J. Space Weather Space Clim.
Volume 7, 2017
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
Article Number A32
Number of page(s) 13
Published online 29 November 2017
  • Aschwanden M.J., Boerner P., Schrijver C.J., Malanushenko A. 2013. Automated temperature and emission measure analysis of coronal loops and active regions observed with the atmospheric imaging assembly on the solar dynamics observatory (SDO/AIA). Sol. Phys. 283: 5–30. doi:10.1007/s11207-011-9876-5. [NASA ADS] [CrossRef]
  • Bain H.M., Krucker S., Glesener L., Lin R.P. 2012. Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 November 3. Astrophys. J. 750: 44. doi:10.1088/0004-637X/750/1/44. [NASA ADS] [CrossRef]
  • Bemporad A., Mancuso S. 2010. First complete determination of plasma physical parameters across a coronal mass ejection-driven shock. Astrophys. J. 720: 130–143. doi:10.1088/0004-637X/720/1/130. [NASA ADS] [CrossRef]
  • Bemporad A., Raymond J., Poletto G., Romoli M. 2007. A comprehensive study of the initiation and early evolution of a coronal mass ejection from ultraviolet and white-light data. Astrophys. J. 655: 576–590. doi:10.1086/509569. [NASA ADS] [CrossRef]
  • Benz A.O., Monstein C., Meyer H. 2005. Callisto − a new concept for solar radio spectrometers. Sol. Phys. 226: 143–151. doi:10.1007/s11207-005-5688-9. [NASA ADS] [CrossRef]
  • Byrne J.P. 2015. Investigating the kinematics of coronal mass ejections with the automated CORIMP catalog. J. Space Weather Space Clim. 5: A19. doi:10.1051/swsc/2015020. [CrossRef] [EDP Sciences]
  • Carley E.P., Long D.M., Byrne J.P., Zucca P., Shaun Bloomfield D., McCauley J., Gallagher P.T. 2013. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat. Phys. doi:10.1038/nphys2767.
  • Cheng X., Ding M.D., Guo Y., Zhang J., Vourlidas A., Liu Y.D., Olmedo O., Sun J.Q., Li C. 2014. Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona. Astrophys. J. 780. doi:10.1088/0004-637X/780/1/28.
  • Cheng X., Zhang J., Olmedo O., Vourlidas A., Ding M.D., Liu Y. 2012. Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection. Astrophys. J. Lett. 745. doi:10.1088/2041-8205/745/1/L5. [NASA ADS] [CrossRef]
  • Das I., Opher M., Evans R., Loesch C., Gombosi T.I. 2011. Evolution of piled-up compressions in modeled coronal mass ejection sheaths and the resulting sheath structures. Astrophys. J. 729: 112. doi:10.1088/0004-637X/729/2/112. [NASA ADS] [CrossRef]
  • Downs C., Roussev I.I., van der Holst B., Lugaz N., Sokolov I.V. 2012. Understanding SDO/AIA observations of the 2010 June 13 EUV wave event: direct insight from a global thermodynamic MHD simulation. Astrophys. J. 750: 134. doi:10.1088/0004-637X/750/2/134. [NASA ADS] [CrossRef]
  • Efron B. 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7: 1–26. [CrossRef] [MathSciNet]
  • Giacalone J., Kóta J. 2006. Acceleration of solar-energetic particles by shocks, Space Sci. Rev. 124: 277–288. doi:10.1007/s11214-006-9110-1. [CrossRef]
  • Gopalswamy N., Yashiro S. 2011. The strength and radial profile of the coronal magnetic field from the standoff distance of a coronal mass ejection-driven shock. Astrophys. J. Lett. 736. doi:10.1088/2041-8205/736/1/L17. [NASA ADS] [CrossRef]
  • Hannah I.G., Kontar E.P. 2012. Differential emission measures from the regularized inversion of hinode and SDO data. Astron. Astrophys. 539: A146. doi:10.1051/0004-6361/201117576. [NASA ADS] [CrossRef] [EDP Sciences]
  • Holman G.D., Pesses M.E. 1983. Solar type II radio emission and the shock drift acceleration of electrons. Astron. Astrophys. 267: 837–843. doi:10.1086/160918.
