Open Access
Issue |
J. Space Weather Space Clim.
Volume 7, 2017
|
|
---|---|---|
Article Number | A17 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/swsc/2017015 | |
Published online | 01 August 2017 |
- Ahmed, O.W., R. Qahwaji, T. Colak, P.A. Higgins, P.T. Gallagher, and D.S. Bloomfield. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol. Phys., 283, 157–175, 2013, DOI: 10.1007/s11207-011-9896-1. [NASA ADS] [CrossRef] [Google Scholar]
- Al-Ghraibah, A., L.E. Boucheron, and R.T.J. McAteer. An automated classification approach to ranking photospheric proxies of magnetic energy build-up. A&A, 579, A64, 2015, DOI: 10.1051/0004-6361/201525978. [CrossRef] [EDP Sciences] [Google Scholar]
- Arber, T.D., A.W. Longbottom, C.L. Gerrard, and A.M. Milne. A staggered grid, lagrangian-eulerian remap code for 3-D MHD simulations. J. Comput. Phys., 171, 151–181, 2001, DOI: 10.1006/jcph.2001.6780. [NASA ADS] [CrossRef] [Google Scholar]
- Aulanier, G. The physical mechanisms that initiate and drive solar eruptions. In: B., Schmieder, J.-M. Malherbe, and S.T. Wu, Editors, Nature of Prominences and their Role in Space Weather, vol. 300 of IAU Symposium, 184–196, 2014, DOI: 10.1017/S1743921313010958. [Google Scholar]
- Bao, S.D., H.Q. Zhang, G.X. Ai, and M. Zhang. A survey of flares and current helicity in active regions. Astron. Astrophys. Suppl., 139, 311–320, 1999, DOI: 10.1051/aas:1999396. [CrossRef] [Google Scholar]
- Barnes, G., K.D. Leka, C.J. Schrijver, T. Colak, R. Qahwaji, et al. A comparison of flare forecasting methods i results from the all-clear workshop. Astrophys. J., 829, 89, 2016, DOI: 10.3847/0004-637X/829/2/89. [Google Scholar]
- Barnes, G., K.D. Leka, E.A. Schumer, and D.J. Della-Rose. Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather, 5, S09002, 2007, DOI: 10.1029/2007SW000317. [CrossRef] [Google Scholar]
- Bobra, M.G., and S. Couvidat. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J., 798, 135, 2015, DOI: 10.1088/0004-637X/798/2/135. [Google Scholar]
- Bobra, M.G., and S. Ilonidis. Predicting coronal mass ejections using machine learning methods. Astrophys. J., 821, 127, 2016, DOI: 10.3847/0004-637X/821/2/127. [Google Scholar]
- Bobra, M.G., X. Sun, J.T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, and K.D. Leka. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Sol. Phys., 289, 3549–3578, 2014, DOI: 10.1007/s11207-014-0529-3. [NASA ADS] [CrossRef] [Google Scholar]
- Cheung, M.C.M., and H. Isobe. Flux emergence (Theory). Living Rev. Sol. Phys., 11, 3, 2014, DOI: 10.12942/lrsp-2014-3. [NASA ADS] [CrossRef] [Google Scholar]
- Colak, T., and R. Qahwaji. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef] [Google Scholar]
- Dalmasse, K., G. Aulanier, P. Démoulin, B. Kliem, T. Török, and E. Pariat. The origin of net electric currents in solar active regions. Astrophys. J., 810, 17, 2015, DOI: 10.1088/0004-637X/810/1/17. [NASA ADS] [CrossRef] [Google Scholar]
- Démoulin, P. Where will efficient energy release occur in 3-D magnetic configurations? Adv. Space Res., 39, 1367–1377, 2007, DOI: 10.1016/j.asr.2007.02.046. [NASA ADS] [CrossRef] [Google Scholar]
