Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A17
Number of page(s) 25
Published online 01 August 2017
  • Ahmed, O.W., R. Qahwaji, T. Colak, P.A. Higgins, P.T. Gallagher, and D.S. Bloomfield. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol. Phys., 283, 157–175, 2013, DOI: 10.1007/s11207-011-9896-1. [NASA ADS] [CrossRef]
  • Al-Ghraibah, A., L.E. Boucheron, and R.T.J. McAteer. An automated classification approach to ranking photospheric proxies of magnetic energy build-up. A&A, 579, A64, 2015, DOI: 10.1051/0004-6361/201525978. [CrossRef] [EDP Sciences]
  • Arber, T.D., A.W. Longbottom, C.L. Gerrard, and A.M. Milne. A staggered grid, lagrangian-eulerian remap code for 3-D MHD simulations. J. Comput. Phys., 171, 151–181, 2001, DOI: 10.1006/jcph.2001.6780. [NASA ADS] [CrossRef]
  • Aulanier, G. The physical mechanisms that initiate and drive solar eruptions. In: B., Schmieder, J.-M. Malherbe, and S.T. Wu, Editors, Nature of Prominences and their Role in Space Weather, vol. 300 of IAU Symposium, 184–196, 2014, DOI: 10.1017/S1743921313010958.
  • Bao, S.D., H.Q. Zhang, G.X. Ai, and M. Zhang. A survey of flares and current helicity in active regions. Astron. Astrophys. Suppl., 139, 311–320, 1999, DOI: 10.1051/aas:1999396. [CrossRef] [EDP Sciences]
  • Barnes, G., K.D. Leka, C.J. Schrijver, T. Colak, R. Qahwaji, et al. A comparison of flare forecasting methods i results from the all-clear workshop. Astrophys. J., 829, 89, 2016, DOI: 10.3847/0004-637X/829/2/89. [NASA ADS] [CrossRef]
  • Barnes, G., K.D. Leka, E.A. Schumer, and D.J. Della-Rose. Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather, 5, S09002, 2007, DOI: 10.1029/2007SW000317. [CrossRef]
  • Bobra, M.G., and S. Couvidat. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J., 798, 135, 2015, DOI: 10.1088/0004-637X/798/2/135. [NASA ADS] [CrossRef]
  • Bobra, M.G., and S. Ilonidis. Predicting coronal mass ejections using machine learning methods. Astrophys. J., 821, 127, 2016, DOI: 10.3847/0004-637X/821/2/127. [NASA ADS] [CrossRef]
  • Bobra, M.G., X. Sun, J.T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, and K.D. Leka. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Sol. Phys., 289, 3549–3578, 2014, DOI: 10.1007/s11207-014-0529-3. [NASA ADS] [CrossRef]
  • Cheung, M.C.M., and H. Isobe. Flux emergence (Theory). Living Rev. Sol. Phys., 11, 3, 2014, DOI: 10.12942/lrsp-2014-3. [NASA ADS] [CrossRef]
  • Colak, T., and R. Qahwaji. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef]
  • Dalmasse, K., G. Aulanier, P. Démoulin, B. Kliem, T. Török, and E. Pariat. The origin of net electric currents in solar active regions. Astrophys. J., 810, 17, 2015, DOI: 10.1088/0004-637X/810/1/17. [NASA ADS] [CrossRef]
  • Démoulin, P. Where will efficient energy release occur in 3-D magnetic configurations? Adv. Space Res., 39, 1367–1377, 2007, DOI: 10.1016/j.asr.2007.02.046. [NASA ADS] [CrossRef]
  • Démoulin, P., and E. Pariat. Modelling and observations of photospheric magnetic helicity. Adv. Space Res., 43, 1013–1031, 2009, DOI: 10.1016/j.asr.2008.12.004. [NASA ADS] [CrossRef]
  • Falconer, D., A.F. Barghouty, I. Khazanov, and R. Moore. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy. Space Weather, 9, S04003, 2011, DOI: 10.1029/2009SW000537. [NASA ADS] [CrossRef]
  • Falconer, D.A., R.L. Moore, and G.A. Gary. Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J., 569, 1016–1025, 2002, DOI: 10.1086/339161. [NASA ADS] [CrossRef]
  • Falconer, D.A., R.L. Moore, and G.A. Gary. A measure from line-of-sight magnetograms for prediction of coronal mass ejections. J. Geophys. Res.: Space Physics, 108, 1380, 2003, DOI: 10.1029/2003JA010030. [CrossRef]
  • Falconer, D.A., R.L. Moore, and G.A. Gary. Magnetic causes of solar coronal mass ejections: dominance of the free magnetic energy over the magnetic twist alone. Astrophys. J., 644, 1258–1272, 2006, DOI: 10.1086/503699. [NASA ADS] [CrossRef]
  • Falconer, D.A., R.L. Moore, and G.A. Gary. Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J., 689, 1433–1442, 2008, DOI: 10.1086/591045. [NASA ADS] [CrossRef]
  • Fisher, G.H., D.J. Bercik, B.T. Welsch, and H.S. Hudson. Global forces in eruptive solar flares: the lorentz force acting on the solar atmosphere and the solar interior. Sol. Phys., 277, 59–76, 2012, DOI: 10.1007/s11207-011-9907-2. [NASA ADS] [CrossRef]
  • Forbes, T., Models of coronal mass ejections and flares, Cambridge University Press, London, UK, 2010.
