Open Access
Issue |
J. Space Weather Space Clim.
Volume 7, 2017
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
|
|
---|---|---|
Article Number | A28 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2017026 | |
Published online | 01 November 2017 |
- Adriani O, et al. 2016. Measurements of cosmic-ray hydrogen and helium isotopes with the PAMELA experiment. Astrophys J 818: 68. DOI:10.3847/0004-637X/818/1/68. [CrossRef] [Google Scholar]
- Aguilar M, et al. 2010. Relative composition and energy spectra of light nuclei in cosmic rays: results from AMS-01. Astrophys J 724: 329–40, DOI:10.1088/0004-637X/724/1/329. [NASA ADS] [CrossRef] [Google Scholar]
- Aster R, Borchers B, Thurber CH. 2005. Parameter estimation and inverse problems. New York: Elsevier, ISBN 0-12- 065604-3. [Google Scholar]
- Atwell W, et al. 2017. Atmospheric radiation measurement system for commercial aircraft altitudes. In: 9th AIAA Atmospheric and Space Environments Conference, AIAA AVIATION Forum (AIAA 2017-3063), DOI:10.2514/6.2017-3063. [Google Scholar]
- Atwell W, Tylka A, Dietrich W, Rojdev K, Matzkind C. 2015. Sub-GLE solar particle events and the implications for lightly-shielded systems flown during an era of low solar activity. In: 45th International Conference on Environmental Systems, 12-16 July 2015. Bellevue, WA: ICES-2015-340, pp. 1–12. [Google Scholar]
- Balanov M, et al. 2008. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes Volume II Scientific Annexe B. Tech. rep. [Google Scholar]
- Bazilevskaya GA. 2005. Solar cosmic rays in the near Earth space and the atmosphere. Adv Space Res 35: 458–464, DOI:10.1016/j.asr.2004.11.019. [CrossRef] [Google Scholar]
- Bazilevskaya GA, et al. 2008. Cosmic ray induced ion production in the atmosphere. Space Sci Rev 137: 149–173, DOI:10.1007/s11214-008-9339-y. [NASA ADS] [CrossRef] [Google Scholar]
- Bieber J, Evenson P. 1995. Spaceship Earth – an optimized network of neutron monitors. In: Proc. of 24th ICRC Rome, Italy, 28 August–8 September 1995, vol. 4, pp. 1316–1319. [Google Scholar]
- Bieber J, Clem J, Evenson P, Oh S, Pyle R. 2013, Continued decline of South Pole neutron monitor counting rate. J Geophys Res: Space Phys 118: 6847–6851, DOI:10.1002/2013JA018915. [CrossRef] [Google Scholar]
- Bombardieri D, Duldig M, Michael K, Humble J. 2006. Relativistic proton production during the 2000 July 14 solar event: the case for multiple source mechanisms. Astrophys J 644: 565–574, DOI:10.1086/501519. [CrossRef] [Google Scholar]
- Burger R, Potgieter M, Heber B. 2000. Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: implication for the diffusion tensor. J Geophys Res 105: 27447–27455, DOI:10.1029/2000JA000153. [NASA ADS] [CrossRef] [Google Scholar]
- Bütikofer R, Flückiger E. 2013. Differences in published characteristics of GLE60 and their consequences on computed radiation dose rates along selected flight paths. J Phys: Conf Ser 409: 012166. DOI:10.1088/1742-6596/409/1/012166. [Google Scholar]
- Bütikofer R, Flückiger E. 2015, What are the causes for the spread of GLE parameters deduced from NM data? J Phys: Conf Ser 632: 012053. DOI:10.1088/1742-6596/632/1/012053. [Google Scholar]
- Caballero-Lopez R. 2016. An estimation of the yield and response functions for the mini neutron monitor. J Geophys Res A: Space Phys 121: 7461–7469, DOI:10.1002/2016JA022690. [Google Scholar]
