertainty from space radiation exposure. Life Sci. Space. Res., 5, 31–38, 2015, DOI: 10.1016/j.lssr.2015.04.002. [CrossRef] [Google Scholar]
  • Cucinotta, F.A., S. Hu, N.A. Schwadron, K. Kozarev, L.W. Townsend, and M.-H.Y. Kim. Space radiation risk limits and earth-moon-mars environmental models. Space Weather, 8, S00E09, 2010, DOI: 10.1029/2010SW000572. [CrossRef] [Google Scholar]
  • Dayeh, M.A., M.I. Desai, K. Kozarev, N.A. Schwadron, L.W. Townsend, M. PourArsalan, C. Zeitlin, and R.B. Hatcher. Modeling proton intensity gradients and radiation dose equivalents in the inner heliosphere using EMMREM: May 2003 solar events. Space Weather, 8, S00E07, 2010, DOI: 10.1029/2009SW000566. [CrossRef] [Google Scholar]
  • Ding, L.-G., Y. Jiang, and G. Li. Are there two distinct solar energetic particle releases in the 2012 May 17 ground level enhancement event? Astrophys. J., 818, 169, 2016, DOI: 10.3847/0004-637X/818/2/169. [CrossRef] [Google Scholar]
  • Gopalswamy, N., P. Mäkelä, S. Yashiro, H. Xie, S. Aökiyama, and N. Thakur. High-energy solar particle events in cycle 24. J. Phys. Conf. Ser., 642, 012012, 2015, DOI: 10.1088/1742-6596/642/1/012012. [CrossRef] [Google Scholar]
  • Grotzinger, J.P., J. Crisp, A.R. Vasavada, R.C. Anderson, C.J. Baker, et al. Mars science laboratory mission and science investigation. Space Sci. Rev., 170, 5–56, 2012, DOI: 10.1007/s11214-012-9892-2. [CrossRef] [Google Scholar]
  • Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, S. Bottcher, C. Martin, et al. The radiation assessment detector (RAD) investigation. Space Sci. Rev., 170, 503–558, 2012, DOI: 10.1007/s11214-012-9913-1. [NASA ADS] [CrossRef] [Google Scholar]
  • Jokipii, J.R., and E.H. Levy. Effects of particle drifts on the solar modulation of galactic cosmic rays. Astrophys. J., 213, L85–L88, 1977, DOI: 10.1086/182415. [NASA ADS] [CrossRef] [Google Scholar]
  • Joyce, C.J., N.A. Schwadron, J.K. Wilson, H.E. Spence, J.C. Kasper, et al. Validation of PREDICCS using LRO/CRaTER observations during three major solar events in 2012. Space Weather, 11 (6), 350–360, 2013, DOI: 10.1002/swe.20059. [CrossRef] [Google Scholar]
  • Kozarev, K., N.A. Schwadron, M.A. Dayeh, L.W. Townsend, M.I. Desai, and M. PourArsalan. Modeling the 2003 Halloween events with EMMREM: energetic particles, radial gradients and coupling to MHD. Space Weather, 8, S00E08, 2010, DOI: 10.1029/2009SW000550. [CrossRef] [Google Scholar]
  • Lee, M.A., and L.A. Fisk. The role of particle drifts in solar modulation. Astrophys. J., 248, 836–844, 1981, DOI: 10.1086/159208. [CrossRef] [Google Scholar]
  • Li, C., K.A. Firoz, L.P. Sun, and L.I. Miroshnichenko. Electron and proton acceleration during the first ground level enhancement event of solar cycle 24. Astrophys. J., 770, 34, 2013, DOI: 10.1088/0004-637X/770/1/34. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu, Y.D., J.G. Luhmann, N. Lugaz, C. Möstl, J.A. Davies, S.D. Bale, and R.P. Lin. On sun-to-earth propagation of coronal mass ejections. Astrophys. J., 769, 45, 2013, DOI: 10.1088/0004-637X/769/1/45. [NASA ADS] [CrossRef] [Google Scholar]
  • Looper, M.D., J.E. Mazur, J.B. Blake, H.E. Spence, N.A. Schwadron, M.J. Golightly, A.W. Case, J.C. Kasper, and L.W. Townsend. The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations. Space Weather, 11 (4), 142–152, 2013, DOI: 10.1002/swe.20034. [CrossRef] [Google Scholar]