  • Gallagher, P.T., C. Denker, V. Yurchyshyn, T. Spirock, J. Qiu, H. Wang, and P.R. Goode. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory. Ann. Geophys., 20, 1105–1115, 2002, DOI: 10.5194/angeo-20-1105-2002. [CrossRef]
  • Hagyard, M.J., R.L. Moore, and A.G. Emslie. The role of magnetic field shear in solar flares. Adv. Space Res., 4, 71–80, 1984, DOI: 10.1016/0273-1177(84)90162-5. [CrossRef]
  • Hagyard, M.J., P. Venkatakrishnan, and J.B. Smith Jr. Nonpotential magnetic fields at sites of gamma-ray flares. Astrophys. J. Suppl. Ser., 73, 159–163, 1990, DOI: 10.1086/191447. [NASA ADS] [CrossRef]
  • Higgins, P.A., P.T. Gallagher, R.T.J. McAteer, and D.S. Bloomfield. Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res., 47, 2105–2117, 2011, DOI: 10.1016/j.asr.2010.06.024. [NASA ADS] [CrossRef]
  • Hoeksema, J.T., Y. Liu, K. Hayashi, X. Sun, J. Schou, et al. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: overview and performance. Sol. Phys., 289, 3483–3530, 2014, DOI: 10.1007/s11207-014-0516-8. [NASA ADS] [CrossRef]
  • Janvier, M., G. Aulanier, and P. Démoulin. From coronal observations to MHD simulations, the building blocks for 3D models of solar flares (Invited Review). Sol. Phys., 290, 3425–3456, 2015, DOI: 10.1007/s11207-015-0710-3. [NASA ADS] [CrossRef]
  • Jing, J., C. Tan, Y. Yuan, B. Wang, T. Wiegelmann, Y. Xu, and H. Wang. Free magnetic energy and flare productivity of active regions. Astrophys. J., 713, 440–449, 2010, DOI: 10.1088/0004-637X/713/1/440. [NASA ADS] [CrossRef]
  • Kusano, K., Y. Bamba, T.T. Yamamoto, Y. Iida, S. Toriumi, and A. Asai. Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J., 760, 31, 2012, DOI: 10.1088/0004-637X/760/1/31. [NASA ADS] [CrossRef]
  • Leake, J.E., M.G. Linton, and S.K. Antiochos. Simulations of emerging magnetic flux. II The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys. J., 787, 46, 2014, DOI: 10.1088/0004-637X/787/1/46. [NASA ADS] [CrossRef]
  • Leake, J.E., M.G. Linton, and T. Török. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys. J., 778, 99, 2013, DOI: 10.1088/0004-637X/778/2/99. [NASA ADS] [CrossRef]
  • Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J., 595, 1277–1295, 2003a, DOI: 10.1086/377511. [NASA ADS] [CrossRef]
  • Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring versus flare-quiet active region. II. Discriminant analysis. Astrophys. J., 595, 1296–1306, 2003b, DOI: 10.1086/377512. [NASA ADS] [CrossRef]
  • Li, J., D.L. Mickey, and B.J. LaBonte. The X3 flare of 2002 July 15. Astrophys. J., 620, 1092–1100, 2005, DOI: 10.1086/427205. [NASA ADS] [CrossRef]
  • Lin, J., N.A. Murphy, C. Shen, J.C. Raymond, K.K. Reeves, J. Zhong, N. Wu, and Y. Li. Review on current sheets in CME development: theories and observations. Space Sci. Rev., 194, 237–302, 2015, DOI: 10.1007/s11214-015-0209-0. [NASA ADS] [CrossRef]
  • Lu, Y., J. Wang, and H. Wang. Shear angle of magnetic fields. Sol. Phys., 148, 119–132, 1993, DOI: 10.1007/BF00675538. [NASA ADS] [CrossRef]
  • Mason, J.P., and J.T. Hoeksema. Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager Magnetograms. Astrophys. J., 723, 634–640, 2010, DOI: 10.1088/0004-637X/723/1/634. [NASA ADS] [CrossRef]
  • McIntosh, P.S. The classification of sunspot groups. Sol. Phys., 125, 251–267, 1990, DOI: 10.1007/BF00158405. [NASA ADS] [CrossRef]
  • Melrose, D.B. Neutralized and unneutralized current patterns in the solar corona. Astrophys. J., 381, 306–312, 1991, DOI: 10.1086/170652. [NASA ADS] [CrossRef]
  • Mickey, D.L., R.C. Canfield, B.J. Labonte, K.D. Leka, M.F. Waterson, and H.M. Weber. The imaging vector magnetograph at Haleakala. Sol. Phys., 168, 229–250, 1996, DOI: 10.1007/BF00148052. [NASA ADS] [CrossRef]
  • Nindos, A., and M.D. Andrews. The association of big flares and coronal mass ejections: what is the role of magnetic helicity? Astrophys. J. Lett., 616, L175–L178, 2004, DOI: 10.1086/426861. [NASA ADS] [CrossRef]
  • Pariat, E., P. Démoulin, and M.A. Berger. Photospheric flux density of magnetic helicity. A&A, 439, 1191–1203, 2005, DOI: 10.1051/0004-6361:20052663. [NASA ADS] [CrossRef] [EDP Sciences]
  • Pariat, E., J.E. Leake, G. Valori, M.G. Linton, P. Zuccarello, and K. Dalmasse. Relative magnetic helicity as a diagnostic of solar eruptivity. arXiv:1703.10562, 2017.