- Caballero-Lopez R, Moraal H. 2004. Limitations of the force field equation to describe cosmic ray modulation. J Geophys Res 109: A01101. DOI:10.1029/2003JA010098. [Google Scholar]
- Carmichael H. 1968. Cosmic rays (instruments). In: Minnis CM, ed. Ann. IQSY. Cambridge, MA: MIT Press, vol. 1, pp. 178–197. [Google Scholar]
- Carmichael H, Bercovitch M, Shea MA, Magidin M, Peterson RW. 1968. Attenuation of neutron monitor radiation in the atmosphere. Can J Phys 46: 1006. [Google Scholar]
- Cliver E, Kahler S, Reames D. 2004. Coronal shocks and solar energetic proton events. Astrophys J 605: 902–910, DOI:10.1086/382651. [NASA ADS] [CrossRef] [Google Scholar]
- Cramp J, Humble J, Duldig M. 1995. The cosmic ray ground-level enhancement of 24 October 1989. In: Proceedings Astronomical Society of Australia, vol. 11, pp. 28–32. [CrossRef] [Google Scholar]
- Cramp J, Duldig M, Flückiger E, Humble J, Shea M, Smart D. 1997. The October 22, 1989, solar cosmic ray enhancement: an analysis the anisotropy spectral characteristics. J Geophys Res 102: 24237–24248, DOI:10.1029/97JA01947. [NASA ADS] [CrossRef] [Google Scholar]
- Debrunner H, Flückiger E, Gradel H, Lockwood J, McGuire R. 1988. Observations related to the acceleration, injection, and interplanetary propagation of energetic protons during the solar cosmic ray event on February 16, 1984. J Geophys Res 93: 7206–7216, DOI:10.1029/JA093iA07p07206. [NASA ADS] [CrossRef] [Google Scholar]
- Dennis J, Schnabel R. 1996. Numerical methods for unconstrained optimization and nonlinear equations. Englewood Cliffs: Prentice-Hall, ISBN 13-978-0-898713- 64-0. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13: 3, DOI:10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Desorgher L, Flückiger E, Gurtner M, Moser M, Bütikofer R. 2005. A Geant 4 code for computing the interaction of cosmic rays with the earth’s atmosphere. Int J Mod Phys A 20: 6802–6804, DOI:10.1142/S0217751X05030132. [Google Scholar]
- Desorgher L, Kudela K, Flückiger E, Bütikofer R, Storini M, Kalegaev V. 2009. Comparison of Earth’s magnetospheric magnetic field models in the context of cosmic ray physics. Acta Geophys 57: 75–87, DOI:10.2478/s11600-008-0065-3. [CrossRef] [Google Scholar]
- Dorman L. 2004. Cosmic rays in the Earth’s atmosphere and underground. Dordrecht: Kluwer Academic Publishers, ISBN 1-4020- 2071-6. [CrossRef] [Google Scholar]
- Dorman L. 2006. Cosmic ray interactions, propagation, and acceleration in space plasmas. Astrophysics and space science library. Dordrecht: Springer, vol. 339, ISBN 13-978-1-4020-5100-5. [Google Scholar]
- Eisenbud M, Gesell T. 1997. Environmental radioactivity from natural, industrial and military sources. Academic Press, San Diego, ISBN-13:978-0-12-235154-9. [Google Scholar]
- EURATOM 1996. Council Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for protection of the health of workers and the general public against the dangers arising from ionising radiation. Official Journal of the European Communities, 39. [Google Scholar]
- Ferrari A, Pelliccioni M, Rancati T. 2001. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure. Radiat Prot Dosim 93: 101–114, DOI:10.1093/oxfordjournals.rpd.a006418. [CrossRef] [Google Scholar]
- Gaisser TK, Stanev T. 2010. Cosmic rays. In K.N. et al., ed., Review of particle physics. J Phys G 37: 269–275. [Google Scholar]
