Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A23
Number of page(s) 12
Published online 10 October 2017
  • Alfonsi L, Spogli L, De Franceschi G, Romano V, Aquino M, Dodson A, Mitchell CN. 2011. Bipolar climatology of GPS ionospheric scintillation at solar minimum. Radio Sci 46 (3): RS0D05. DOI:10.1029/2010RS004571. [CrossRef] [Google Scholar]
  • Carlson HC. 2012. Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Sci 47 (4): RS0L21. DOI:10.1029/2011RS004946. [CrossRef] [Google Scholar]
  • Carlson HC, Pedersen T, Basu S, Keskinen M, Moen J. 2007. Case for a new process, not mechanism, for cusp irregularity production. J Geophys Res: Space Phys 112 (A11). DOI:10.1029/2007JA012384. [CrossRef] [Google Scholar]
  • Carlson HC, Spain T, Aruliah A, Skjaeveland A, Moen J. 2012. First-principles physics of cusp/polar cap thermospheric disturbances. Geophys Res Lett 39 (19): L19103. DOI:10.1029/2012GL053034. [CrossRef] [Google Scholar]
  • Chen X-C, Lorentzen DA, Moen JI, Oksavik K, Baddeley LJ. 2015. Simultaneous ground-based optical and HF radar observations of the ionospheric footprint of the open/closed field line boundary along the geomagnetic meridian. J Geophys Res: Space Phys 120 (11): 9859–9874. DOI:10.1002/2015JA021481. [CrossRef] [Google Scholar]
  • Chisham G, Lester M, Milan SE, Freeman MP, Bristow WA, et al. 2007. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surv Geophys 28 (1): 33–109. DOI:10.1007/s10712-007-9017-8. [CrossRef] [Google Scholar]
  • Clausen LBN, Moen JI, Hosokawa K, Holmes JM. 2016. GPS scintillations in the high latitudes during periods of dayside and nightside reconnection. J Geophys Res: Space Phys 121 (4): 3293–3309. DOI:10.1002/2015JA022199. [CrossRef] [Google Scholar]
  • Doe RA, Kelly JD, Sánchez ER. 2001. Observations of persistent dayside F region electron temperature enhancements associated with soft magnetosheathlike precipitation. J Geophys Res: Space Phys 106 (A3): 3615–3630. DOI:10.1029/2000JA000186. [CrossRef] [Google Scholar]
  • Evans DS, Greer MS. 2000. Polar orbiting environmental satellite space environment monitor – 2: instrument descriptions and archive data documentation. NOAA Technical Memorandum OAR SEC-93, Space Environment Center, Boulder, Colorado. [Google Scholar]
  • Greenwald RA, Baker KB, Dudeney JR, Pinnock M, Jones TB, et al. 1995. DARN/SuperDARN. Space Sci Rev 71 (1): 761–796. DOI:10.1007/BF00751350. [CrossRef] [Google Scholar]
  • Hosokawa K, Taguchi S, Ogawa Y. 2016. Periodic creation of polar cap patches from auroral transients in the cusp. J Geophys Res: Space Phys 121 (6): 5639–5652. DOI:10.1002/2015JA022221. [CrossRef] [Google Scholar]
  • Jin Y, Moen JI, Miloch WJ. 2014. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison. J Space Weather Space Clim 4 : A23. DOI:10.1051/swsc/2014019. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jin Y, Moen JI, Miloch WJ. 2015. On the collocation of the cusp aurora and the GPS phase scintillation: a statistical study. J Geophys Res: Space Phys 120 (10): 9176–9191. DOI:10.1002/2015JA021449. [CrossRef] [Google Scholar]
  • Jin Y, Moen JI, Miloch WJ, Clausen LBN, Oksavik K. 2016. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs. J Geophys Res: Space Phys 121 (5): 4679–4697. DOI:10.1002/2016JA022613. [CrossRef] [Google Scholar]
  • Kelley MC, Vickrey JF, Carlson CW, Torbert R. 1982. On the origin and spatial extent of high-latitude F region irregularities. J Geophys Res: Space Phys 87 (A6): 4469–4475. DOI:10.1029/JA087iA06p04469. [CrossRef] [Google Scholar]
  • Keskinen MJ, Ossakow SL. 1983. Theories of high-latitude ionospheric irregularities: a review. Radio Sci 18 (6): 1077–1091. DOI:10.1029/RS018i006p01077. [CrossRef] [Google Scholar]