  • Pariat, E., G. Valori, P. Démoulin, and K. Dalmasse. Testing magnetic helicity conservation in a solar-like active event. A&A, 580, A128, 2015, DOI: 10.1051/0004-6361/201525811. [NASA ADS] [CrossRef] [EDP Sciences]
  • Park, S.-H., J. Chae, and H. Wang. Productivity of solar flares and magnetic helicity injection in active regions. Astrophys. J., 718, 43–51, 2010, DOI: 10.1088/0004-637X/718/1/43. [NASA ADS] [CrossRef]
  • Parker, E.N. Inferring mean electric currents in unresolved fibril magnetic fields. Astrophys. J., 471, 485, 1996, DOI: 10.1086/177983. [NASA ADS] [CrossRef]
  • Pevtsov, A.A., R.C. Canfield, and T.R. Metcalf. Patterns of helicity in solar active regions. Astrophys. J. Lett., 425, L117–L119, 1994, DOI: 10.1086/187324. [NASA ADS] [CrossRef]
  • Sammis, I., F. Tang, and H. Zirin. The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J., 540, 583–587, 2000, DOI: 10.1086/309303. [NASA ADS] [CrossRef]
  • Scherrer, P.H., R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, et al. The solar oscillations investigation – Michelson doppler imager. Sol. Phys., 162, 129–188, 1995, DOI: 10.1007/BF00733429. [NASA ADS] [CrossRef] [MathSciNet]
  • Schmieder, B., G. Aulanier, and B. Vršnak. Flare-CME Models: an observational perspective (Invited Review). Sol. Phys., 290, 3457–3486, 2015, DOI: 10.1007/s11207-015-0712-1. [NASA ADS] [CrossRef]
  • Schou, J., J.M. Borrero, A.A. Norton, S. Tomczyk, D. Elmore, and G.L. Card. Polarization calibration of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 327–355, 2012, DOI: 10.1007/s11207-010-9639-8. [NASA ADS] [CrossRef]
  • Schrijver, C.J.A. Characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett., 655, L117–L120, 2007, DOI: 10.1086/511857. [NASA ADS] [CrossRef]
  • Schrijver, C.J., J. Beer, U. Baltensperger, E.W. Cliver, M. Güdel, et al. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res.: Space Physics, 117, A08103, 2012, DOI: 10.1029/2012JA017706. [NASA ADS] [CrossRef]
  • Schuck, P.W. Tracking vector magnetograms with the magnetic induction equation. Astrophys. J., 683, 1134–1152, 2008, DOI: 10.1086/589434. [NASA ADS] [CrossRef]
  • Titov, V.S., and P. Démoulin. Basic topology of twisted magnetic configurations in solar flares. A&A, 351, 707–720, 1999.
  • Toriumi, S., C.J. Schrijver, L.K. Harra, H. Hudson, and K. Nagashima. Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J., 834, 56, 2017, DOI: 10.3847/1538-4357/834/1/56. [CrossRef]
  • Török, T., J.E. Leake, V.S. Titov, V. Archontis, Z. Mikić, M.G. Linton, K. Dalmasse, G. Aulanier, and B. Kliem. Distribution of electric currents in solar active regions. Astrophys. J. Lett., 782, L10, 2014, DOI: 10.1088/2041-8205/782/1/L10. [CrossRef]
  • Valori, G., P. Démoulin, and E. Pariat. Comparing values of the relative magnetic helicity in finite volumes. Sol. Phys., 278, 347–366, 2012, DOI: 10.1007/s11207-012-9951-6. [NASA ADS] [CrossRef]
  • Welsch, B.T., W.P. Abbett, M.L. De Rosa, G.H. Fisher, M.K. Georgoulis, K. Kusano, D.W. Longcope, B. Ravindra, and P.W. Schuck. Tests and comparisons of velocity-inversion techniques. Astrophys. J., 670, 1434–1452, 2007, DOI: 10.1086/522422. [NASA ADS] [CrossRef]
  • Yuan, Y., F.Y. Shih, J. Jing, and H.-M. Wang. Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys., 10, 785–796, 2010, DOI: 10.1088/1674-4527/10/8/008. [CrossRef]
  • Zhang, H. Electric current and magnetic shear in solar active regions. Astrophys. J. Lett., 557, L71–L74, 2001, DOI: 10.1086/322865. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.