- Gil A, Usoskin I, Kovaltsov G, Mishev A, Corti C, Bindi V. 2015. Can we properly model the neutron monitor count rate? J Geophys Res 120: 7172–7178, DOI:10.1002/2015JA021654. [CrossRef] [Google Scholar]
- Gleeson L, Axford W. 1968. Solar modulation of galactic cosmic rays. Astrophys J 154, 1011–1026. [CrossRef] [Google Scholar]
- Grieder P. 2001. Cosmic rays at Earth researcher’s reference manual and data book. Amsterdam: Elsevier Science, ISBN 978-0-444- 50710-5. [Google Scholar]
- Hatton C. 1971. The neutron monitor. In: Progress in elementary particle and cosmic-ray physics. Amsterdam: North Holland Publishing Co., vol. X, chap. 1. [Google Scholar]
- Hatton C, Carmichael H. 1964. Experimental investigation of the NM-64 neutron monitor. Can J Phys 42: 2443–2472. [CrossRef] [Google Scholar]
- Heber B, Galsdorf D, Gieseler J, Herbst K, Walther M, Stoessl A, Krüger H, Moraal H, Benadé G. 2015. Mini neutron monitor measurements at the Neumayer III station and on the German research vessel Polarstern. In: Proceedings of Science, Proc. of 34th ICRC Hague, Netherlands, 30 July–6 August 2015, p. 122. [Google Scholar]
- Himmelblau D. 1972. Applied nonlinear programming. McGraw-Hill(Tx), ISBN 978-0070289215. [Google Scholar]
- Humble J, Duldig M, Smart D, Shea M. 1991. Detection of 0.5-15 GeV solar protons on 29 September 1989 at Australian stations. Geophys Res Lett 18: 737–740. [CrossRef] [Google Scholar]
- ICRP 1991. ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 21. [Google Scholar]
- Kocharov L, et al. 2017. Investigating the origins of two extreme solar particle events: proton source profile and associated electromagnetic emissions. Astrophys J 839: 79, DOI:10.3847/1538-4357/aa6a13. [Google Scholar]
- Kovaltsov G, Mishev A, Usoskin I. 2012. A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth Planet Sci Lett 337: 114–120, DOI:10.1016/j.epsl.2012.05.036. [Google Scholar]
- Krüger H, Moraal H. 2013. Neutron monitor calibrations: progress report. J Phys: Conf Ser 409: 012171, DOI:10.1088/1742-6596/409/1/012171. [Google Scholar]
- Krüger H, Moraal H, Nel R, Krüger H, O’Kennedy M. 2015. The mini neutron monitor programme. In: Proceedings of Science, Proc. of 34th ICRC Hague, Netherlands, 30 July–6 August 2015, p. 223. [Google Scholar]
- Kudela K. 2016. On low energy cosmic rays and energetic particles near Earth. Contrib Astron Obs Skaln Pleso 46: 15–70. [Google Scholar]
- Kudela K, Usoskin I. 2004. On magnetospheric transmissivity of cosmic rays. Czechoslov J Phys 54: 239–254. [Google Scholar]
- Kühl P, Banjac S, Dresing N, Goméz-Herrero R, Heber B, Klassen A, Terasa C. 2015. Proton intensity spectra during the solar energetic particle events of May 17, 2012 and January 6, 2014. Astron Astrophys 576: A120, DOI:10.1051/0004-6361/201424874. [Google Scholar]
- Kühl P, Dresing N, Heber B, Klassen A. 2017. Solar energetic particle events with protons above 500 MeV between 1995 and 2015 measured with SOHO/EPHIN. Sol Phys 292: 10, DOI:10.1007/s11207-016-1033-8. [NASA ADS] [CrossRef] [Google Scholar]
- Lara A, Borgazzi A, Caballero-Lopez R. 2016. Altitude survey of the galactic cosmic ray flux with a Mini Neutron Monitor. Adv Space Res 58: 1441–1451, DOI:10.1016/j.asr.2016.06.021. [CrossRef] [Google Scholar]
- Lee J, Nam U-W, Pyo J, Kim S, Kwon Y-J, Lee J, Park I, Kim M-H, Dachev T. 2015. Short-term variation of cosmic radiation measured by aircraft under constant flight conditions. Space Weather 13: 797–806, DOI:10.1002/2015SW001288. [CrossRef] [Google Scholar]
