Open Access
Issue |
J. Space Weather Space Clim.
Volume 7, 2017
|
|
---|---|---|
Article Number | A31 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/swsc/2017030 | |
Published online | 27 November 2017 |
- Astafyeva E, Zakharenkova I, Alken P. 2016. Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth, Planets and Space 68: 152. DOI: 10.1186/s40623-016-0526-x. [Google Scholar]
- Basu S, Basu S, Valladares CE, Yeh H-C, Su S-Y, MacKenzie E, Sultan PJ, Aarons J, Rich FJ, Doherty P, Groves KM, Bullett TW. 2001. Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes. J Geophys Res 106: 30389–30413. DOI: 10.1029/2001JA001116. [CrossRef] [Google Scholar]
- Bell TF. 1985. High-amplitude VLF transmitter signals and associated sidebands observed near the magnetic equatorial plane on the ISEE-1 satellite. J Geophys Res 90: 2792–2806. DOI: 10.1029/JA090iA03p02792. [CrossRef] [Google Scholar]
- Brace LH, Maier EJ, Hoffman JH, Whitteker J, Shepherd GG. 1974. Deformation of the night side plasmasphere and ionosphere during the August 1972 geomagnetic storm. J Geophys Res 79: 5211–5218. DOI: 10.1029/JA079i034p05211. [CrossRef] [Google Scholar]
- Brice N. 1967. Bulk motion of the magnetosphere. J Geophys Res 72: 5193–5211. DOI: 10.1029/JZ072i021p05193. [CrossRef] [Google Scholar]
- Brice N, Lucas C. 1971. Influence of magnetospheric convection and polar wind on loss of electrons from the outer radiation belt. J Geophys Res 76: 900–908. DOI: 10.1029/JA076i004p00900. [CrossRef] [Google Scholar]
- Buonsanto MJ. 1999. Ionospheric storms − a review. Space Sci Rev 88: 563–601. DOI: 10.1023/A:1005107532631. [CrossRef] [Google Scholar]
- Cai HT, Yin F, Ma SY, Xu JS, Liu YW. 2012. Simultaneous observations of large-scale traveling ionospheric disturbances on the nightside and dayside middle latitude. Ann Geophys 30: 1709–1717. DOI: 10.5194/angeo-30-1709-2012. [CrossRef] [Google Scholar]
- Cheng C.-Z.F, Kuo YH, Anthes RA, Wu L. 2006. Satellite constellation monitors global and space weather. Eos Trans AGU 87 (17): 166–166. DOI: 10.1029/2006EO170003. [Google Scholar]
- Cramer WD, Turner NE, Fok M-C, Buzulukova NY. 2013. Effects of different geomagnetic storm drivers on the ring current: CRCM results. J Geophys Res: Space Phys 118: 1062–1073. DOI: 10.1002/jgra.50138. [CrossRef] [Google Scholar]
- Emmert JT, Fejer BG, Shepherd GG, Solheim BH. 2004. Average nighttime F region disturbance neutral winds measured by UARS WINDII: Initial results. Geophys Res Lett 31: L22807. DOI: 10.1029/2004GL021611. [CrossRef] [Google Scholar]
- Foster JC. 1993. Storm time plasma transport at middle and high latitudes. J Geophys Res 98: 1675–1689. DOI: 10.1029/92JA02032. [CrossRef] [Google Scholar]
- Goncharenko L, Salah J, Crowley G, Paxton LJ, Zhang Y, Coster A, Rideout W, Huang C, Zhang S, Reinisch B, Taran V. 2006. Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF By. J Geophys Res 111: A03303. DOI: 10.1029/2004JA010683. [CrossRef] [Google Scholar]
- Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM. 1994. What is a geomagnetic storm? J Geophys Res 99: 5771–5792. DOI: 10.1029/93JA02867. [NASA ADS] [CrossRef] [Google Scholar]
- Habarulema JB, Carelse SA. 2016. Long-term analysis between radio occultation and ionosonde peak electron density and height during geomagnetic storms. Geophys Res Lett 43: 4106–4111. DOI: 10.1002/2016GL068944. [CrossRef] [Google Scholar]
- Hardy DA, Holeman EG, Burke WJ, Gentile LC, Bounar KH. 2008. Probability distributions of electron precipitation at high magnetic latitudes. J Geophys Res 113: A06305. DOI: 10.1029/2007JA012746. [Google Scholar]
- Heelis RA, Sojka JJ, David M, Schunk RW. 2009. Storm time density enhancements in the middle-latitude dayside ionosphere. J Geophys Res 114: A03315. DOI: 10.1029/2008JA013690. [Google Scholar]
- Jentsch V. 1976. Electron precipitation in the morning sector of the auroral zone. J Geophys Res 81: 135–146. DOI: 10.1029/JA081i001p00135. [CrossRef] [Google Scholar]
- Jones KL, Rishbeth H. 1971. The origin of storm increases of mid-latitude F-layer electron concentration. J Atmos Terr Phys 33: 391–401. DOI: 10.1016/0021-9169(71)90144-9. [CrossRef] [Google Scholar]
- Klimenko MV, Klimenko VV, Ratovsky KG, Goncharenko LP. 2012. Numerical modeling of the global ionospheric effects of storm sequence on September 9–14, 2005–comparison with IRI model. Earth, Planets and Space 64: 433–440. DOI: 10.5047/eps.2011.06.048. [CrossRef] [Google Scholar]