- Démoulin, P., and E. Pariat. Modelling and observations of photospheric magnetic helicity. Adv. Space Res., 43, 1013–1031, 2009, DOI: 10.1016/j.asr.2008.12.004. [NASA ADS] [CrossRef] [Google Scholar]
- Falconer, D., A.F. Barghouty, I. Khazanov, and R. Moore. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy. Space Weather, 9, S04003, 2011, DOI: 10.1029/2009SW000537. [NASA ADS] [CrossRef] [Google Scholar]
- Falconer, D.A., R.L. Moore, and G.A. Gary. Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J., 569, 1016–1025, 2002, DOI: 10.1086/339161. [NASA ADS] [CrossRef] [Google Scholar]
- Falconer, D.A., R.L. Moore, and G.A. Gary. A measure from line-of-sight magnetograms for prediction of coronal mass ejections. J. Geophys. Res.: Space Physics, 108, 1380, 2003, DOI: 10.1029/2003JA010030. [CrossRef] [Google Scholar]
- Falconer, D.A., R.L. Moore, and G.A. Gary. Magnetic causes of solar coronal mass ejections: dominance of the free magnetic energy over the magnetic twist alone. Astrophys. J., 644, 1258–1272, 2006, DOI: 10.1086/503699. [NASA ADS] [CrossRef] [Google Scholar]
- Falconer, D.A., R.L. Moore, and G.A. Gary. Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J., 689, 1433–1442, 2008, DOI: 10.1086/591045. [NASA ADS] [CrossRef] [Google Scholar]
- Fisher, G.H., D.J. Bercik, B.T. Welsch, and H.S. Hudson. Global forces in eruptive solar flares: the lorentz force acting on the solar atmosphere and the solar interior. Sol. Phys., 277, 59–76, 2012, DOI: 10.1007/s11207-011-9907-2. [NASA ADS] [CrossRef] [Google Scholar]
- Forbes, T., Models of coronal mass ejections and flares, Cambridge University Press, London, UK, 2010. [Google Scholar]
- Gallagher, P.T., C. Denker, V. Yurchyshyn, T. Spirock, J. Qiu, H. Wang, and P.R. Goode. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory. Ann. Geophys., 20, 1105–1115, 2002, DOI: 10.5194/angeo-20-1105-2002. [CrossRef] [Google Scholar]
- Hagyard, M.J., R.L. Moore, and A.G. Emslie. The role of magnetic field shear in solar flares. Adv. Space Res., 4, 71–80, 1984, DOI: 10.1016/0273-1177(84)90162-5. [CrossRef] [Google Scholar]
- Hagyard, M.J., P. Venkatakrishnan, and J.B. Smith Jr. Nonpotential magnetic fields at sites of gamma-ray flares. Astrophys. J. Suppl. Ser., 73, 159–163, 1990, DOI: 10.1086/191447. [NASA ADS] [CrossRef] [Google Scholar]
- Higgins, P.A., P.T. Gallagher, R.T.J. McAteer, and D.S. Bloomfield. Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res., 47, 2105–2117, 2011, DOI: 10.1016/j.asr.2010.06.024. [NASA ADS] [CrossRef] [Google Scholar]
- Hoeksema, J.T., Y. Liu, K. Hayashi, X. Sun, J. Schou, et al. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: overview and performance. Sol. Phys., 289, 3483–3530, 2014, DOI: 10.1007/s11207-014-0516-8. [Google Scholar]
- Janvier, M., G. Aulanier, and P. Démoulin. From coronal observations to MHD simulations, the building blocks for 3D models of solar flares (Invited Review). Sol. Phys., 290, 3425–3456, 2015, DOI: 10.1007/s11207-015-0710-3. [NASA ADS] [CrossRef] [Google Scholar]
- Jing, J., C. Tan, Y. Yuan, B. Wang, T. Wiegelmann, Y. Xu, and H. Wang. Free magnetic energy and flare productivity of active regions. Astrophys. J., 713, 440–449, 2010, DOI: 10.1088/0004-637X/713/1/440. [Google Scholar]