- Levenberg K. 1944. A method for the solution of certain non-linear problems in least squares. Q Appl Math 2: 164–168. [Google Scholar]
- Lewis B, Bennett L, Green A, Butler A, Desormeaux M, Kitching F, McCall M, Ellaschuk B, Pierre M. 2005. Aircrew dosimetry using the Predictive Code for Aircrew Radiation Exposure (PCAIRE). Radiat Prot Dosim 116: 320–326. [CrossRef] [Google Scholar]
- Li C, Miroshnichenko L, Sdobnov V. 2016. Small ground-level enhancement of 6 January 2014: acceleration by CME-driven shock? Sol Phys 291: 975–987, DOI:10.1007/s11207-016-0871-8. [CrossRef] [Google Scholar]
- Lilensten J, Bornarel J. 2009. Space weather, environment and societies. Dordrecht: Springer, ISBN 978-1-4020- 4332-1. [Google Scholar]
- Lockwood JA, Debrunner H, O. Flükiger E. 1990. Indications for diffusive coronal shock acceleration of protons in selected solar cosmic ray events. J Geophys Res: Space Phys 95: 4187–4201. [Google Scholar]
- Macmillan S, et al. 2003. The 9th-generation international geomagnetic reference field. Geophys J Int 155: 1051–1056, DOI:10.1016/j.pepi.2003.09.002. [CrossRef] [Google Scholar]
- Mangeard P-S, Ruffolo D, Saiz A, Nuntiyakul W, Bieber J, Clem J, Evenson P, Pyle R, Duldig M, Humble J. 2016. Dependence of the neutron monitor count rate and time delay distribution on the rigidity spectrum of primary cosmic rays. J Geophys Res: Space Phys 121: 11620–11636, DOI:10.1002/2016JA023515. [CrossRef] [Google Scholar]
- Marquardt D. 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11: 431–441. [Google Scholar]
- Matthiä D, Sihver L, Meier M. 2008. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere. Radiat Prot Dosim 131: 222–228, DOI:10.1093/rpd/ncn130. [CrossRef] [Google Scholar]
- Mavromichalaki H, et al., 2011 Applications and usage of the real-time Neutron Monitor Database. Adv Space Res 47: 2210–2222, DOI:10.1016/j.asr.2010.02.019. [CrossRef] [Google Scholar]
- Menzel H. 2010. The international commission on radiation units and measurements. J ICRU 10: 1–35. [Google Scholar]
- Mertens C, Meier M, Brown S, Norman R, Xu X. 2013. NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather 11: 603–635, DOI:10.1002/swe.20100. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I. 2013. Computations of cosmic ray propagation in the Earth’s atmosphere, towards a GLE analysis. J Phys: Conf Ser 409: 012152, DOI:10.1088/1742-6596/409/1/012152. [Google Scholar]
- Mishev A, Usoskin I. 2015. Numerical model for computation of effective and ambient dose equivalent at flight altitudes: application for dose assessment during GLEs. J Space Weather Space Clim 5: A10, DOI:10.1051/swsc/2015011. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A, Usoskin I. 2016a. Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Sol Phys 291: 1225–1239, DOI:10.1007/s11207-016-0877-2. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I. 2016b. Erratum to: Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Sol Phys 291: 1579–1580, DOI:10.1007/s11207-016-0877-2. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I, Kovaltsov G. 2013. Neutron monitor yield function: new improved computations. J Geophys Res 118: 2783–2783, DOI:10.1002/jgra.50325. [Google Scholar]
- Mishev A, Kocharov L, Usoskin I. 2014. Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J Geophys Res 119: 670–679, DOI:10.1002/2013JA019253. [NASA ADS] [CrossRef] [Google Scholar]