  • Keskinen MJ, Mitchell HG, Fedder JA, Satyanarayana P, Zalesak ST, Huba JD. 1988. Nonlinear evolution of the Kelvin-Helmholtz instability in the high-latitude ionosphere. J Geophys Res: Space Phys 93 (A1): 137–152. DOI:10.1029/JA093iA01p00137. [CrossRef] [Google Scholar]
  • King JH, Papitashvili NE. 2005. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J Geophys Res: Space Phys 110 (A2): A02104. DOI:10.1029/2004JA010649. [Google Scholar]
  • Kintner PM, Ledvina BM, de Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5 (9): S09003. DOI:10.1029/2006SW000260. [CrossRef] [Google Scholar]
  • Labelle J, Sica RJ, Kletzing C, Earle GD, Kelley MC, Lummerzheim D, Torbert RB, Baker KD, Berg G. 1989, Ionization from soft electron precipitation in the auroral F region. J Geophys Res: Space Phys 94 (A4): 3791–3798. DOI:10.1029/JA094iA04p03791. [CrossRef] [Google Scholar]
  • Lockwood M, Moen J, Cowley SWH, Farmer AD, L∅vhaug UP, Lühr H, Davda VN. 1993. Variability of dayside convection and motions of the cusp/cleft aurora. Geophys Res Lett 20 (11): 1011–1014. DOI:10.1029/93GL00846. [CrossRef] [Google Scholar]
  • Lockwood M, Moen J, van Eyken AP, Davies JA, Oksavik K, McCrea IW. 2005. Motion of the dayside polar cap boundary during substorm cycles: I. Observations of pulses in the magnetopause reconnection rate. Ann Geophys 23 (11): 3495–3511. DOI:10.5194/angeo-23-3495-2005. [CrossRef] [Google Scholar]
  • Milan SE, Yeoman TK, Lester M. 1998. The dayside auroral zone as a hard target for coherent HF radars. Geophys Res Lett 25 (19): 3717–3720. DOI:10.1029/98GL02781. [CrossRef] [Google Scholar]
  • Mitchell CN, Alfonsi L, De Franceschi G, Lester M, Romano V, Wernik AW. 2005. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys Res Lett 32 (12): L12S03. DOI:10.1029/2004GL021644. [CrossRef] [Google Scholar]
  • Moen J, Sandholt PE, Lockwood M, Denig WF, L∅vhaug UP, Lybekk B, Egeland A, Opsvik D, Friis-Christensen E. 1995. Events of enhanced convection and related dayside auroral activity. J Geophys Res: Space Phys 100 (A12): 23917–23934. DOI:10.1029/95JA02585. [CrossRef] [Google Scholar]
  • Moen J, Evans D, Carlson HC, Lockwood M. 1996. Dayside moving auroral transients related to LLBL dynamics. Geophys Res Lett 23 (22): 3247–3250. DOI:10.1029/96GL02766. [CrossRef] [Google Scholar]
  • Moen J, Lorentzen DA, Sigernes F. 1998. Dayside moving auroral forms and bursty proton auroral events in relation to particle boundaries observed by NOAA 12. J Geophys Res: Space Phys 103 (A7): 14855–14863. DOI:10.1029/97JA02877. [CrossRef] [Google Scholar]
  • Moen J, Carlson HC, Milan SE, Shumilov N, Lybekk B, Sandholt PE, Lester M. 2001. On the collocation between dayside auroral activity and coherent HF radar backscatter. Ann Geophys 18 (12): 1531–1549. DOI:10.1007/s00585-001-1531-2. [CrossRef] [Google Scholar]
  • Moen J, Lockwood M, Oksavik K, Carlson HC, Denig WF, van Eyken AP, McCrea IW. 2004a. The dynamics and relationships of precipitation, temperature and convection boundaries in the dayside auroral ionosphere. Ann Geophys 22 (6): 1973–1987. DOI:10.5194/angeo-22-1973-2004. [CrossRef] [Google Scholar]
  • Moen J, Oksavik K, Carlson HC. 2004b. On the relationship between ion upflow events and cusp auroral transients. Geophys Res Lett 31 (11): L11808. DOI:10.1029/2004GL020129. [CrossRef] [Google Scholar]
  • Moen J, Carlson HC, Oksavik K, Nielsen CP, Pryse SE, Middleton HR, McCrea IW, Gallop P. 2006. EISCAT observations of plasma patches at sub-auroral cusp latitudes. Ann Geophys 24 (9): 2363–2374. DOI:10.5194/angeo-24-2363-2006. [CrossRef] [Google Scholar]
