Open Access
Issue |
J. Space Weather Space Clim.
Volume 7, 2017
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2017034 | |
Published online | 04 December 2017 |
- Abram NJ, McGregor HV, Tierney JE, Evans MN, McKay NP, Kaufman DS, and PAGES 2k Consortium. 2016. Early onset of industrial-era warming across the oceans and continents. Nature 536: 411–418. DOI:10.1038/nature19082. [CrossRef] [Google Scholar]
- Berger A. 1978. Long-term variations of caloric insolation resulting from the Earth's orbital elements, Quat Res 9: 139–167. DOI:10.1016/0033-5894(78)90064-9. [CrossRef] [Google Scholar]
- Bindoff NL et al. 2013. Detection and attribution of climate change: from global to regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the In tergovernmental Panel on Climate Change, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds., Cambridge, United Kingdom: Cambridge University Press, pp. 867–952. DOI:10.1017/CBO9781107415324.022. [Google Scholar]
- Büntgen U, Hellmann L. 2014. The Little Ice Age in scientific perspective: cold spells and caveats. J Interdiscipl Hist 44: 353–368. DOI:10.1162/JINH_a_00575. [CrossRef] [Google Scholar]
- Camenisch C, Keller KM, Salvisberg M, Amann B, Bauch M, Blumer S, Brázdil R, Brönnimann S, Büntgen U, Campbell BM. 2016. The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe. Clim Past 12: 2107. DOI:10.5194/cp-12-2107-2016. [CrossRef] [Google Scholar]
- Clette F, Svalgaard L, Vaquero JM, Cliver EW. 2014. Revisiting the Sunspot Number. Sp Sci Rev 186: 35–103. DOI:10.1007/s11214-014-0074-2. [CrossRef] [Google Scholar]
- Crowley TJ, Unterman M. 2013. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst Sci Data 5: 187–197. DOI:10.5194/essd-5-187-2013. [CrossRef] [Google Scholar]
- Deser C, Alexander MA, Xie S-P, Phillips AS. 2010. Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2: 115–143. DOI:10.1146/annurev-marine-120408-151453. [CrossRef] [Google Scholar]
- Eddy JA. 1976. The Maunder minimum. Science 192: 1189–1202. DOI:10.1126/science.192.4245.1189. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Feulner G. 2011. Are the most recent estimates for maunder minimum solar irradiance in agreement with temperature reconstructions ? Geophys Res Lett 38. DOI:10.1029/2011GL048529. [Google Scholar]
- Gao C, Robock A, Ammann C. 2008. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J Geophys Res: Atmos 113. DOI:10.1029/2008JD010239. [Google Scholar]
- Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L. 2010. Solar influences on climate. Rev Geophys 48. [Google Scholar]
- Hathaway DH. 2010. The solar cycle. Liv Rev Sol Phys 7: 1. DOI:10.1007/lrsp-2015-4. [Google Scholar]
- Hoyt DV, Schatten KH. 1998. Group sunspot numbers: a new solar activity reconstruction. Sol Phys 181: 491–512. DOI:10.1023/A:1005007527816. [Google Scholar]
- Hurtt GC et al. 2011. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Chang 109: 117. DOI:10.1007/s10584-011-0153-2. [CrossRef] [Google Scholar]
- Ineson S, Maycock AC, Gray LJ, Scaife AA, Dunstone NJ, Harder JW, Knight JR, Lockwood M, Manners JC, Wood RA. 2015. Regional climate impacts of a possible future grand solar minimum. Nat Commun 6: 7535. DOI:10.1038/ncomms8535. [CrossRef] [Google Scholar]
- Jones P. 2008. Historical climatology – a state of the art review. Weather 63: 181–186. DOI:10.1002/wea.245. [CrossRef] [Google Scholar]
- Jones PD, Mann ME. 2004. Climate over past millennia. Rev Geophys 42: RG2002. DOI:10.1029/2003RG000143. [CrossRef] [Google Scholar]
- Kay J, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J. 2015. The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96: 1333–1349. DOI:10.1175/BAMS-D-13-00255.1. [CrossRef] [Google Scholar]