- Kusano, K., Y. Bamba, T.T. Yamamoto, Y. Iida, S. Toriumi, and A. Asai. Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J., 760, 31, 2012, DOI: 10.1088/0004-637X/760/1/31. [CrossRef] [Google Scholar]
- Leake, J.E., M.G. Linton, and S.K. Antiochos. Simulations of emerging magnetic flux. II The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys. J., 787, 46, 2014, DOI: 10.1088/0004-637X/787/1/46. [CrossRef] [Google Scholar]
- Leake, J.E., M.G. Linton, and T. Török. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys. J., 778, 99, 2013, DOI: 10.1088/0004-637X/778/2/99. [CrossRef] [Google Scholar]
- Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J., 595, 1277–1295, 2003a, DOI: 10.1086/377511. [CrossRef] [Google Scholar]
- Leka, K.D., and G. Barnes. Photospheric magnetic field properties of flaring versus flare-quiet active region. II. Discriminant analysis. Astrophys. J., 595, 1296–1306, 2003b, DOI: 10.1086/377512. [CrossRef] [Google Scholar]
- Li, J., D.L. Mickey, and B.J. LaBonte. The X3 flare of 2002 July 15. Astrophys. J., 620, 1092–1100, 2005, DOI: 10.1086/427205. [NASA ADS] [CrossRef] [Google Scholar]
- Lin, J., N.A. Murphy, C. Shen, J.C. Raymond, K.K. Reeves, J. Zhong, N. Wu, and Y. Li. Review on current sheets in CME development: theories and observations. Space Sci. Rev., 194, 237–302, 2015, DOI: 10.1007/s11214-015-0209-0. [NASA ADS] [CrossRef] [Google Scholar]
- Lu, Y., J. Wang, and H. Wang. Shear angle of magnetic fields. Sol. Phys., 148, 119–132, 1993, DOI: 10.1007/BF00675538. [NASA ADS] [CrossRef] [Google Scholar]
- Mason, J.P., and J.T. Hoeksema. Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager Magnetograms. Astrophys. J., 723, 634–640, 2010, DOI: 10.1088/0004-637X/723/1/634. [CrossRef] [Google Scholar]
- McIntosh, P.S. The classification of sunspot groups. Sol. Phys., 125, 251–267, 1990, DOI: 10.1007/BF00158405. [NASA ADS] [CrossRef] [Google Scholar]
- Melrose, D.B. Neutralized and unneutralized current patterns in the solar corona. Astrophys. J., 381, 306–312, 1991, DOI: 10.1086/170652. [CrossRef] [Google Scholar]
- Mickey, D.L., R.C. Canfield, B.J. Labonte, K.D. Leka, M.F. Waterson, and H.M. Weber. The imaging vector magnetograph at Haleakala. Sol. Phys., 168, 229–250, 1996, DOI: 10.1007/BF00148052. [Google Scholar]
- Nindos, A., and M.D. Andrews. The association of big flares and coronal mass ejections: what is the role of magnetic helicity? Astrophys. J. Lett., 616, L175–L178, 2004, DOI: 10.1086/426861. [Google Scholar]
- Pariat, E., P. Démoulin, and M.A. Berger. Photospheric flux density of magnetic helicity. A&A, 439, 1191–1203, 2005, DOI: 10.1051/0004-6361:20052663. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pariat, E., J.E. Leake, G. Valori, M.G. Linton, P. Zuccarello, and K. Dalmasse. Relative magnetic helicity as a diagnostic of solar eruptivity. arXiv:1703.10562, 2017. [Google Scholar]
- Pariat, E., G. Valori, P. Démoulin, and K. Dalmasse. Testing magnetic helicity conservation in a solar-like active event. A&A, 580, A128, 2015, DOI: 10.1051/0004-6361/201525811. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Park, S.-H., J. Chae, and H. Wang. Productivity of solar flares and magnetic helicity injection in active regions. Astrophys. J., 718, 43–51, 2010, DOI: 10.1088/0004-637X/718/1/43. [CrossRef] [Google Scholar]