  • Moen J, Rinne Y, Carlson HC, Oksavik K, Fujii R, Opgenoorth H. 2008. On the relationship between thin Birkeland current arcs and reversed flow channels in the winter cusp/cleft ionosphere. J Geophys Res: Space Phys 113 (A9): A09220. DOI:10.1029/2008JA013061. [CrossRef] [Google Scholar]
  • Moen J, Oksavik K, Abe T, Lester M, Saito Y, Bekkeng TA, Jacobsen KS. 2012. First in-situ measurements of HF radar echoing targets. Geophys Res Lett 39 : L07104. DOI:10.1029/2012GL051407. [CrossRef] [Google Scholar]
  • Moen J, Oksavik K, Alfonsi L, Daabakk Y, Romano V, Spogli L. 2013. Space weather challenges of the polar cap ionosphere. J Space Weather Space Clim 3 : A02. DOI:10.1051/swsc/2013025. [CrossRef] [EDP Sciences] [Google Scholar]
  • Nishimura Y, Lyons LR, Zou Y, Oksavik K, Moen JI, et al. 2014. Day-night coupling by a localized flow channel visualized by polar cap patch propagation. Geophys Res Lett 41 (11): 3701–3709. DOI:10.1002/2014GL060301. [CrossRef] [Google Scholar]
  • Oksavik K, S∅raas F, Moen J, Burke WJ. 2000. Optical and particle signatures of magnetospheric boundary layers near magnetic noon: Satellite and ground-based observations. J Geophys Res: Space Phys 105 (A12): 27555–27568. DOI:10.1029/1999JA000237. [CrossRef] [Google Scholar]
  • Oksavik K, Moen J, Carlson HC. 2004. High-resolution observations of the small-scale flow pattern associated with a poleward moving auroral form in the cusp. Geophys Res Lett 31 (11): L11807. DOI:10.1029/2004GL019838. [CrossRef] [Google Scholar]
  • Oksavik K, Moen J, Carlson HC, Greenwald RA, Milan SE, Lester M, Denig WF, Barnes RJ. 2005. Multi-instrument mapping of the small-scale flow dynamics related to a cusp auroral transient. Ann Geophys 23 (7): 2657–2670. DOI:10.5194/angeo-23-2657-2005. [CrossRef] [Google Scholar]
  • Oksavik K, Barth VL, Moen J, Lester M. 2010. On the entry and transit of high-density plasma across the polar cap. J Geophys Res: Space Phys 115 (A12): A12308. DOI:10.1029/2010JA015817. [CrossRef] [Google Scholar]
  • Oksavik K, Moen JI, Rekaa EH, Carlson HC, Lester M. 2011. Reversed flow events in the cusp ionosphere detected by SuperDARN HF radars. J Geophys Res: Space Phys 116 (A12): A12303. DOI:10.1029/2011JA016788. [CrossRef] [Google Scholar]
  • Oksavik K, Moen J, Lester M, Bekkeng TA, Bekkeng JK. 2012. In situ measurements of plasma irregularity growth in the cusp ionosphere. J Geophys Res: Space Phys 117 (A11): A11301. DOI:10.1029/2012JA017835. [CrossRef] [Google Scholar]
  • Oksavik K, van der Meeren C, Lorentzen DA, Baddeley LJ, Moen J. 2015. Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere. J Geophys Res: Space Phys 120 (10): 9161–9175. DOI:10.1002/2015JA021528. [CrossRef] [Google Scholar]
  • Prikryl P, Jayachandran PT, Mushini SC, Pokhotelov D, Macdougall JW, Donovan E, Spanswick E, Maurice JPS. 2010. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Ann Geophys 28 (6): 1307–1316. [CrossRef] [Google Scholar]
  • Ribeiro AJ, Ruohoniemi JM, Ponomarenko PV, Clausen LBN, Baker JBH, Greenwald RA, Oksavik K, de Larquier S. 2013. A comparison of SuperDARN ACF fitting methods. Radio Sci 48 (3): 274–282. DOI:10.1002/rds.20031. [CrossRef] [Google Scholar]
  • Rinne Y, Moen J, Oksavik K, Carlson HC. 2007. Reversed flow events in the winter cusp ionosphere observed by the European Incoherent Scatter (EISCAT) Svalbard radar. J Geophys Res: Space Phys 112 (A10): A10313. DOI:10.1029/2007JA012366. [CrossRef] [Google Scholar]
  • Rodger AS, Mende SB, Rosenberg TJ, Baker KB. 1995. Simultaneous optical and HF radar observations of the ionospheric cusp. Geophys Res Lett 22 (15): 2045–2048. DOI:10.1029/95GL01797. [CrossRef] [Google Scholar]
  • Romano V, Pau S, Pezzopane M, Zuccheretti E, Zolesi B, De Franceschi G, Locatelli S. 2008. The electronic Space Weather upper atmosphere (eSWua) project at INGV: advancements and state of the art. Ann Geophys 26 (2): 345–351. DOI:10.5194/angeo-26-345-2008. [CrossRef] [EDP Sciences] [Google Scholar]