- Kelly M, Gráda CÓ. 2014. The waning of the Little Ice Age: climate change in early modern Europe. J Interdiscip Hist 44: 301–325. DOI:10.1162/JINH_a_00573. [CrossRef] [Google Scholar]
- Krivova NA, Balmaceda L, Solanki SK. 2007. Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467: 335–346. DOI:10.1051/0004-6361:20066725. [CrossRef] [EDP Sciences] [Google Scholar]
- Lamarque JF et al. 2010. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10: 7017–7039. DOI:10.5194/acp-10-7017-2010. [CrossRef] [Google Scholar]
- Landsberg HE. 1985. Historic weather data and early meteorological observations. In Palaeoclimatic Analysis and Modelling. ed. Hecht AD. New York: Wiley and Sons, pp.27–70. [Google Scholar]
- Lean J. 2000. Evolution of the Sun's spectral irradiance since the Maunder minimum. Geophys Res Lett 27: 2425–2428. DOI:10.1029/2000GL000043. [CrossRef] [Google Scholar]
- Lean JL, Rind DH. 2009. How will Earth's surface temperature change in future decades ? Geophys Res Lett 36. DOI:10.1029/2009GL038932. [Google Scholar]
- Lockwood M. 2008. Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise. In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 464, pp. 1387–1404. DOI:10.1098/rspa.2007.0348. [CrossRef] [Google Scholar]
- Lockwood M. 2010a. Solar change and climate: an update in the light of the current exceptional solar minimum. Proc R Soc A 466: 303–329. DOI:10.1098/rspa.2009.0519. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood M. 2010b. Solar influence on global and regional climates. Surv Geophys 33: 503–534. DOI:10.1007/s10712-012-9181-3. [Google Scholar]
- Lockwood M, Harrison RG, Owens MJ, Barnard L, Woollings T, Steinhilber. F. 2011. The solar influence on the probability of relatively cold UK winters in the future. Environ Res Lett 6: 034004. DOI:10.1088/1748-9326/6/3/034004. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard L. 2014. Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. J Geophys Res 119: 5172–5182. DOI:10.1002/2014JA019970. [Google Scholar]
- Lockwood M, Owens MJ, Hawkins E, Jones G, Usoskin I. 2017. The solar Maunder minimum, the Little Ice Age and the freezing of the river Thames at London. Astron Geophys 58: 2.17–12.23. DOI:10.1093/astrogeo/atx057. [CrossRef] [Google Scholar]
- Luterbacher J. 2001. The late Maunder minimum (1675–1715) climax of the Little Ice Age in Europe. In History and Climate, edited, Berlin, German: Springer, pp. 29–54. [CrossRef] [Google Scholar]
- Manley G. 1974. Central England temperatures: monthly means 1659 to 1973. Q J Royal Meteorol Soc 100: 389–405. DOI:10.1002/qj.49710042511. [CrossRef] [Google Scholar]
- Masson-Delmotte V et al. 2013. Information from paleoclimate archives. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Doschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Cambridge: Cambridge University Press, pp. 383–464. DOI:10.1017/CBO9781107415324.013. [Google Scholar]
- Matthes FE. 1939. Report of Committee on Glaciers, April 1939. Trans Am Geophys Union 20: 518–523. DOI:10.1029/TR020i004p00518. [CrossRef] [Google Scholar]
- Maycock AC, Ineson S, Gray LJ, Scaife AA, Anstey JA, Lockwood M, Butchart N, Hardiman SC, Mitchell DM, Osprey SM. 2015. Possible impacts of a future grand solar minimum on climate: stratospheric and global circulation changes. J Geophys Res Atmos 120: 9043–9058. DOI:10.1002/2014JD022022. [Google Scholar]
- Medhaug I, Stolpe MB, Fischer EM, Knutti R. 2017. Reconciling controversies about the global warming hiatus. Nature 545: 41–47. DOI:10.1038/nature22315. [CrossRef] [Google Scholar]
- Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1: 360–364. DOI:10.1038/nclimate1229. [CrossRef] [Google Scholar]
- Miller GH et al. 2012. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39. DOI:10.1029/2011GL050168. [Google Scholar]