  • Jokipii J.R. 1987. Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313: 842–846. doi:10.1086/165022. [NASA ADS] [CrossRef]
  • Kozarev K.A., Evans R.M., Schwadron N.A., Dayeh M.A., Opher M., Korreck K.E., van der Holst B. 2013. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys. J. 778: 43. doi:10.1088/0004-637X/778/1/43. [CrossRef]
  • Kozarev K.A., Korreck K.E., Lobzin V.V., Weber M.A., Schwadron N.A. 2011. Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations–implications for particle production. Astrophys. J. Lett. 733. doi:10.1088/2041-8205/733/2/L25. [NASA ADS] [CrossRef]
  • Kozarev K.A., Raymond J.C., Lobzin V.V., Hammer M. 2015. Properties of a coronal shock wave as a driver of early sep acceleration. Astrophys. J. 799: 167. [NASA ADS] [CrossRef]
  • Kozarev K.A., Schwadron N.A. 2016. A data-driven analytic model for proton acceleration by large-scale solar coronal shocks. Astrophys. J. 831: 120. doi:10.3847/0004-637X/831/2/120. [CrossRef]
  • Laitinen T., Kopp A., Effenberger F., Dalla S., Marsh M.S. 2016. Solar energetic particle access to distant longitudes through turbulent field-line meandering. Astron. Astrophys. 591: A18. doi:10.1051/0004-6361/201527801. [CrossRef] [EDP Sciences]
  • Lario D. et al. 2016. Longitudinal properties of a widespread solar energetic particle event on2014 February 25: evolution of the associated CME shock. Astrophys. 819: 72. doi:10.3847/0004-637X/819/1/72. [NASA ADS] [CrossRef]
  • Lemen J.R. et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys. 275: 17–40. doi:10.1007/s11207-011-9776-8. [NASA ADS] [CrossRef]
  • Long D.M., Bloomfield D.S., Gallagher P.T., Pérez-Suárez D. 2014. CorPITA: an automated algorithm for the identification and analysis of coronal “EIT Waves”. Sol. Phys. 289: 3279–3295. doi:10.1007/s11207-014-0527-5. [CrossRef]
  • Long D.M., DeLuca E.E., Gallagher P.T. 2011. The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett. 741: L21. doi:10.1088/2041-8205/741/1/L21. [NASA ADS] [CrossRef]
  • Ma S., Raymond J.C., Golub L., Lin J., Chen H., Grigis P., Testa P., Long D. 2011. Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738: 160. doi:10.1088/0004-637X/738/2/160. [NASA ADS] [CrossRef]
  • Manchester IV W.B., Gombosi T.I., De Zeeuw D.L., Sokolov I.V., Roussev I.I., Powell K.G., Kóta J., Tóth G., Zurbuchen T.H. 2005. Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys. J. 622: 1225–1239. doi:10.1086/427768. [NASA ADS] [CrossRef]
  • Mancuso S., Avetta D. 2008. UV and radio observations of the coronal shock associated with the 2002 July 23 coronal mass ejection event. Astrophys. J. 677: 683–691. doi:10.1086/528839. [NASA ADS] [CrossRef]
  • Mancuso S., Raymond J.C., Kohl J., Ko Y.-K., Uzzo M., Wu R. 2002. UVCS/SOHO observations of a CME-driven shock: consequences on ion heating mechanisms behind a coronal shock. Astrophys. J. 383: 267–274. doi:10.1051/0004-6361:20011721. [EDP Sciences]
  • Mann G., Klassen A., Aurass H., Classen H. 2003. Formation and development of shock waves in the solar corona and the near-sun interplanetary space. Astron. Astrophys. 400: 329–336. doi:10.1051/0004-6361:20021593. [CrossRef] [EDP Sciences]
  • Miteva R., Klein K.-L., Kienreich I., Temmer M., Veronig A., Malandraki O.E. 2014. Solar energetic particles and associated EIT disturbances in solar cycle 23. Sol. Phys. doi:10.1007/s11207-014-0499-5.