- Makita K, Meng C-I, Akasofu S-I. 1983. The shift of the auroral electron precipitation boundaries in the dawn-dusk sector in association with geomagnetic activity and interplanetary magnetic field. J Geophys Res 88: 7967–7981. DOI: 10.1029/JA088iA10p07967. [CrossRef] [Google Scholar]
- Mikkelsen IS. 1975. Enhancements of the auroral zone ionization during substorms. Planet. Space Sci 23: 619–626. DOI: 10.1016/0032-0633(75)90102-6. [CrossRef] [Google Scholar]
- Ngwira CM, McKinnell L-A, Cilliers PJ, Coster AJ. 2012. Ionospheric observations during the geomagnetic storm events on 24–27 July 2004: Long-duration positive storm effects. J Geophys Res 117: A00L02. DOI: 10.1029/2011JA016990. [CrossRef] [Google Scholar]
- Pavlov AV, Buonsanto MJ. 1997. Comparison of model electron densities and temperatures with Millstone Hill observations during undisturbed periods and the geomagnetic storms of 16–23 March and 6–12 April 1990. Ann Geophys 15: 327–344. DOI: 10.1007/s00585-997-0327-4. [CrossRef] [Google Scholar]
- Prölss GW, Jung MJ. 1978. Travelling atmospheric disturbances as a possible explanation for daytime positive storm effects of moderate duration at middle latitudes. J Atmos Terr Phys 40: 1351–1354. DOI: 10.1016/0021-9169(78)90088-0. [Google Scholar]
- Richards PG. 1995. Effects of auroral electron precipitation on topside ion outflows. In: Cross-Scale Coupling in Space Plasmas, Geophysical Monograph 93, pp. 121–126. DOI: 10.1029/GM093p0121. [Google Scholar]
- Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC. 1999. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34: 949–966. DOI: 10.1029/1999RS900034. [CrossRef] [Google Scholar]
- Schunk RW, Walker JCG. 1973. Theoretical ion densities in the lower ionosphere. Planet Space Sci 21: 1875–1896. DOI:10.1016/0032-0633(73)90118-9. [CrossRef] [Google Scholar]
- Schunk RW, Raitt WJ, Banks PM. 1975. Effect of electric fields on the daytime high-latitude E and F regions. J Geophys Res 80: 3121–3130. DOI:10.1029/JA080i022p03121. [CrossRef] [Google Scholar]
- Shagimuratov II, Baran LW, Wielgosz P, Yakimova GA. 2002. The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations. Ann Geophys 20: 655–660. DOI: 10.5194/angeo-20-655-2002. [CrossRef] [Google Scholar]
- Smith EJ, Wolfe JH. 1976. Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys Res Lett 3: 137–140. DOI: 10.1029/GL003i003p00137. [Google Scholar]
- Stern DP. 1979. The electric field and global electrodynamics of the magnetosphere. Rev Geophys Space Phys 17: 626–640. DOI: 10.1029/RG017i004p00626. [CrossRef] [Google Scholar]
- Taeusch DR, Carignan GR, Reber CA. 1971. Neutral composition variation above 400 kilometers during a magnetic storm. J Geophys Res 76: 8318–8325. DOI: 10.1029/JA076i034p08318. [CrossRef] [Google Scholar]
- Thomas L, Norton RB. 1966. Possible importance of internal excitation in ion-molecule reactions in the F region. J Geophys Res 71: 227–230. DOI: 10.1029/JZ071i001p00227. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD. 1987. The cause of high-intensity long-duration continuous AE activity (HILDCAAS): Interplanetary Alfvén wave trains. Planet Space Sci 35: 405–412. DOI: 10.1016/0032-0633(87)90097-3. [Google Scholar]
- Tsurutani BT, Smith EJ. 1977. Two types of magnetospheric ELF chorus and their substorm dependences. J Geophys Res 82: 5112–5128. DOI: 10.1029/JA082i032p05112. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Tang F, Arballo JK, Okada M. 1995. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J Geophys Res 100: 21717–21733. DOI: 10.1029/95JA01476. [NASA ADS] [CrossRef] [Google Scholar]
- Wand RH, Evans JV. 1981a. Seasonal and magnetic activity variations of ionospheric electric fields over Millstone Hill. J Geophys Res 86: 103–118. DOI: 10.1029/JA086iA01p00103. [CrossRef] [Google Scholar]
- Wand RH, Evans JV. 1981b. The penetration of convection electric fields to the latitude of Millstone Hill (Λ = 56∘). J Geophys Res 86: 5809–5814. DOI: 10.1029/JA086iA07p05809. [CrossRef] [Google Scholar]
- Wang K, Tam SWY. 2010. Analysis of ionospheric electron parameters versus geomagnetic index Dst from RO data of FORMOSAT-3/COSMIC. GPS Solutions 14: 99–108. DOI: 10.1007/s10291-009-0148-x. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.