- Morice CP, Kennedy JJ, Rayner NA, Jones PD. 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J Geophys Res: Atmos 117. DOI:10.1029/2011JD017187. [Google Scholar]
- Otto-Bliesner BL, Brady EC, Fasullo J, Jahn A, Landrum L, Stevenson S, Rosenbloom N, Mai A, Strand G. 2016. Climate variability and change since 850 CE: an ensemble approach with the community earth system model. Bull Am Meteorol Soc 97: 735–754. DOI:10.1175/BAMS-D-14-00233.1. [CrossRef] [Google Scholar]
- Overland, JE, Wood K. 2003. Accounts from 19th-century Canadian Arctic explorers' logs reflect present climate conditions. Eos Trans Am Geophys Union 84: 410–412. DOI:10.1029/2003EO400003. [CrossRef] [Google Scholar]
- PAGES 2k Consortium. 2013. Continental-scale temperature variability during the past two millennia. Nat Geosci 6: 339–346. DOI:10.1038/ngeo1797. [CrossRef] [Google Scholar]
- Pongratz J, Reick C, Raddatz T, Claussen M. 2008. A reconstruction of global agricultural areas and land cover for the last millennium. Glob Biogeochem Cycles 22. DOI:10.1029/2007GB003153. [Google Scholar]
- Reimer PJ, Baillie MG, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50 000 years cal BP. Radiocarbon 51: 1111–1150. DOI:10.1017/S0033822200034202. [CrossRef] [Google Scholar]
- Schmidt GA et al. 2011. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4: 33–45. DOI:10.5194/gmd-4-33-2011. [CrossRef] [Google Scholar]
- Schurer AP, Hegerl GC, Mann ME, Tett SF, Phipps SJ. 2013. Separating forced from chaotic climate variability over the past millennium. J Clim 26: 6954–6973. DOI:10.1175/JCLI-D-12-00826.1. [CrossRef] [Google Scholar]
- Schurer AP, Tett SFB, Hegerl GC. 2014. Small influence of solar variability on climate over the past millennium. Nat Geosci 7: 104–108. DOI:10.1038/ngeo2040. [Google Scholar]
- Shapiro A, Schmutz W, Rozanov E, Schoell M, Haberreiter M, Shapiro A, Nyeki S. 2011. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophys 529: A67. DOI:10.1051/0004-6361/201016173. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Stuiver M, Suess HE. 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon 8: 534–540. DOI:10.1017/S0033822200000345. [CrossRef] [Google Scholar]
- Svalgaard L, Schatten KH. 2016. Reconstruction of the sunspot group number: the backbone method. Sol Phys 1–32. DOI:10.1007/s11207-015-0815-8. [Google Scholar]
- Tett SFB, Betts R, Crowley TJ, Gregory J, Johns TC, Jones A, Osborn TJ, Öström E, Roberts DL, Woodage MJ. 2007. The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Clim Dyn 28: 3–34. DOI:10.1007/s00382-006-0165-1. [CrossRef] [Google Scholar]
- Usoskin IG. 2017. A history of solar activity over millennia. Liv Rev Sol Phys 14. DOI:10.1007/s41116-017-0006-9. [Google Scholar]
- Usoskin I et al. 2015. The Maunder minimum (1645–1715) was indeed a grand minimum: a reassessment of multiple datasets. Astron Astrophys 581: A95. DOI: 10.1051/0004-6361/201526652. [CrossRef] [EDP Sciences] [Google Scholar]
- Usoskin I, Kovaltsov G, Lockwood M, Mursula K, Owens M, Solanki S. 2016. A new calibrated sunspot group series since 1749: statistics of active day fractions. Sol Phys 291: 2685–2708. DOI:10.1007/s11207-015-0838-1. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin IG, Hulot G, Gallet Y, Roth R, Licht A, Joos F, Kovaltsov GA, Thébault E, Khokhlov A. 2014. Evidence for distinct modes of solar activity. Astron Astrophys 562. DOI:10.1051/0004-6361/201423391. [Google Scholar]
- Vaquero JM, Trigo RM. 2012. A note on solar cycle length during the medieval climate anomaly. Sol Phys 279: 289–294. DOI:10.1007/s11207-012-9964-1. [CrossRef] [Google Scholar]
- Vieira LEA, Solanki SK, Krivova NA, Usoskin I. 2011. Evolution of the solar irradiance during the holocene. Astron Astrophys 531: A6. DOI:10.1051/0004-6361/201015843. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.