  • Romano V, Pau S, Pezzopane M, Spogli L, Zuccheretti E, Aquino M, Hancock C. 2013. eSWua: a tool to manage and access GNSS ionospheric data from mid-to-high latitudes. Ann Geophys 56 (2): R0223. DOI:10.4401/ag-6244. [Google Scholar]
  • Ruohoniemi JM, Baker KB. 1998. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J Geophys Res: Space Phys 103 (A9): 20797–20811. DOI:10.1029/98JA01288. [CrossRef] [Google Scholar]
  • Skjæveland A, Moen J, Carlson HC. 2011. On the relationship between flux transfer events, temperature enhancements, and ion upflow events in the cusp ionosphere. J Geophys Res: Space Phys 116 (A10): A10305. DOI:10.1029/2011JA016480. [Google Scholar]
  • Spicher A, Cameron T, Grono EM, Yakymenko KN, Buchert SC, Clausen LBN, Knudsen DJ, McWilliams KA, Moen JI. 2015. Observation of polar cap patches and calculation of gradient drift instability growth times: a Swarm case study. Geophys Res Lett 42 (2): 201–206. DOI:10.1002/2014GL062590. [CrossRef] [Google Scholar]
  • Spicher A, Ilyasov AA, Miloch WJ, Chernyshov AA, Clausen LBN, Moen JI, Abe T, Saito Y. 2016. Reverse flow events and small-scale effects in the cusp ionosphere. J Geophys Res: Space Phys 121 (10): 10466–10480. DOI:10.1002/2016JA022999. [CrossRef] [Google Scholar]
  • Spogli L, Alfonsi L, Franceschi GD, Romano V, Aquino MHO, Dodson A. 2009. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann Geophys 27 (9): 3429–3437 [CrossRef] [Google Scholar]
  • van der Meeren C, Oksavik K, Lorentzen D, Moen JI, Romano V. 2014. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J Geophys Res: Space Phys 119 (10): 8624–8636. DOI:10.1002/2014JA020114. [CrossRef] [Google Scholar]
  • van der Meeren C, Oksavik K, Lorentzen DA, Rietveld MT, Clausen LBN. 2015. Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora. J Geophys Res: Space Phys 120 (12): 10607–10621. DOI:10.1002/2015JA021819. [CrossRef] [Google Scholar]
  • Van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Paper presented at the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, Utah, 22–24 September, pp. 1333–1342. [EDP Sciences] [Google Scholar]
  • Villain JP, Caudal G, Hanuise C. 1985. A Safari-Eiscat comparison between the velocity of F region small-scale irregularities and the ion drift. J Geophys Res: Space Phys 90 (A9): 8433–8443. DOI:10.1029/JA090iA09p08433. [CrossRef] [Google Scholar]
  • Wang Y, Zhang Q-H, Jayachandran PT, Lockwood M, Zhang S-R, Moen J, Xing Z-Y, Ma Y-Z, Lester M. 2016. A comparison between large-scale irregularities and scintillations in the polar ionosphere. Geophys Res Lett 43 (10): 4790–4798. DOI:10.1002/2016GL069230. [CrossRef] [Google Scholar]
  • Wannberg G, Wolf I, Vanhainen L-G, Koskenniemi K, Röttger J, et al. 1997. The EISCAT Svalbard radar: a case study in modern incoherent scatter radar system design. Radio Sci 32 (6): 2283–2307. DOI:10.1029/97RS01803. [CrossRef] [Google Scholar]
  • Yeh KC, Liu C-H. 1982. Radio wave scintillations in the ionosphere. Proc IEEE 70 (4): 324–360. 10.1109/PROC.1982.12313. [NASA ADS] [CrossRef] [Google Scholar]
  • Yeoman TK, Lester M, Cowley SWH, Milan SE, Moen J, Sandholt PE. 1997. Simultaneous observations of the cusp in optical, DMSP and HF radar data. Geophys Res Lett 24 (17): 2251–2254. DOI:10.1029/97GL02072. [CrossRef] [Google Scholar]
  • Yeoman TK, Wright DM, Stocker AJ, Jones TB. 2001. An evaluation of range accuracy in the Super Dual Auroral Radar Network over-the-horizon HF radar systems. Radio Sci 36 (4): 801–813. DOI:10.1029/2000RS002558. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.