- Mishev A, Usoskin I, Kovaltsov G. 2015. New neutron monitor yield function computed at several altitudes above the sea level: application for GLE analysis. In: Proceedings of Science, Proc. of 34th ICRC Hague, Netherlands, 30 July–6 August 2015, p. 159. [Google Scholar]
- Mishev A, Adibpour F, Usoskin I, Felsberger E. 2015. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71. Adv Space Res 55: 354–362, DOI:10.1016/j.asr.2014.06.020. [CrossRef] [Google Scholar]
- Moraal H. 1976. Observations of the eleven-year cosmic-ray modulation cycle. Space Sci Rev 19: 845–920. [CrossRef] [Google Scholar]
- Moraal H, Belov A, Clem J. 2000. Design and co-ordination of multi-station international neutron monitor networks. Space Sci Rev 93: 285–303. [CrossRef] [Google Scholar]
- Nevalainen J, Usoskin I, Mishev A. 2013. Eccentric dipole approximation of the geomagnetic field: application to cosmic ray computations. Adv Space Res 52: 22–29, DOI:10.1016/j.asr.2013.02.020. [CrossRef] [Google Scholar]
- Pelliccioni M. 2000. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code. Radiat Prot Dosim 88: 279–297. [CrossRef] [Google Scholar]
- Petoussi-Henss N, Bolch W, Eckerman K, Endo A, Hertel N, Hunt J, Pelliccioni M, Schlattl H, Zankl M. 2010. Conversion coefficients for radiological protection quantitiesfor external radiation exposures. Ann ICRP 40: 1–257. [CrossRef] [Google Scholar]
- Poluianov S, Usoskin I, Mishev A, Moraal H, Krüger H, Casasanta G, Traversi R, Udisti R. 2015. Mini neutron monitors at Concordia research station, Central Antarctica. J Astron Space Sci 32: 281–287, DOI:10.5140/JASS.2015.32.4.281. [CrossRef] [Google Scholar]
- Poluianov S, Usoskin I, Mishev A, Smart D, Shea M. 2017. Revisited definition of GLE. In: Proceedings of Science, Proc. of 35th ICRC Busan, Korea, 12-17 July 2017, p. 125. [Google Scholar]
- Reames D. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. [NASA ADS] [CrossRef] [Google Scholar]
- Reames D. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92, DOI:10.1007/s11214-013-9958-9. [Google Scholar]
- Roesler S, Heinrich W, Schraube H. 2002. Monte Carlo calculation of the radiation field at aircraft altitudes. Radiat Prot Dosim 98: 367–388. [CrossRef] [Google Scholar]
- Sandberg I, Jiggens P, Heynderickx D, Daglis I. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41: 4435–4441, DOI:10.1002/2014GL060469. [CrossRef] [Google Scholar]
- Sato T, Yasuda H, Niita K, Endo A, Sihver L. 2008. Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiat Res 170: 244–259, DOI:10.1667/RR1094.1. [CrossRef] [Google Scholar]
- Schraube H, Leuthold G, Heinrich W, Roesler S, Combecher D. 2000. European program package for the calculation of aviation route doses, version 3.0. Tech. Rep. D-85758. Neuherberg, Germany: National Research Center for Environment and Health Institute of Radiation Protection. [Google Scholar]
- Shea M, Smart D. 1982. Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci Rev 32: 251–271. [Google Scholar]
- Shea M, Smart D. 1990. A summary of major solar proton events. Sol Phys 127: 297–320. [NASA ADS] [CrossRef] [Google Scholar]
- Shea M, Smart D. 2000. Cosmic ray implications for human health. Space Sci Rev 93: 187–205, DOI:10.1023/A:1026544528473. [Google Scholar]
- Simpson J. 1957. Cosmic-radiation neutron intensity monitor. Ann. Int. Geophys. Year, 4: 351–373. [Google Scholar]