  • Nitta N.V., Schrijver C.J., Title A.M., Liu W. 2013. Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory–an ensemble study. Astrophys. J. 776: 58. doi:10.1088/0004-637X/776/1/58. [NASA ADS] [CrossRef]
  • Park J., Innes D.E., Bucik R., Moon Y.-J. 2013. The source regions of solar energetic particles detected by widely separated spacecraft. Astrophys. J. 779: 184. doi:10.1088/0004-637X/779/2/184. [NASA ADS] [CrossRef]
  • Patsourakos S., Vourlidas A., Stenborg G. 2010. The genesis of an impulsive coronal mass ejection observed at ultra-high cadence by AIA on SDO. Astrophys. J. Lett. 724: L188–L193. doi:10.1088/2041-8205/724/2/L188. [NASA ADS] [CrossRef]
  • Raymond J.C., Thompson B.J., St. Cyr O.C., Gopalswamy N., Kahler S., Kaiser M., Lara A., Ciaravella A., Romoli M., O'Neal R. 2000. SOHO and radio observations of a CME shock wave. Geophys. Res. Lett. 27: 1439–1442. doi:10.1029/1999GL003669. [NASA ADS] [CrossRef]
  • Reames D.V. 2013. The two sources of solar energetic particles. Space Sci. Rev. 175: 53–92. doi:10.1007/s11214-013-9958-9. [NASA ADS] [CrossRef]
  • Rouillard A.P. et al. 2016. Deriving the properties of coronal pressure fronts in 3D: application to the 2012 May 17 ground level enhancement. Astrophys. J. 833: 45. doi:10.3847/1538-4357/833/1/45. [NASA ADS] [CrossRef]
  • Rouillard A.P. et al. 2012. The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J. 752: 44. doi:10.1088/0004-637X/752/1/44. [NASA ADS] [CrossRef]
  • Savitzky A., Golay M.J.E. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36: 1627–1639. [NASA ADS] [CrossRef]
  • Schmidt J.M., Cairns I.H. 2012. Type II radio bursts: 1. new entirely analytic formalism for the electron beams, Langmuir waves, and radio emission. J. Geophys. Res. (Space Physics) 117: A04106. doi:10.1029/2011JA017318.
  • Schrijver C.J., De Rosa M.L. 2003. Photospheric and heliospheric magnetic fields. Sol. Phys. 212: 165–200. doi:10.1023/A:1022908504100. [NASA ADS] [CrossRef]
  • Schrijver C.J., De Rosa M.L., Title A.M., Metcalf T.R. 2005. The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501–513. doi:10.1086/430733. [NASA ADS] [CrossRef]
  • Schwadron N.A. et al. 2015. Particle acceleration at low coronal compression regions and shocks. Astrophys. J. 810: 97. doi:10.1088/0004-637X/810/2/97. [CrossRef]
  • Sokolov I.V., Roussev I.I., Skender M., Gombosi T.I., Usmanov A.V. 2009. Transport equation for MHD turbulence: application to particle acceleration at interplanetary shocks. Astrophys. J. 696: 261–267. doi:10.1088/0004-637X/696/1/261. [CrossRef]
  • Starck J., Murtagh F. 2002. Astronomical image and data analysis, Springer,. [CrossRef]
  • Stenborg G., Cobelli P.J. 2003. A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. Astron. Astrophys. 398: 1185–1193. doi:10.1051/0004-6361:20021687. [NASA ADS] [CrossRef] [EDP Sciences]
  • Thernisien A.F.R., Howard R.A., Vourlidas A. 2006. Modeling of flux rope coronal mass ejections. Astrophys. J. 652: 763–773. doi:10.1086/508254. [NASA ADS] [CrossRef]
  • Thompson B.J., Gurman J.B., Neupert W.M., Newmark J.S., Delaboudinière J.-P., Cyr O.C.S., Stezelberger S., Dere K.P., Howard R.A., Michels D.J. 1999. SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal moreton waves. Astrophys. J. 517: L151–L154. doi:10.1086/312030. [NASA ADS] [CrossRef]
  • van Driel-Gesztelyi L. et al. 2014. Coronal magnetic reconnection driven by CME expansion − the 2011 June 7 event. Astrophys. J. 788: 85. doi:10.1088/0004-637X/788/1/85. [NASA ADS] [CrossRef]
  • Vanninathan K., Veronig A.M., Dissauer K., Madjarska M.S., Hannah I.G., Kontar E.P. 2015. Coronal response to an EUV wave from DEM analysis. Astrophys. J. 812: 173. doi:10.1088/0004-637X/812/2/173. [CrossRef]
  • Veronig A.M., Gömöry P., Kienreich I.W., Muhr N., Vršnak B., Temmer M., Warren H.P. 2011. Plasma diagnostics of an EIT wave observed by hinode/EIS and SDO/AIA. Astrophys. J. Lett. 743: L10. doi:10.1088/2041-8205/743/1/L10. [NASA ADS] [CrossRef]
  • Veronig A.M., Muhr N., Kienreich I.W., Temmer M., Vršnak B. 2010. First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716: L57–L62. doi:10.1088/2041-8205/716/1/L57. [NASA ADS] [CrossRef]
  • Zucca P., Carley E.P., Bloomfield D.S., Gallagher P.T. 2014. The formation heights of coronal shocks from 2D density and Alfvén speed maps. Astron. Astrophys. 564: A47. doi:10.1051/0004-6361/201322650. [NASA ADS] [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.