Issue
J. Space Weather Space Clim.
Volume 7, 2017
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction system
Article Number A27
Number of page(s) 9
DOI https://doi.org/10.1051/swsc/2017025
Published online 01 November 2017
  • Balch CC. 1999. SEP proton prediction model: verification and analysis. Radiat Meas 30: 231–50 [CrossRef]
  • Balch CC. 2008. Updated verification of the Space Weather Prediction Centers solar energetic particle prediction model. Space Weather 6: S01001. DOI: 10.1029/2007SW000337. [CrossRef]
  • Bloomfield DS, Higgins PA, McAteer RTJ, Gallagher PT. 2012. Toward reliable benchmarking of solar flare forecasting methods. Astrophys J Lett 747: L41. DOI: 10.1088/2041-8205/747/2/L41. [NASA ADS] [CrossRef]
  • Cane HV, Richardson IG, von Rosenvinge T. 2010. A study of solar energetic particle events of 1997-2006: their composition and associations. J Geophys Res 115: A08101. DOI: 10.1029/2009JA014848.
  • Crosby N, et al. 2015. SEPEM: a tool for statistical modeling the solar energetic particle environment. Space Weather 13: 406–26. DOI: 10.1002/2013SW001008. [CrossRef]
  • Hilmer RV, Hall T, Roth C, Ling AG, Ginet GP, Madden D. 2012. AF-GEOSPACE user’s manual version 2.5.1 and version 2.5.1P. AFRL Tech. Rep. AFRL-RV-PS-TR-2012-0143, p. 116
  • Kahler SW. 2013. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections. Astrophys J 769: 110. DOI: 10.1088/0004-637X/769/2/110. [CrossRef]
  • Kahler SW, Cliver EW, Ling AG. 2007. Validating the proton prediction system (PPS). J Atmos Solar-Terr Phys 69: 43–9. DOI: 10.1016/j.jastp.2006.06.009. [CrossRef]
  • Lario D, Aran A, Gómez-Herrero R, Dresing N, Heber B, Ho GC, Decker RB, Roelof EC. 2013. Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER Observations. Astrophys J 767: 41. DOI: 10.1088/0004-637X/767/1/41. [NASA ADS] [CrossRef]
  • Lario D, Roelof EC, Decker RB. 2014. Longitudinal dependence of SEP peak intensities as evidence of CME-driven shock particle acceleration. In: Hu Q, Zank GP, eds. Outstanding problems in heliophysics: from coronal heating to the edge of the heliosphere. ASP Conference Series, Vol. 484, pp. 98–103.
  • Nita GM, Gary DE, Lanzerotti LJ, Thomson DJ. 2002. The peak fluxdistribution of solar radio bursts. Astrophys J 570: 423–438. DOI: 10.1086/339577. [CrossRef]
  • Núñez M. 2011. Predicting solar energetic particle events (E >10MeV). Space Weather 9: S07003. DOI: 10.1029/2010SW000640.
  • Núñez M. 2015. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather 13: 807–19. DOI: 10.1002/2015SW001256. [CrossRef]
  • Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. DOI: 10.1086/339577. [CrossRef] [EDP Sciences]
  • O’Brien TP. 2009. SEAES-GEO: a spacecraft environmental anomalies expert system for geosynchronous orbit. Space Weather 7: 09003. DOI: 10.1029/2009SW000473.
  • Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5: S05001. DOI: 10.1029/2006SW000268. [CrossRef]
  • Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. DOI: 10.1007/s11214-013-9958-9. [NASA ADS] [CrossRef]
  • Rodriguez JV, Krosschell JC, Green JC. 2014. Intercalibration of GOES 8-15 solar proton detectors. Space Weather 12: 92–109. DOI: 10.1002/2013SW000996. [CrossRef]
  • Schwank JR, et al. 2005. Effects of particle energy on proton-induced single-event latchup. IEEE Trans Nucl Sci 52: 2622–9. DOI: 10.1109/TNS.2005.860672. [CrossRef]
  • Shea MA, Smart DF, Adams JH Jr, Chenette D, Feynman J, Hamilton DC, Heckman GR, Konradi A, Lee MA, Nachtwey DS. 1988. Toward a descriptive model of solar particles in the heliosphere. In: Feynman J, Gabriel S, eds. Proc. Interplanetary Particle Environment Conf. JPL Publ. 88-28. Pasadena, CA: JPL, p. 3
  • Smart DF, Shea MA. 1979. PPS76: a computerized event mode solar proton forecasting technique. In: NOAA Solar-Terrest. Predictions Proc., Vol. 1, pp. 406–427
  • Smart DF, Shea MA. 1989. PPS-87 – a new event oriented solar proton prediction model. Adv Space Res 9: 281–4. DOI: 10.1016/0273-1177(89)90450-X. [CrossRef] [EDP Sciences]
  • Smart DF, Shea MA. 1992. Modeling the time-intensity profile of solar flare generated particle fluxes in the inner heliosphere. Adv Space Res 12: 303–12. DOI: 10.1016/0273-1177(92)90120-M. [CrossRef] [EDP Sciences]
  • St. Cyr OC, Posner A, Burkepile JT. 2017. Solar energetic particle warnings from a coronagraph. Space Weather 15: 240–57. DOI: 10.1002/2016SW001545. [CrossRef]
  • Tribble A. 2010. Energetic particles and technology. In: Schrijver CJ, Siscoe GL, eds. Heliophysics: space storms and radiation: causes and effects. London: Cambridge Univ. Press, pp. 381–399 [CrossRef]
  • Wilks DS. 2011. Statistical methods in the atmospheric sciences. Internat. Geophys. Ser., 100. Boston: Elsevier.
  • Woodcock F. 1976. The evaluation of yes/no forecasts for scientific and administrative purposes. Month Weather Rev 104: 1209. DOI: 10.1175/1520-0493(1976)104 <1209:TEOYFF >2.0.CO;2. [CrossRef]
  • Zucca P, Nez M, Klein K-L. 2017. Exploring the potential of microwave diagnostics in SEP forecasting: the occurrence of SEP events. J Space Weather Space Clim 7: A13. DOI: 10.1051/swsc/2017011. [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.