- Parker, E.N. Inferring mean electric currents in unresolved fibril magnetic fields. Astrophys. J., 471, 485, 1996, DOI: 10.1086/177983. [CrossRef] [Google Scholar]
- Pevtsov, A.A., R.C. Canfield, and T.R. Metcalf. Patterns of helicity in solar active regions. Astrophys. J. Lett., 425, L117–L119, 1994, DOI: 10.1086/187324. [CrossRef] [Google Scholar]
- Sammis, I., F. Tang, and H. Zirin. The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J., 540, 583–587, 2000, DOI: 10.1086/309303. [Google Scholar]
- Scherrer, P.H., R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, et al. The solar oscillations investigation – Michelson doppler imager. Sol. Phys., 162, 129–188, 1995, DOI: 10.1007/BF00733429. [Google Scholar]
- Schmieder, B., G. Aulanier, and B. Vršnak. Flare-CME Models: an observational perspective (Invited Review). Sol. Phys., 290, 3457–3486, 2015, DOI: 10.1007/s11207-015-0712-1. [Google Scholar]
- Schou, J., J.M. Borrero, A.A. Norton, S. Tomczyk, D. Elmore, and G.L. Card. Polarization calibration of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 327–355, 2012, DOI: 10.1007/s11207-010-9639-8. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver, C.J.A. Characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett., 655, L117–L120, 2007, DOI: 10.1086/511857. [CrossRef] [Google Scholar]
- Schrijver, C.J., J. Beer, U. Baltensperger, E.W. Cliver, M. Güdel, et al. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res.: Space Physics, 117, A08103, 2012, DOI: 10.1029/2012JA017706. [Google Scholar]
- Schuck, P.W. Tracking vector magnetograms with the magnetic induction equation. Astrophys. J., 683, 1134–1152, 2008, DOI: 10.1086/589434. [CrossRef] [Google Scholar]
- Titov, V.S., and P. Démoulin. Basic topology of twisted magnetic configurations in solar flares. A&A, 351, 707–720, 1999. [Google Scholar]
- Toriumi, S., C.J. Schrijver, L.K. Harra, H. Hudson, and K. Nagashima. Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J., 834, 56, 2017, DOI: 10.3847/1538-4357/834/1/56. [Google Scholar]
- Török, T., J.E. Leake, V.S. Titov, V. Archontis, Z. Mikić, M.G. Linton, K. Dalmasse, G. Aulanier, and B. Kliem. Distribution of electric currents in solar active regions. Astrophys. J. Lett., 782, L10, 2014, DOI: 10.1088/2041-8205/782/1/L10. [CrossRef] [Google Scholar]
- Valori, G., P. Démoulin, and E. Pariat. Comparing values of the relative magnetic helicity in finite volumes. Sol. Phys., 278, 347–366, 2012, DOI: 10.1007/s11207-012-9951-6. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Welsch, B.T., W.P. Abbett, M.L. De Rosa, G.H. Fisher, M.K. Georgoulis, K. Kusano, D.W. Longcope, B. Ravindra, and P.W. Schuck. Tests and comparisons of velocity-inversion techniques. Astrophys. J., 670, 1434–1452, 2007, DOI: 10.1086/522422. [CrossRef] [Google Scholar]
- Yuan, Y., F.Y. Shih, J. Jing, and H.-M. Wang. Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys., 10, 785–796, 2010, DOI: 10.1088/1674-4527/10/8/008. [CrossRef] [Google Scholar]
- Zhang, H. Electric current and magnetic shear in solar active regions. Astrophys. J. Lett., 557, L71–L74, 2001, DOI: 10.1086/322865. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.