  • Mazur, J.E., W.R. Crain, M.D. Looper, D.J. Mabry, J.B. Blake, A.W. Case, M.J. Golightly, J.C. Kasper, and H.E. Spence. New measurements of total ionizing dose in the lunar environment. Space Weather, 9, S07002, 2011, DOI: 10.1029/2010SW000641. [CrossRef] [Google Scholar]
  • NCRP. Guidance on radiation received in space activities. NCRP Report 98, 1989. [Google Scholar]
  • NCRP. National council on radiation protection and measurements, recommendations of dose limits for low earth orbit. NCRP Report 132, 2000. [Google Scholar]
  • NRC. Radiobiological factors in manned spaceflight. In: W.H. Langham, Editor, Report of Space Radiation Study Panel of the Life Sciences Committee, National Academy Press, Washington, DC, 1967. [Google Scholar]
  • NRC. Radiation protection guides and constraints for space-mission and vehicle-design studies involving nuclear systems. In: W.H., Langham, D. Grahn, Editor, Report of the Radiobiologic Advisory Panel of the Committee on Space Medicine Space Science Board, National Academy Press, Washington, DC, 1970. [Google Scholar]
  • O’Neill, P.M.. Badhwar O’Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present. Adv. Space Res., 37, 1727–1733, 2006, DOI: 10.1016/j.asr.2005.02.001. [NASA ADS] [CrossRef] [Google Scholar]
  • Posner, A., D. Odstrĉil, P. MacNeice, P. MacNeice, L. Rastaetter, C. Zeitlin, et al. The Hohmann-Parker effect measured by the Mars science laboratory on the transfer from earth to mars: consequences and opportunities. Planet. Space Sci., 89, 127–139, 2013, DOI: 10.1016/j.pss.2013.09.013. [NASA ADS] [CrossRef] [Google Scholar]
  • Quinn, P.R., N.A. Schwadron, and E. Möbius. Transport of helium pickup ions within the focusing cone: reconciling STEREO observations with IBEX. Astrophys. J., 824, 142, 2016, DOI: 10.3847/0004-637X/824/2/142. [CrossRef] [Google Scholar]
  • Ruffolo, D. Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys. J., 442, 861–874, 1995, DOI: 10.1086/175489. [NASA ADS] [CrossRef] [Google Scholar]
  • Schwadron, N.A., T. Baker, B. Blake, A.W. Case, J.F. Cooper, et al. Lunar radiation environment and space weathering from the cosmic ray telescope for the effects of radiation (CRaTER). J. Geophys. Res. [Planets], 117, E00H13, 2012, DOI: 10.1029/2011JE003978. [CrossRef] [Google Scholar]
  • Schwadron, N.A., L. Townsend, K. Kozarev, M.A. Dayeh, and F. Cucinotta. Earth-moon-mars radiation environment module framework. Space Weather, 8, S00E02, 2010, DOI: 10.1029/2009SW000523. [Google Scholar]
  • Skilling, J. Cosmic rays in the galaxy: convection or diffusion? Astrophys. J., 170, 265, 1971, DOI: 10.1086/151210. [NASA ADS] [CrossRef] [Google Scholar]
  • Spence, H.E., A.W. Case, M.J. Golightly, T. Heine, B.A. Larsen, et al. CRaTER: the cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission. Space Sci. Rev., 150, 243–284, 2010, DOI: 10.1007/s11214-009-9584-8. [CrossRef] [Google Scholar]
  • Wilson, J.W., L.W. Townsend, J.E. Nealy, S.Y. Chun, B.S. Hong, W.W. Buck, S.L. Lamkin, B.D. Ganapol, F. Khan, and F.A. Cucinotta. BRYNTRN: a baryon transport model. NASA STI/Recon Technical Report No. 89, 1989. [Google Scholar]
  • Wu, H., J.L. Huff, R. Casey, M.-H. Kim, and F.A. Cucinotta. Risk of acute radiation syndromes due to solar particle events, 2009,NASA Johnson Space Center, Houston, HRP-47052. [Google Scholar]
  • Zeitlin, C., D.M. Hassler, F.A. Cucinotta, B. Ehresmann, R.F. Wimmer-Schweingruber, et al. Measurements of energetic particle radiation in transit to mars on the mars science laboratory. Science, 340, 1080–1084, 2013, DOI: 10.1126/science.1235989. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.