- Simpson J, Fonger W, Treiman S. 1953. Cosmic radiation intensity-time variation and their origin. I. Neutron intensity variation method and meteorological factors. Phys Rev, 90: 934–950. [CrossRef] [Google Scholar]
- Spurny F, Votockova I, Bottollier-Depois J. 1996. Geographical influence on the radiation exposure of an aircrew on board a subsonic aircraft. Radioprotection 31: 275–280. [Google Scholar]
- Spurny F, Dachev T, Kudela K. 2002. Increase of onboard aircraft exposure level during a solar flare. Nucl Energy Saf 10: 396–400. [Google Scholar]
- Stoker P. 1995. Relativistic solar proton events. Space Sci Rev 73: 327–385, DOI:10.1007/BF00751240. [Google Scholar]
- Stoker P, Dorman L, Clem J. 2000. Neutron monitor design improvements. Space Sci Rev 93: 361–380. [NASA ADS] [CrossRef] [Google Scholar]
- Thakur N, Gopalswamy N, Xie H, Yashiro S, Akiyama S, Davila J. 2014. Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys J Lett 790: L13, DOI:10.1088/2041-8205/790/1/L13. [Google Scholar]
- Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG. 1995. Numerical methods for solving ill-posed problems. Dordrecht: Kluwer Academic Publishers, ISBN 978-90-481- 4583-6. [CrossRef] [Google Scholar]
- Tsyganenko N. 1989. A magnetospheric magnetic field model with a warped tail current sheet. Planet Space Sci 37: 5–20. [NASA ADS] [CrossRef] [Google Scholar]
- Tylka A, Dietrich W. 2009. A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proc. of 31st ICRC Lodz, Poland, 7-15 July 2009, p. 0273. [Google Scholar]
- Usoskin I, Kovaltsov G. 2006. Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J Geophys Res 111: D21206. DOI:10.1029/2006JD007150. [CrossRef] [Google Scholar]
- Usoskin I, Alanko-Huotari K, Kovaltsov G, Mursula K. 2005. Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J Geophys Res 110: A12108. DOI:10.1029/2005JA011250. [Google Scholar]
- Usoskin IG, Desorgher L, Velinov P, Storini M, Flückiger E, Bütikofer R, Kovaltsov G. 2009. Ionization of the Earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys 57: 88–101, DOI:10.2478/s11600-008-0019-9. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin I, Bazilevskaya G, Kovaltsov G. 2011. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J Geophys Res 116: A02104. DOI:10.1029/2010JA016105. [Google Scholar]
- Usoskin I, Ibragimov A, Shea M, Smart D. 2015. Database of ground level enhancements (GLE) of high energy solar proton events. In: Proceedings of Science, Proc. of 34th ICRC Hague, Netherlands, 30 July–6 August 2015, p. 054. [Google Scholar]
- Vainio R, et al., 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147: 187–231, DOI:10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vashenyuk E, Balabin Y, Perez-Peraza J, Gallegos-Cruz A, Miroshnichenko L. 2006. Some features of the sources of relativistic particles at the Sun in the solar cycles 21-23. Adv Space Res 38: 411–417, DOI:10.1016/j.asr.2005.05.012. [Google Scholar]
- Vashenyuk E, Balabin Y, Stoker P. 2007. Responses to solar cosmic rays of neutron monitors of a various design. Adv Space Res 40: 331–337, DOI:10.1016/j.asr.2007.05.018. [CrossRef] [Google Scholar]
- Vashenyuk E, Balabin Y, Gvozdevsky B, Schur L. 2008. Characteristics of relativistic solar cosmic rays during the eventof December 13, 2006. Geomagn Aeron 48: 149–153, DOI:10.1007/s11478-008-2003-6. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.